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ONLINE APPENDIX A. EXCERPT FROM THE U.S. NATIONAL SCIENCE 

FOUNDATION SOLICITATION 10-621 TO ESTABLISH THE NSF-CENSUS 

BUREAU RESEARCH NETWORK 

[The full program solicitation can be found archived at 

https://web.archive.org/web/20170710231924/https://www.nsf.gov/pubs/2010/nsf10621/nsf1062

1.htm ] 

Some questions currently of interest related to data collection, analysis, and dissemination 

processes include the following (these topics are not exhaustive): 

Traditional concepts of family and households, as well as traditional concepts of economic units, 

are rapidly evolving. 

● What methods can improve universe frame coverage of persons with intermittent ties 

with households, for entrepreneurial activities leading to new economic units in economic 

unit frames? 

● What data auxiliary to households and covered persons might be used to estimate the 

propensity to be covered, as a targeting tool for alternative ways of assembling universe 

frames? 

● Can theories be developed to guide research decisions for sampling unit definitions 

(derived from frames) and measurement units (e.g., enterprises vs. establishments, 

households vs. persons) to improve overall designs? 

● How can estimates of immigration (both documented and undocumented) be improved? 

● Is the concept of an "establishment" still relevant given changing business models and 

increasingly heterogeneous economic activity? 

Participation rates in sample surveys of households and economic units are declining. 
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● What theories can inform the linkage between nonresponse rates and nonresponse errors? 

● What data might be collected or linked to traditional survey data to improve the 

postsurvey adjustment for nonresponse to reduce nonresponse errors? 

● What mechanisms underlie the finding that offering choices of alternative modes of data 

collection depress overall participation? What antidotes might be created to reduce that 

effect? 

● How can administrative records on persons, households, and economic units be used in 

conjunction with traditional sample surveys to reduce the nonresponse error of traditional 

surveys? 

The complexity of economic units is increasing, with multiple establishments, loose alliances, 

multiple lines of business, virtual spatial attributes, and highly dynamic structures. 

● How can administrative records be used to improve the tailoring of measurement 

techniques to diverse types of economic units? 

● How can changes in key attributes of economic units be tracked over time to improve the 

collection of data from the units? 

● In longitudinal measurement, how can deaths, mergers, and acquisitions of economic 

units be forecasted to permit real-time measurement of those phenomena? 

● How can multiple modes of data collection facilitate measurement of complex economic 

units? 

● How can we more accurately classify heterogeneous economic activity within business 

enterprises, individual locations, or aggregates of locations? 

Editing and imputation techniques commonly used in sample surveys currently have few 

evaluative frameworks that guide decisions on what approaches maximally reduce bias in final 
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estimates. 

● What logical or statistical approaches might offer guidance to the tradeoff decision of 

how much editing is optimal for diverse purposes? 

● What editing algorithms might be developed to reduce the post-estimation review 

processes common in statistical estimation? 

● What computer-assistance in editing might be developed to reduce the use of subject 

matter expertise in the review of data from longitudinal and other surveys? 

● How can empirical diagnostic tools for evaluating auto-coding algorithms and large scale 

imputation approaches be improved? 

Administrative records, when combined with survey data, may offer radically increased 

efficiencies in household and business surveys. 

● What mathematical and statistical frameworks might be used to improve inference from 

probabilistically linked datasets? 

● How can the social science community effectively monitor public attitudes toward 

administrative record usage? 

● What conceptual frameworks might be developed to measure the error properties of 

linked survey and administrative record data? 

● What imputation techniques can be created to deal with item missing data in linked files 

with variables common to multiple datasets? 

While public use datasets have greatly benefited quantitative research in the social sciences, the 

data are increasing threatened by risk of inadvertent reidentification of sample members. 

● What disclosure avoidance techniques can be developed to preserve pledges of 

confidentiality and maximize access to data? 
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● Can disclosure risk measurements be invented to guide practical decisions of data 

collectors regarding the release of data? 

● How can synthetic data be produce that mimic the statistical properties of actual data but 

protect the identity of respondents? 

