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1 Affine Varieties

Theorem 1.1. Suppose X is the affine variety over F, defined by the zero set of:
apz(® + arzit + -+ apxyt

For each 0 < i < r, let L; = lem ({n;}|;2:) and let n; = ged(n,, L;). Then the affine variety X' over Fy
defined by the zero set of:

apzy’ + a1yt o+ g
has | X'| = |X].

Proof. Let d; = gcd(n;,q — 1) and let dj = ged(nj, ¢ — 1). By equation (3) from Weil’s paper we have:

X|=¢"+(@=1) > Xaolag")Xa, (a;)j(e)
a€esS

where S = {a = (ao, ..., ) 1 dio; € Z; > oy € Z;0 < o; < 1}. Similarly, we get:

|X/‘ = qr + (q - 1) Z Xao(a’al) o 'onr(avjl)j(a)
aes’
where §" = {a = (ag, ..., ) 1 dloy € Z;> oy € Z;0 < oy < 1}. We will show that S = 5" and hence the
two expressions must be equal. Note that as n}|n;, d;|d;. Thus dj« € Z implies d;a € Z. As such, §' C S.
Now suppose @ € S. If d; = d] for all 4, the two sets are equal and we're done. As such assume j is such
that d; # d;. As ged is commutative, d; = ged(dy, L;). Then we can write, d; = d;m. Now for each i, as

d;a; € Z and 0 < a; < 1, there exists a; such that a; = Z—l Now, as a € S,
b; b;
— € Z
i#]
Let % =iz S—i € Z be a fraction in simplest form. Thus we have
. /_
byl b B kDrdmd
d}m cad, dm D d"mD
] J J

As d;|n;|L; for all i # j, we have D|L;. For the above expression to be an integer we must have d’m|b;D.
As d; = ged(djm, D), this implies m|b;. However, this means d’;a; = %’ € 7. By our reasoning, this holds
for all j. Thus S’ C S.

As explained before, this implies S = 5" and thus | X| = |X’|. O



Theorem 1.2. Let X be the affine variety over F, defined by the zero set of:
apzy® + - -+ apxy”

where the a; are nonzero and the n; are positive integers. If for all 1 <1i <r we have ged(ng,n;) = 1, then
X is supersingular.

Proof. By theorem 1.1, X has the same number of solutions as the variety X’ defined by the zero set of

’

!’
n, n,.
oz’ + -+ arxr

As nyg is relatively prime to the other n;, nj = 1. However, then agz achieves every element of F, exactly
once. Hence, regardless of the choice of x1,...,x, there is precisely one value of xy for which the defining
equation of X’ is 0. Thus |X| = ¢". By the same reasoning if we define N}, to be the number of points of X
defined over F », we have

Ni= (") =q"

As such the zeta function (x is:

x(M)=exp | 3 L0

m>1
=exp (—log(1 —¢'T))
B 1
C1—gq'T
which implies that X is supersingular, as desired. O

2 Projective Varieties

2.1 Conversion to Weighted Projective Space

Note on notation. From now on, unless otherwise specified, let X be an affine variety over F, defined to be
the zero set of
apzy® + - -+ apxy”

such that the a; are nonzero. Let L = lem (n;) and N; = L/n;. For a given point P = (P, ..., P,.) let
Sp = {Z\/VZ : Pi # O}
Let dp = ged(Sp). We also define V' to be the image of X in weighted projective space.

Theorem 2.1. Suppose A acts on X as follows: For any point (xq,...,x,) we have
A (zg, ..y ze) = (ANNozg, .o AN 2,)

Then for all P = (Py,...,P.) € X,
|Stab(P)| = ged(Sp)

In particular, P; # 0 for all i, |Stab(P)| = 1.
Proof. Suppose A - P = P. Then we have:
(Ao —1)Py,...,(AN" —=1)P,) = (0,...,0)

This holds if and only if A\Né = 1 for all P; # 0. This is equivalent to \&°4(4r-¢=1) = 1 which has exactly
ged(dp, g — 1) solutions. O



Corollary 2.1.1.

ged(dp,q —1)
vi= > -1
PeX/{0} q

Proof. By the orbit-stabilizer theorem, under the scaling action of weighted projective space, orb(P) =
g1 This then follows from the fact that:

ged(dp,g—1)°
1
O
We’ll now introduce one more piece of notation. Suppose t = (tg,...,t.) € {0,1}" 1. Say
Ci:={PeX : P=0 < t;=0}
and

