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Outline

e Applications in machine learning

e Definition and properties

« Review of some classical training strategies

e Proposed training method using Quantum annealing

« New challenges and their resolution



Application: Labeled data generation
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Application: Recovering missing data

Chemical vapor deposition (CVD)
growth for a MoS2 monolayer

Liu, Jeremy, et al. "Boltzmann machine modeling of layered MoS2
synthesis on a quantum annealer." Computational Materials

Science 173 (2020): 109429.
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Application: Machine Learning architectures

Generator network G(f)

Project and reshape
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Project and reshape CONV4
500x1 500x1 CONV3

8192 x1
Discriminator network D(G(f))

CONV2

CONV4

CONV1

Associative adversarial networks

Arici, Tarik, and Asli Celikyilmaz. "Associative adversarial
networks." arXiv preprint arXiv:1611.06953 (2016).

Intermediate layer of the
discriminator reads the visible layer of
the RBM network (the associative
memory).

RBM Samples generate inputs for the
generator network (as opposed to
noise sampling).

This layer that is visible to the
associative memory represents a
feature space that can capture latent
factors of variations in the data



Boltzmnann machine are probabilistic energy-
based graph models

o Graph models — Nodes connected via edges (undirected)
@ °®
- //

« Energy based — Each node takes 0/1 value
o Energy determined by an Ising-type energy

i€Nodes (i,j)e Edges
« Probabilistic — Each state is determined via Boltzmann distribution
—pE(S)
e
S) = : Z = e PES)
p(S)=— >

fis the inverse temperature



User can only read part of the nodes

Nodes segregated into Visible and Hidden nodes

Probability of visible nodes determined by marginalizing

Only data on the visible nodes can be read.
o This step allows to model complicated probability mass
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Representing data-sets for visible nodes
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Set of states with ‘O’

on left and ‘1’ on right

sizex = 10

Ordered Phase

Random Phase
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Distinguish between
Random and ordered phase
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« Each row is a data, and each column is a node

« Left Sample set: Generative Learning

Samples state (x) from this data set

« Right Sample set : Adding classification

Samples state (x, f(x)) from this data set

Note that we may be interested in complete
sampling or reconstruction



Estimation of gradients is challenging

« Optimize for Log-likelihood based cost (KL Divergence, Negative Log-likelihood)

)-i252)

« Exact estimation prohibited due to exponentially large number of states

a(—logp(u*)) _E <aE(v,h)
00 Y

« Estimating expectation using Monte Carlo-based techniques takes time to equilibrate
o Another idea: Use “simpler” graph-structures

Restricted Boltzmann machine - Bipartite graph of hidden and visible layer

Contrastive Divergence / Negative Sampling

Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning
algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554




Computational Complexity is determined by
the topology of the graph

d(=logp(v™) . (aE(u,h)
00 AT

)-i252)

Maximizing likelihood of a data state

Contrastive Divergence / Negative Sampling

Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning
algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554

Idea: Start with a data (desired) state and check if you are moving away from it.
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Computational Complexity is determined by
the topology of the graph

« Ease of computation doesn’t depend on just sparsity but the overall topology of graph, e.g., presence of
cycles, multipartite graph etc.

Less complex Moderately complex

« In general, adding edges to a network increases representation capability but also the cost of
computation

Deep Limited | N
Representation Capabilit

RBMI1]  RBMm[1] BM[2] BM pr pability
\ ®—G Computation complexity

[1] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial intelligence and statistics, (2009)
[2] Liu, Jeremy, et al. "Boltzmann machine modeling of layered MoS2 synthesis on a quantum annealer." Computational Materials Science (2020)



Tradeoffs between representability and

computational cost

Gradient based approximations for general BM is
difficult due to calculation of expectations

Use Contrastive Divergence techniques for simpler
graphs — RBM

But General BM is more representable than RBM

The solution to this problem is an effective low-cost
sampler for Boltzmann machine

Quantum Annealer

KL Divergence

0

—e— General BM
—a— Restricted BM

102 101 109 10!

Generative training with 4 hidden nodes

102



Quantum Annealing

« The annealing procedure evolves energy on super-conducting qubits

E(t) = A(1) Z S*+ B(1)( Z H,Si+ ) J,;Si87)

<i,j>

« Adiabatic theorem: If this process is done slowly and band gap is positive at every
point then state equilibrates to the ground state of blue Hamiltonian

Annealing schedule (G
O

e Ground state of Blue Hamiltonian same as that of classical spin energy
E(S)= ) HS+ Y J,S.S

ij~i~j
1 i (ij)
1 > Benefits:

1. Finds the minimum in a single computation
2. Savings in energy consumption by reduced computation time
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Quantum Annealing

e Currently available hardware like D-Wave where
parameters are tunable using analog controls

e Employs Quantum Annealing with short simulation time

(~ 20us) and finite temperature (~15mK)

e Adiabatic theorem no longer valid.

What does Quantum annealing give?

e Independent samples based on Boltzmann
distribution

Tunable interaction (J) between qubits
Tunable field (H) on the qubit

‘Energy Classical
Hiking

Quantum

Tunneling




Generative learning

Estimate statistics from QA Samples
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« Use Stochastic Gradient/Newton method for optimization
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Generative learning
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Phase O

Phase 1

Classification of state (Discriminative
learning)
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Graph decomposed as:
(a) Visible Input (Pink)
(b) Visible output (Blue)
(c) Hidden (grey)
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Phase O

Phase 1

Including classification cost

« Optimize for p(f(x)|x)
Negative Conditional Log-Likelihood (1—-a)

N= Y logp(f()|x:0.p) ~ wemp  Cost=aDg
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Including classification cost
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New challenge: Temperature (f) is unknown

« Annealing temperature is unknown and dependent on

the simulated graph.
20 T 160
« Need to evaluate [ to implement model in different - Dy (Bxacy ;
. - == N (Exact) —~
machines iz
15 :’ 120 2
3 ! 5
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5 10 280 3
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performance at the Training temperature (%)

20



Approximating the cost at different [

Application: Normalize parameters for best performance
temperature

0p° 0 .
0 — 5 p~ = optimal temperature
Use Taylor expansion:
9Dy, 2

« Coefficients estimated using sample statistics
e Similar results for NCLL cost

We have resolved the issue of transferability of the BM to
different computing devices.

KL Divergence (Dgr,)
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Negative Conditional Log-Likelihood (\)



Summary for Boltzmmann Machine

State of the art: Present training methods utilize topological
features of a graph for reducing computational complexity

Advantage of current work: Training via QA samples works on
a general BM. Sparse BMs enjoy additional computational
advantages by allowing embedding of larger graphs in the
hardware

Resolution of possible problems: The issue of transferability
of BM is resolved

A MATLAB library is now available which implements this
training method

Future work: As a next step, we will apply this method for
problems concerning Process-Structure-Property (PSP)
linkages in materials science

F(3,3,4)

b=1

Clique NAE3SAT NAE3SAT 3-Regular 3D Lattice

Native

(r=3) (r=21) w/defects
2000Q 64 90 102 304 512 2030
Advantage | 124 242 286 784 2354 5455
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