● What effective analytic software approaches might be used to permit analysis of data 

without direct access to the data and protect pledges of confidentiality? 

Small domain estimation using survey data offers the promise of greatly expanded useful 

estimates from sample surveys. 

● How can model diagnostics be improved on small domain estimators? 

● What small domain estimation approaches can exploit the longitudinal nature of surveys? 

● What alternative approaches offer improved simultaneous estimation of small domains 

and higher-level aggregates? 

● What practical estimators of total error of small domain estimates might be developed for 

public dissemination? 

Cognitive and social psychological insights into respondent self-reports in social science 

research have reduced measurement errors. 

● What questionnaire development tools are superior for detecting different mechanisms of 

response error? 

● What diagnostic tools in instrument development can be enhanced through computer 

assistance? 

● How do we identify optimal measurement approaches for a single construct using 

individual modes of data collection? 

● What diagnostics can be developed to isolate translation errors as a distinct component of 
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measurement error in multi-language measurement? 

The use of statistical models for large-scale descriptive statistics has advanced in important 

ways. 

● How can diagnostic tools be advanced to measure potential model-specification errors 

within a total error framework for the estimates? 

● What diagnostic tools might be developed using model-based approaches to identify 

errors in tabular data? 

● What models might be useful to estimate sampling error covariances and auto 

covariances in longitudinal estimates? 

● What statistical models might be useful to forecast final estimates based on preliminary 

measurements of a sample? 

New approaches to disseminating census data to users are emerging, and new requirements for 

confidentiality protection will be required. 

● What metadata approaches will be most useful in documenting census data, and how can 

existing metadata systems be improved? 

● How can census data dissemination, including both tabular and microdata, be improved? 

● What are the most significant risks in disseminating census data to user communities, and 

how can those risks be diminished? 

● What approaches can be developed that will allow the user community to safely and 

securely access census and other administrative data that have been merged across 

multiple agencies or sources? 
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ONLINE APPENDIX B. OTHER OUTCOMES: STUDENTS, COURSES, AND SOFTWARE 

Knowledge dissemination to a broader audience, and fostering of collaborations within 

the network, were an important component of the overall effort. Beyond the traditional academic 

research papers, each of the nodes also regularly presented new results in a “virtual” seminar, 

with researchers and students from all nodes, but also non-affiliated research institutes, actively 

participating through multi-site videoconferencing. Nodes added “official statistics” components 

to both undergraduate and graduate courses, often as “special topics.” A multi-site course on 

“Understanding Social and Economic Data,” led by researchers from the Cornell node, was 

taught as a hybrid distance-learning/remote-learning course, with typical attendance involving a 

dozen sites and over one hundred students and faculty, spread across the United States (course 

materials and video lectures are available at https://www.vrdc.cornell.edu/info7470/). Several 

other nodes created new course materials, workshops, and short courses (Michigan, Nebraska, 

Duke, Missouri) (see online Appendix B). 

The University of Michigan offered a seminar for honors economics students, “Naturally-

Occurring Data and the Macroeconomy” in 2016, wherein undergraduates did research using 

“big data” techniques advanced by the Michigan node. This course will be offered in future 

years. Aaron Flaaen used non-design data to create a new measure of the multi-national status of 

firms, linked it to the Census Business Register, and made it available to Census Bureau 

researchers and researchers in the FSRDC network (Flaaen 2015); his analysis using these 

measures received the World Trade Organization Award for Young Economists. Isaac Sorkin 

developed and implemented a method for measuring employer quality based on the firm’s 

relative ability to hire and retain employees. This work used eigenvalue techniques that allow 

analysis of flows across all connected establishments in the United States (Sorkin 2015, 2018).  
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The Nebraska node created two new courses. The Interviewer-Respondent Interaction 

course explored different interviewing methods, methods to observe and analyze verbal behaviors 

during interviews, and methods to analyze these data (Belli 2012). The Survey Informatics course 

explored the role of technology throughout data collection, data management, and data analysis 

within survey research, as well as the increasing need for interdisciplinary teams within research 

to draw from the strengths of different disciplines (e.g., survey research and methodology, 

computer science and engineering, cognitive psychology, sociology, statistics, etc.); see Eck 

(2015a, 2015b) and Eck et al. (2015a, 2015b). 