St = {Nz : tzzl}

and as before d; = ged(S;). Note that the Cys form a partition of X. We also define an ordering on {0, 1}" 1.
Suppose u = (ug, ..., u,),t = (tg,...,t.) € {0,1}"1. We say that t < u if for all i, u; =0 = t; = 0. Let

Xu:UCt

t<u

(Note that there is a bijection between X, and the zero set of the equation: ) ;@i x"' where i; ranges only
over the values of i such that u; = 1. We make this note because using Weil’s paper we can count X, more
directly than C,). Lastly, for convenience, let 7' = {0,1}"+1/{(0,0,...,0)}

Theorem 2.2.
|Cu| _ Z(_l)sum(u)—sum(t) ‘Xu|

t<u

Proof. As the C; are disjoin we have:

| Xul = |CH]

t<u

Let po,p1,- - ., pr be distinct primes and for ¢ € {0, 1} let:

P@t) =[]»"
i=0
Let @ be the inverse of P. Note then that P(¢)|P(u) if and only if ¢ < u. Thus our above equation becomes:

| Xu| = Z [Ca!
d|P(u)

By the Mobius Inversion formula:

Cul= > |XQ(u)|u<P£l”)>

d|P(u)

Let t = Q(u). As P(u),d are squarefree, u (P&”)) = u(P(u))/u(d). Note that pu(P(u)) = (—=1)**™) . Thus,

by the equivalence between P(t)|P(u) and ¢ < u, this summation is equivalent to

|Cu| _ Z(_l)sum(u)fsum(t) ‘Xu|

t<u

as desired. O



Theorem 2.3. a(d D
gc g —
vi=> |Ct|qt7

-1
teT

Proof. Note that for all P € Cy, dp = d;. As the Cy form a partition of X, this formula is just a restatement
of Corollary 2.1.1 O

2.2 Supersingular Projective Varieties

Lemma 2.4. For a given prime power q and integer N. Suppose N' is the largest divisor of N relatively
prime to q. Define:
g(k) = ged(N, ¢" — 1)

fr(k) - {1 r|k

Furthermore define

0 else

Then
M
g(k) = Zaifi(k)
i=1
where M = ordy+(q) and
a; =Y g(d)p(i/d)
dli
for i|M and a; = 0 otherwise with p the moebius function.
Proof. Set a; to be as claimed in the lemma statement. Note that
g(k) = ged(N,¢* — 1) = ged(N',¢" — 1)

By the Moebius inversion formula for k|M we have:
g(k) = a;
ilk

As fi(k) = 1if i|k and 0 otherwise this is equivalent to:
M

g(k) =Y aifi(k)
i=1

We now claim g(k) = g(ged(k, M)). Clearly if A|gs°d(®M) 1 then Alg* — 1. Thus g(gcd(k, M))|g(k). Now
suppose AlgF — 1 for A|N'. As A|N', Al¢™ — 1. Thus for all z,y A|¢"*T™v — 1. By Bezout’s identity,
Algeed®M) 1. Thus g(k)|g(ged(k, M)) and so g(k) = g(ged(k, M)). Now let k be any integer. Note that
a; and f;(k) are both nonzero only if ¢ divides M and k and hence ged(%, k). Thus we have:

M
Doafik)= Y a
=1 i| ged(k,M)

However, as ged(k, M) divides M we have already shown the latter expression to be g(ged(k, M)). As this
equals g(k), we have for all k:

g(k) = Z a;fi(k)

as desired O



Lemma 2.5. For a given prime power q and integer N, define g(k) and a; and M as in the preceding lemma.
Then for all w, we have w|ay,.

Proof. If w is not a divisor of M then a,, = 0 and so the statement follows immediately. As such, from now
on we will assume w is a divisor of M so that we may use the inversion formula for a,,.
We’ll begin by showing this is true for all N, ¢ in the case where w = p* for some prime p. We have:

Zg p(w/d) = g(p') —g(p"")

If g(p ) =g~ 1) then we have a,, = 0 and so wl|a,. Suppose g(p) # g(pi~1). As g?' ' —1|g? — 1, we have
g(p'). Now let B be such that g(p’) = Bg(p'~!). Note that

qpi -1 i—1
ged (qpil_Zqup - 1)

can only be a power of p. If p|B, then p|qpi — 1 which occurs if and only if p|g — 1. If p|¢g — 1, then by lifting

e}

—
Es.
i

the exponent lemma pf|¢? — 1. So either p' divides both g(pi~1) and g(p), in which case we’re done or

ptB. Aspt B and
qplfl i—1
ged (qpi—l_l7qp 1)

can only be a power of p, all prlme factors of B cannot be factors of qp “' — 1. Thus for all primes t|B we
have ¢?  # 1 (mod t) but ¢*" =1 (mod t) which implies p ‘lords(q)|t — 1. As for all primes t|B we have
t=1 (mod p)¢, we have B =1 (mod p)*. Now

g(") —g(p' ") = (B-1)g(p'")

and thus p'lg(p’) — g(p'~!) as desired.