The nodes have also developed short courses, workshops, and modules for use in college 

courses. These include: 

● Short course on spatio-temporal statistics taught at the Census Bureau but open to 

staff at other FSS agencies (Missouri).    

● Short course, “Introduction to Privacy” (Carnegie Mellon).1 

● Short course on record linkage (data matching) (Carnegie Mellon).2 

● Short course on missing data for the Odum Institute (Duke). 

● Short course on synthetic data for the Joint Program on Survey Methodology and 

the 2017 Joint Statistical Meetings (Duke).  

● Topic modules on causes and statistical models for interviewer effects in survey 

data (Nebraska).  

● Workshop on spatial demography and small-area estimation, “Measuring People 

in Place,” at the University of Colorado (Colorado-Tennessee). 

                                                            
1 http://www.stat.CMU/NCRN/PUBLIC/education.html#Priv 
2 http://www.stat.CMU/NCRN/PUBLIC/education.html#RLF13 
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● Workshops on using the SIPP and the synthetic SIPP (with matched earnings 

records from the Social Security Administration), conducted at Michigan, Duke, 

Census, and Population Association of America annual meetings, taught by 

Michigan and Census Bureau researchers (Michigan).3  

A 2-day workshop on Spatio-Temporal Design and Analysis for Official Statistics, 

organized and hosted by the Missouri node in May 2016. More than 40 researchers invited from 

both inside and outside the NCRN were involved in a series of break-out discussions. A 

summary of those discussions was distributed to workshop participants and is archived at the 

Cornell University library (Holan et al. 2016).   

One hope was that node-trained students would choose to work at a FSS agency upon 

graduation. Of course, successfully trained students also have other options, and it is difficult to 

assess empirically how many students gave the FSS consideration as an employment 

opportunity. As of this writing, we are aware of four NCRN-trained graduates at the U.S. Census 

Bureau, from the Duke and Missouri nodes, though several students have accepted positions at 

other agencies and companies that interact closely with the FSS. Based on the authors' 

experience in guiding students through the placement process, and based on interviews with 

colleagues and former students, a few observations emerge. First, students do consider the 

agencies comprising the FSS as potential and attractive employers. However, due to the 

widespread popularity of “data science,” the salary structure of the federal government is not 

competitive enough to attract such individuals. Furthermore, while graduate students are drawn 

from many countries, and NSF funding is available to international students, those same students 

                                                            
3 http://ebp-projects.isr.umich.edu/NCRN/training.html 
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cannot always be hired by federal agencies, due to legal restrictions that require an employee to 

be a U.S. citizen. Nonetheless, the exposure of such students to federal datasets and the 

challenges facing the federal statistical agencies likely still has benefits. As these individuals 

either continue their education or go on to academic jobs, they take with them an appreciation for 

federal statistical problems and may continue to focus on federal statistics as research topics.     

These educational activities have been particularly important in increasing usage of new, 

innovative Census data products that are related to the NCRN research. For example, synthetic 

data (the SIPP Synthetic Beta and Synthetic Longitudinal Business Database datasets), have been 

available for several years, but the novelty of the data has limited its adoption by social 

scientists. The courses and the workshop organized by the Michigan node and supported by the 

Cornell node, described in online Appendix B, introduced graduate students and junior scholars 

interested in studying the causes and consequences of poverty using the synthetic SIPP data, and 

it culminated in a researcher-initiated panel at the 2016 American Social Science Associations-

Labor and Employment Relations Association meeting. 

The nodes have also taken on the task of creating software for others to use in both 

improving and analyzing federal datasets. The Colorado-Tennessee node developed open-source 

software for producing new statistical areas (out of existing census areas such as census blocks). 

This software reduces the variance in ACS estimates through intelligent aggregation. 