We'll now show that if m,n are relatively prime positive integers such that regardless of the choice of
N, q we have n|a,, and m|a,,, then mn|a,,,. For notational purposes let gn (k) be g(k) for given N, q. We
have

dlmn
= ulm/x) Y glay)u(n/y)
z|m yln
= Zu(m/z) Zng(N, (@)Y = Du(n/y)
z|m yln
_Z” m/x) Zgzvq nw(n/y)
xz|m yln

By our assumption that regardless of the choice of N, ¢ we have n|a,, and m|a,,, we haven|3_,, gn.q= (y)1(n/y)
(as the latter is the formula for a,, for N, ¢* given). Thus n divides the total expression and hence a,,,,. By
symmetry, m|am,y,.

Now suppose w = [[,p;". By the first part of our proof pf"|apei. By the second part of our proof all
of these divisibility statements together imply

w = pr
i

as desired. O

ei:aw




Definition 2.6. Let ETg be a rational function. Define % to be supersingular if every root of both p, s

is of the form ro where r € R>o and « is a root of unity.

Theorem 2.7. For given N, q let g(k) = ged(N, ¢* —1). Suppose

exp Z h(k)T—k

E>1

defines a rational function ’S’gg Then,

Tk
= exp Z h(k
E>1
also defines a rational function equal to
H pi(T")
i (T

for some integers b;, M and with py(T) = H?:l p(Te¥) and sy, defined similarly. Furthermore, if ig)

supersingular, then so is B(T).

18

Proof. By Lemmas 2.4, for some M, we can write

M
k) = Z aifi(k)
i=1

Plugging this into our formula for B(T') gives:

M
B(T) = exp Zh(k) Zaifi(k)
k>1 i=1
M
= exp Zazzh(k)fz(k)*
i=1  k>1
= exp ZGZZh k) —k
i=1 k>1 ik

N

k>1
Let
Tk
A(T) = Y h(k)
E>1

so that pET) = log(A(T)). Note note that if ¢; is an i-th root of unity:

Zh(ik)z;: Iy ;4<T<z>




so our above expression becomes:

2 (i)
B = E (SzET;)
with b; = % € Z by Lemma 2.5. Now note that if p, s are supersingular, so are p;(T) and s;(T") and thus
B(T). O
Corollary 2.7.1. Let V be the weighted projective space over F, defined to be the zero set of

"t +2? =0

Then V' is supersingular over Fg: for some i.

Proof. Let X be the same curve just over affine space instead of projective space. Using our notation from
before, note that |C1j| = |Cj1,0)] = 0 and |Cjgg| = 1 and thus |[Cp; | = |[X]| — 1. By our definitions
d[lvl] = 1. Thus:

(X[ -1
V] =
V=5

Let R = ged(r1,72). By Lemma 1.1, | X| = |X'| where X’ is the set of solutions to

el 42l =0
over [Fy. There is one solution where one of the components is 0. If 1, z2 # 0, this equation is equivalent to:
(125 1) = 1

If y® = —1 has no solutions in F,, the number of solutions is 0. If it does have a solution, then it has
precisely ged(R, g — 1) solutions. In which case there are (¢ —1) ged(R, ¢ — 1) solutions as there are R choices
for which root 2125, ¢ — 1 choices for #; and then 1 choice for x3. In net, |V| = ged(R,q — 1) if y* = —1
has a solution as 0 otherwise. y* = —1 will have a solution if and only if 2 ged(R,q — 1)|q — 1.

Now consider when y* = —1 has a solution over various Fgr. As this will depend on what the highest
power of 2 divising ¢¥ — 1 is (we need vo(¢¥ — 1) > v3(R) + 1), there will exist an i such that y® = —1 has a
solution if and only if i|k. Thus, over Fi,

o Tk
Cv =) ged(R,q" —1)—
k>1

which is supersingular by theorem 2.7. O

3 Some Conjectures and Basic Theorems

Theorem 3.1. Let X be a variety. If X is supersingular over I, then it is supersingular over Fgn. Fur-
thermore, if X is nonsingular (weighted) projective and defined by the reduction modulo p of a nonsingular
variety over a number field, then if it is supersingular over F x it is also supersingular over .

Proof. Let (x be the zeta function of X over IF:

Ti
(x =exp Z ai—
>0
Then the zeta function (x, for X over IFx is:

oo 7
(x, = exp E ik —

i>0



Let

>0
Let ¢ be a k-th root of unity. Then
Y ATY) T
= ik
k = k
k ‘ i
ZA(Tl/kCJ) = Zaik*.
j=1 i>0 !
And thus: i
Cx = [ [ x(TVR¢)
j=1
Now suppose
(x = P(T) _ ILZ (T — )
S(T) H£1(T —5;)
Then e .
mAT —r
(xp = Ty ;
* [[2 (T — s}

which implies that (x, is supersingular if (x is.

We’ll now do the second part. WLOG assume g is in simplest form. Note that the only way (x, is
supersingular but (x is not is if the roots that do not have complex unit part a root of unity cancel in (x, .
However, by the fourth part of the weil conjectures, the numerator and denominator of the rational functions
of (x and (x« have the same degree. Thus there is no cancellation, and so (x is supersingular. O

Theorem 3.2. Given
zy° + -+ 257 =0
over field F),, there exists d such that the variety is unirational if ¢ = —1 mod d, where d = lem(no, ..., n3).
Proof. Given
no n3g __

:L'O + e + IB =0,
let I = lem(ng, ny,na,n3) Let o) = xi/n Then we get a homogeneous equation of degree I, which is
unirational over IF,, if there exists a v such that p” = —1 mod [ by Shioda’s paper. O

Theorem 3.3. Let X be the variety defined by
apry® 4 -+ apx).

If all the exponents are coprime, then X is isomorphic to the hyperplane H,._1 in P", where r is the dimension
of image of Veronese embedding.

Proof. Notice that X is in the weighted projective space P(wy,...,w;). If d = lem (ng,...,n,), then w; =
d/n;, and we see that our equation has weighted homogeneous degree d. Then the image of our variety by
Vernose embedding will be in P%, and the coordinate ring of the image is generated by 1; = x;", and these
elements only.

The reason is that a monomial []z* has weighted degree d is and only if )" a;w; = d, which is equivalent to

Sy
2
because we know w; = d/n;. And again, we can write this sum as

ap A 0,0N+A’/L0 +
2 o= 0 4, eZ7.
TLO+N noN @i €



Since ng divides agN + Ang, we will have nglagN. But we assume that all the exponents are coprime, so
ged(ng, N) = 1, and nglag, so either ag = 1 or ap = ng. We know that ag cannot be any larger because
> ?Tl = 1. Therefore, we know that the only monomial that will appear in the image of Vernose embedding
are of the form y; = z*, and there will be no other cross terms. Then we also know that the only relation
that these new coordinate satisfies is the diagonal equation that we have, i. e., yg + -+ + y- = 0. Since a
variety is isomorphic to the image of the Vernose embedding, and the image of the Vernose embedding give
us a hyperplane in P", we know that X is isomorphic to a hyperplane in P". O

Theorem 3.4. A variety X defined by
apr® 4 -+ apzy.

in weighted projective space is singular in Fy if and only if (i) qln; for some i, or (ii) in weighted projective
space P(wo, ..., w,), there exists a prime number p such that set x; = 0 when p does not divide n;, we get a
new equation that has solution over IF,.

Proof. First, if g|n; for some ¢, then the Jacobian ring for X will be

no—1 ne—1
(noxg® .., 0, ., npzi ).

And we see that this ideal can be zero for some nonzero point. Thus (¢) is true.

Second, we claim that the only singular points of the weighted projective space P(wy,...,w,) are of the
form
Sing,P(wo, . .., w,) = {z € P(wo, ..., w;) : x; # 0 only if plw;}

for some prime p.
We contend that

SingP(wo, . .., w,) = U Sing,P(wo, - . ., wy).