The Cornell node produced software to edit Data Documentation Initiative (DDI)-

formatted metadata, called the Comprehensive Extensible Data Documentation and Access 

Repository. No existing DDI editor could show the additional features that Cornell had 

incorporated into the existing (DDI-C) standard, thus requiring the creation of the editor to be 

able to edit and display the additional data. The 2018 version is CED²AR V2.9.0. 
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The Duke node has developed several R software packages implementing missing data 

techniques, including the stochastic edit-imputation for continuous data of Kim et al. (2015), the 

model for mixed categorical and continuous data of Murray and Reiter (2016), the non-ignorable 

imputation method of Paiva and Reiter (2017), and the model for categorical data with structural 

zeros of Manrique and Reiter (2014). It also developed software for generating synthetic values 

of the decennial census short form variables, using the methodology in Hu et al. (2018); the 

software ensures that structural zeros are respected (e.g., a daughter cannot be older than her 

biological father), and it captures within-household relationships. 

The Michigan node developed software in STATA and SAS, and a related STATA 

command, to improve the standardization of employer names and thereby improve record-

linkage software for businesses (Wasi and Flaaen 2015). It also improved software to impute tax 

liability to household surveys that are not linked to administrative data in order to compute the 

Census Bureau’s alternative poverty measure. 

The Missouri node is working on R software to implement customized geography and/or 

time periods (e.g., for the ACS). This software will automate the methodology of Bradley et al 

(2015). It is also collaborating with a private software company, Esri, on R software to quantify 

aggregation error from combining smaller geographies, allowing more efficient inferences 

(Bradley et al. 2017).  

The Missouri node has developed R code for visualizing the uncertainty in (spatial) areal 

data. This software appears in the online supplement to Lucchesi and Wikle (2017) and in the 

VizU R package available on Github (https://github.com/pkuhnert/VizU).  

The Nebraska node has developed a program to automate scrubbing of computer-assisted 

survey audit trails to ensure confidentiality of all text fields, implemented at the Census Bureau. 
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This program enabled release of thousands of audit trails by replacing costly and time-

consuming human intervention with automated processes. 

Links to the software listed, and other software products, can be found at 

https://www.ncrn.info/software. 
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ONLINE APPENDIX E: SPATIO-TEMPORAL HIERARCHICAL STATISTICAL MODELS 

In this appendix, additional technical details are provided to illustrate one aspect of spatio-

temporal modeling and analysis that the Missouri node has undertaken. Data sources in official 

statistics are often multivariate (contain a large number of variables), are spatially referenced, 

recorded over discrete time and contain multiple spatio-temporal scales. Adding to this 

complexity, the datasets are often extremely large (the so-called “big data” problem with 

millions of observations) and non-Gaussian. Taking advantage of the inherent dependence 

structure is essential for increasing the precision of desired estimates, especially in under-

sampled or unsampled geographies. 

The broad approach proposed by the Missouri node for modeling the complex data 

arising in official statistics settings can be cast in its most general form as a spatio-temporal 

mixed effects model. The spatio-temporal mixed effects model includes a fixed effects term that 

accounts for spatial or spatio-temporal covariates, and a random effects term that is typically 

formulated in terms of the sum of spatial or spatio-temporal basis functions and associated 

random coefficients. While it is conceptually straightforward, in practice specific modeling 

choices must be made with the intent of capturing dependence, while delivering computational 

feasibility. Model development proceeds through the hierarchical-statistical-model paradigm 

(e.g. Cressie and Wikle 2011; Holan and Wikle 2016), wherein the basic hierarchical model can 

be written as a “data model” and a “process model.” If the parameters are estimated, the 

hierarchical model is called an empirical hierarchical model; if instead a “parameter model” (i.e., 

a prior) is posited, the hierarchical model is called a Bayesian hierarchical model. Borrowing 

notation from the hierarchical-modeling literature, consider random variables U and V where 

ሾܷ|ܸሿ denotes the conditional distribution of U given V, and let Z be an ܼ݊-dimensional data 
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vector, Y be an ܻ݊-dimensional latent random vector, ܦߠ the data parameters, and ܲߠ the process 

parameters. Then, a basic hierarchical model can be specified by ሾܼ|ܻ,  ௉ሿ, with theߠ|஽ሿ and ሾܻߠ

Bayesian hierarchical model also including ሾߠ௉]. From the discussion above, it is these models 

that are called the data model, the process model, and the parameter model, respectively. Most of 

the hierarchical-modeling research in the Missouri node has been of the Bayesian type although, 

in a precursor to NCRN research, Sengupta and Cressie (2013b) developed empirical 

hierarchical models for high-dimensional spatial count data using a Poisson data model. This 

work was followed by NCRN-supported research in Sengupta and Cressie (2013a), where the 

Poisson data model was generalized to an exponential-family data model. In the remainder of 

this appendix, the Bayesian hierarchical model will be featured.  

For illustration, we proceed with a description of the multivariate spatio-temporal mixed 

effects model (Bradley et al. 2015a).  This model was originally used to model public-use 

Quarterly Workforce Indicators (QWI) data from the Longitudinal Employer-Household 

Dynamics Program of the U.S. Census Bureau. The Quarterly data are at the county level for 

both genders and different North American Industry Classification Sectors (NAICS). 10/3/2018 

9:47:00 AMFor ℓ ൌ 1,… , ݐ ,ܮ ൌ ௅ܶ
ሺℓሻ, … , ௎ܶ

ሺℓሻ, and ܣ ∈ ௉,௧ܦ
ሺℓሻ, the data model is defined by 

ܼ௧
ሺℓሻሺܣሻ ൌ ௧ܻ

ሺℓሻሺܣሻ ൅ ߳௧
ሺℓሻሺܣሻ, 

where {ܼ௧
ሺℓሻ: ℓ ൌ 1,… , ሽ represents multivariate spatio-temporal data; ௧ܻܮ

ሺℓሻ represents the ℓ-th 

latent variable of interest at time t; t indexes discrete time; and ߳௧
ሺℓሻሺ⋅ሻ is an iid Gaussian process 

with mean zero and known variance ݒ௧
ሺℓሻሺ⋅ሻ. The set A represents a generic areal unit on the 

predictive domain, ܦ௉,௧
ሺℓሻ,		 at time t for variable ℓ.  

The process model is defined by 
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௧ܻ
ሺℓሻሺܣሻ ൌ ௧ߤ

ሺℓሻሺܣሻ ൅ ௧ࡿ
ሺℓሻሺܣሻᇱࣁ௧ ൅ ௧ࣈ

ሺℓሻሺܣሻ. 

In this case, we set ݐߤ
ሺℓሻሺ⋅ሻ ൌ ݐݔ

ሺℓሻሺ⋅ሻ′ߚt  ,where ݐݔ
ሺℓሻ is a known p-dimensional vector of covariates 

with associated unknown parameter vector ݐߚ.  In the process model above, ܵݐ
ሺℓሻ ≡

ቀܵ1,ݐ
ሺℓሻ, … , ݎ,ݐܵ

ሺℓሻቁ
′
, for	ℓ ൌ 1, … , L, denote r-dimensional vectors of spatio-temporal basis functions, 

and ൛ݐߦ
ሺℓሻൟ represents fine-scale variability assumed to be i.i.d. with unknown variance, ൛ߪక,௧

ଶ ൟ.  In 

Bradley et al (2015a), these basis functions are specified to be the Moran’s I (MI) basis 

functions. A rich class of areal basis functions was later introduced in Bradley et al. (2017b). For 

each t, it is assumed that the r-dimensional vector ݐߟ follows a vector autoregressive process of 

order one; that is 

ݐߟ ൌ െ1ݐߟݐܯ ൅  ,ݐݑ

where ݐߟ is Gaussian with mean zero and unknown ݎ ൈ ݎ is an ݐܯ ,ݐܭ covariance matrix ݎ ൈ  ݎ

propagator matrix, and ݐݑ is Gaussian with mean zero and ݎ ൈ  After  .ݐܹ covariance matrix ݎ

vectorizing ௧ܻ
ሺ௟ሻ for ݐ ൌ 1,… , ܶ, by stacking, the process model can be rewritten to avoid spatial 

confounding.  In fact, this representation leads to a modeling innovation referred to as the MI 

propagator matrix, which is defined analogously to the MI basis functions. 

Due to issues with confounding, and because of the reduced-rank structure of the MI 

basis function and MI propagator matrix, various sources of variability may be inadvertently 

ignored. To address this concern, ሼݐܭሽ and ሼ ௧ܹሽ are specified as positive-definite matrices that 

imply a spatio-temporal covariance matrix that is “close” to a target precision matrix that 

includes the various sources of variability. For comprehensive details, see Bradley et al. (2015a) 

and the references therein. 

The methodology outlined above applies to Gaussian data.  However, as previously 
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alluded to, many of the applications found in official statistics arise from non-Gaussian data. A 

typical approach to modeling such data is to specify a generalized linear mixed model using a 

latent Gaussian process (Diggle et al. 1998; Rue et al. 2009). That is, in the data-model 

specification, the Gaussian assumption would be replaced with a distribution from the 

exponential family. In high-dimensional settings, like those encountered in official statistics, 

estimation in the non-Gaussian setting is especially challenging. Sengupta and Cressie (2013a) 

give methodology in the spatial univariate empirical hierarchical model context. In the spatio-

temporal multivariate Bayesian-hierarchical-model context, Bradley et al. (2017a, 2018) meet 

the challenge with new distribution theory that produces a latent conjugate multivariate 

distribution for the natural exponential family and then implements a multivariate spatio-

temporal mixed effects model. 

For example, in the case of a Poisson data model, a multivariate log-gamma distribution 

is proposed (Bradley et al. 2018). In particular, let the m-dimensional vector ݓ ൌ ሺ1ݓ,…  ′ሻ݉ݓ,

consist of m mutually independent log gamma random variables such that ݓ௜ ∼ ,௜ߙሺܩܮ  ௜ሻ forߢ

݅ ൌ 1,… ,݉.  Then, define  

ݍ ൌ ܿ ൅  ,ݓܸ

where the ݉ ൈ݉ matrix ܸ ∈ Թ௠ ൈ Թ௠ and ܿ ∈ Թ௠.  Then q is called a multivariate log gamma 

(MLG) random vector. For the sake of brevity, we do not include the expression of the pdf for 

the MLG random vector here; instead, for ߙ ≡ ሺߙଵ, … , ߢ ௠ሻ′ andߙ ≡ ሺߢଵ, … ,  ௠ሻ′, we denote it asߢ

MLG(ܿ, ܸ, ,ߙ  are assumed to follow a MLG ߚ and ߟ ,ሻ. Then, in the Gaussian process modelߢ

distribution and ߦ௜ ሺ݅ ൌ 1,… ,݉ሻ is assumed to follow a log-gamma distribution. See Bradley et 

al. (2017a, 2018) for comprehensive details related to a Poisson data model and the natural 

exponential family data model cases, respectively.  
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The models described above are fully parametric. In principle, the classic Fay-Herriot 

nested error regression model for small area estimation can be thought of as a special case of the 

mixed effects models described above. In a spatial setting where it is of interest to relax the 

distributional assumption on the data model, one can take a semiparametric approach. 

Specifically, the data model can be specified using an empirical likelihood, and the process 

model can be specified as a latent Gaussian process. Detailed discussion of the semiparametric 

empirical likelihood approach can be found in Porter et al. (2015a; b). 

Federal survey data are usually presented and analyzed over geographic regions. 

However, often inference is desired on a different spatial and/or temporal support than the 

support of the survey data. The problem of conducting statistical inference on spatial and/or 

temporal supports that differ from the support of the data is known as spatio-temporal change of 

support (ST-COS). The support of the data is typically referred to as the “source support” (e.g., 

census tracts), whereas the support of interest is designated as the “target support” (e.g., 

congressional districts). The majority of methodological contributions for spatial COS are based 

on assuming that the underlying data are Gaussian and consider spatial-only or count data 

without explicitly accounting for sampling uncertainty; see Bradley et al. (2016) and the 

references therein. Motivated by the problem of estimating discontinued 3-year period estimates 

for the ACS, Bradley et al. (2015b) present methodology that performs ST-COS for survey data 

with Gaussian sampling errors. In contrast, Bradley et al. (2016) propose methodology for count-

valued data in which the change-of-support is accomplished by aggregation of a latent spatial 

point process that accounts for sampling uncertainty. Importantly, when changing spatial 

support, it is necessary to be concerned with the modifiable areal unit problem or MAUP (and 

the ecological fallacy). In other words, inferences made at one level of geography should be 
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consistent at other levels of geography.  Bradley et al. (2017b) develop methods to determine 

when COS is appropriate, that is, when aggregation error is problematic. The proposed statistic is 

called Criterion for Aggregation Error (CAGE).  
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ONLINE APPENDIX D: SPATIAL VISUALIZATION 

In this appendix we provide additional details related to the methodology provided in 

Lucchesi and Wikle (2017)10/3/2018 9:47:00 AM; note that it is not intended as an overview of 

spatial visualization. The simultaneous presentation of spatial data (or predictions) along with 

their uncertainties is important for conveying the quality of a spatial map. However, there has 

long been a concern that adding an uncertainty measure to a map will simply clutter the 

visualization and make the map more difficult to interpret (e.g., MacEachren et al. 2005). 

Uncertainty visualization for spatial and spatio-temporal data has been gaining increased 

attention from statisticians and is providing an opportunity to make use of new tools in statistical 

software  (e.g. Genton et al. 2015). The Missouri node considered several tools to visualize the 

uncertainty of spatial data, including new formulations of (1) bivariate choropleth maps, (2) map 

pixelation, and (3) rotated glyphs, as described in Lucchesi and Wikle (2017). This appendix 

only discusses bivariate choropleth maps in detail, though illustrations of the other two 

techniques are shown. 

The Census Bureau produced some of the first known bivariate choropleth maps in the 

late 1970s (Fienberg 1979; Olson 1981) 10/3/2018 9:47:00 AM. These maps were designed to 

visualize two variables, such as death rate and population density. However, they were somewhat 

controversial in that they were widely considered to be difficult to interpret (e.g. Wainer and 

Francolini 1980).  Suggestions to improve these maps included limiting the color bins, selecting 

more interpretable colors, and adding more description to the map caption.  

Bivariate choropleth maps have been typically used to visualize two variables; in contrast 

our interest is in visualizing a variable and its associated uncertainty. There have been previous 

attempts to perform such a visualization, for example using a diverging color scheme to 
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represent uncertainty and the relative contrast to represent the variable (e.g., Howard and 

MacEachren 1996). In addition, Retchless and Brewer (2016) used a 4 x 5 grid to represent the 

variable with color and its uncertainty with the saturation value of those colors. These are not 

choropleth maps. 

The bivariate-choropleth map approach that Lucchesi and Wikle (2017) developed is 

novel in that it visualizes uncertainty and improves visualization of traditional bivariate 

choropleth maps. In particular, they use a low-dimensional and interpretable 3 x 3 color scheme 

that is a natural additive blend of two single-hue red-green-blue color palettes. In addition, the 

associated key is rotated 45 degrees so that the highest values for both the variable and the 

uncertainty are at the top of the grid, which is easier to interpret.  

This approach is demonstrated here using U.S. county-level poverty rates from the 2011-

2015 ACS (see Figure E.1). In this case, each county is assigned one of nine colors depending on 

the poverty rate and the associated 90% margin of error (MOE). In this case, the counties with 

the lowest poverty rates and the smallest MOEs are represented by the lightest blue/green color 

at the bottom of the grid, which is an average of the lightest blue and lightest green color. In 

contrast, the darkest color is an average of the darkest blue and darkest green color, and it 

represents counties with the highest poverty rate and the largest MOE. Spatially contiguous 

clusters and trends in poverty rate and the associated MOEs are apparent in this map.  

The VizU R package (https://github.com/pkuhnert/VizU) developed by P. Kuhnert and L. 

Lucchesi allows users to easily investigate different color palettes to aid in the interpretability of 

a particular map and its uncertainty. The package also allows for other spatial-uncertainty 

visualization approaches, including map pixelation (see Figure E.2), and glyph rotation (see 

Figure E.3). Note that the package also allows for the animation of the map pixelation to 
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accentuate the uncertainty.  
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Figure D.1. U.S. county-level poverty estimates and their uncertainty, 2011-2015, using bivariate 
chloropleth map approach 

 

Further details: The bivariate choropleth map shows U.S. county-level 2011-2015 American 
Community Survey poverty estimates (percentage of families whose income was below the 
poverty level) and associated uncertainties (90% margin of error, or MOE). The estimates and 
MOEs are divided into 3 categories by terciles. Each square in the 3 x 3 color key is an average 
of green, representing poverty rate, and blue, representing MOE.  
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Figure D.2. State of California county-level poverty estimates and their uncertainty, 2011-2015, 
using pixelated map approach 

 

Further details: The pixelated map shows county-level 2011-2015 American Community Survey 
poverty estimates for California and their associated MOEs. Each pixel in a county is assigned a 
color within the county estimate’s MOE. Areas of high uncertainty appear pixelated because the 
MOE covers a wide range of colors within the palette. Areas of low uncertainty appear smoother 
because the differences in color between pixels is much smaller.  
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Figure D.3. State of Colorado county-level poverty estimates and their uncertainty, 2011-2015, 
using glyph approach 

 

Further details: The glyph map shows county-level 2011-2015 American Community Survey 
poverty estimates for Colorado and their associated MOEs. The color of each glyph represents 
the estimated poverty rate among families, and its rotation represents the estimate’s MOE.  
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ONLINE APPENDIX E. ACTIVE AND IMPLEMENTED NCRN-FSS COLLABORATIONS 

BASED ON NCRN RESEARCH PUBLICATIONS 

Below is a list of the research publications that have had a substantial impact on methods and 
activities at the U.S. Census Bureau. “Active collaboration” means that there is a current 
research project at the Census Bureau or another statistical agency based on this work, and one 
of the NCRN researchers is a current collaborator. “Implemented” means that techniques 
originally developed or elaborated in the cited research are being or have been engineered into at 
least one production system. Citations refer to the main article’s reference list. 

Active Collaborations (as of April 2018) 

Belli et al. (2016) 

Bradley et al. (2015a, b; 2016a, b; 2017a, c; 
forthcoming) 

Flaaen et al. (2017) 

Green et al. (2017) 

Kirchner and Olson (2017) 

Manrique-Vallier and Reiter (2018) 

Olson and Smyth (2015) 

Olson et al. (2016) 

Olson et al. (forthcoming) 

Porter et al. (2014, 2015c) 

Quick et al. (2015a) 

Seeskin and Spencer (2015, 2018) 

Simpson et al. (2018) 

Smyth and Olson (forthcoming) 

Spielman and Folch (2015) 

Sorkin (2016) 

Steorts et al. (2016) 

Wasi and Flaaen (2015) 

White et al. (2018) 

Wood et al. (2015) 

 

Implemented Collaborations (as of April 2018) 

Abowd et al. (2012) 

Abowd and Schmutte (2016, 2017) 

Chen et al. (2017) 

Kim et al. (2015) 

Kinney et al. (2011, 2014) 

Lagoze et al. (2013a, b; 2014) 

McKinney et al. (2017) 

Miranda and Vilhuber (2016) 

Murray and Reiter (2016) 

Sadinle and Reiter (2017, 2018) 

Vilhuber and Schmutte (2017a, b) 

Vilhuber et al. (2016)
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