O
Corollary 3.4.1. If X is singular over Fy, then it is singular over IF’;.
Theorem 3.5. Let X be a variety defined by,
apx™ + -+ ax" =0
over Fyq where q = p! and let 7; = pv:ﬁ i.e. n; with all powers of p removed. Define the “base” variety X

by the equation, i i
apx™ + -+ a2 =0

over Fy. Then X is smooth as an affine variety away from zero. Furthermore, There exits a bijective
morphism X — X so #(X) = #(X) over each Fy and thus (x = (x.
Proof. Let t; = vy(n;). Let Frob, : F, — F, denote the Frobenius automorphism z +— z”. Now we define
the Frobenius morphism X — X via (o, ,2,) — (Frob,° (), - , Froby (z,)) = (f ® .., xP"). This
map is well defined because if,
apzy® + - +apxr =0

then we have,

a0<x101 O)ﬁo 4+ ar(xzrﬁ”')m =0
Clearly this map is a morphism and it is bijective because I can exhibit an inverse map, (o, ,xp) —
(Frob;t0 (xg),- - ,Frob;tr (zr)). Therefore, #(X) = #(X) over any Fy. This implies that {x = (5. Fur-
thermore, as an affine variety, X has Jacobian,

L fig—1 S Ae—1
(aofozy® -, apfpzy™ )

Since p t n; for the Jacobian to have rank zero we must have aiﬁix?Fl =0 = z; = 0 for each i. Therefore,
X is smooth away from zero. O



4 Additional Facts

Fact 4.1. A variety is rational over affine space if and only if it is rational over weighted projective space.
Fact 4.2. P(w,z,y, z) = P(w, zd, yd, zd)
Corollary 4.2.1. The two varieties described in Theorem 1.1 are isomorphic over weighted projective space

Fact 4.3. Let X be the variety defined by the curve:
ne

apzy® + - + apx;

Let L =lem (ng,...,n,) and let w; = L/n;. If
> wi—L>0

then X is rational.

5 Zeta Functions

Definition 5.1. For a r-tuple of exponents n,
Apg= {(ao, cony )0 < @; <1 and d;oy; € Z and Zai € Z where d; = ged (ng, q — 1)}
Theorem 5.2. The variety X defined by,
a4 g =

and the variety X, defined by,
apzy® + -+ apxrt =0

have equal zeta functions up to multiplication of the roots by z*"-roots of unity where
z=[E:F,]

and E is the splitting field of the polynomial,

over IFy.

Proof. Consider the variety X, defined over E. Each a; has all ngh roots so we can write a; = b, for each
1. Therefore, X, is defined by the polynomial equation over E,

bgolﬂg 4ot bf”‘xf"’ _ (boxo)no + -+ (brxr)m, =

Therefore, over E the varieties X, and X are isomorphic via the linear E-map (zg, - ,x,) = (boxo, - , bp2;)
s0 (xp = Cx, - However, the zeta function over E and over F, are equal up to replacing each root and pole
of ¢ by a 2™ root. Thus (x and (x, are equal up to choices of 2™ root and thus up to multiplications by
2*" roots of unity. O

Theorem 5.3. For the weighted projective variety (with points counted via the stack quotient) defined by
apzy® + - -+ apxr =0
over F, such that ¢ =1 mod (Iem (n;)), the zeta function of X equals,

1 (="
ex) =[] = [H (1+ <1>TB<a>jq<a>t)] ,

=0

where B(a) = Xap(ag ') -+ - Xa, (a;1) is a root of unity determined by o and the coefficients.

10



Proof. Notice that A, o, the set of all possible (), is the same for F for any positive integer k. The
reason is that
g=1 mod (lem(n;)) < ¢=1 mod n;.

Then d; = ged(n;, ¢ — 1) = n;, and we know d; < n;, so d; will not increase as the size of field increase. Thus
the set A, , is completely determined by the situation in F,;. And we shall determine A, , explicitly later.
By Weil’s paper, the formula for the number of solution over Fj is

where,
B() = Xao (a5) - Xar (a77) and  jg(a) = ;gmo) (X

are algebraic numbers depends on 7-tuple .. Because the set of o for each extension of F, are defined over
F, we can use the reduction formula,

9' (X)) = —[—9(xa)]*

where ¢’ is the gaussian sum in the extension F,x. Furthermore, for z € I,
Xo () = Xa(@)®
Therefore, the number of solution in Fgx is,
Ne=q™ +( —1) 3 () Blati(a)k
a€An p

Using the stack quotient, we get the formula for the number of solution in weighted projective space:

r—1

N, —1 " . .
Np=iog =@+ 3 ()TIE B
i=0 a€An p

Thus, the zeta function becomes,

r—1

(x(t) =exp i % Z 1)+t Z 1)k(r+1) wtk

3 k=1 a€An p

1§
=)

= exp —ilog [1 — qit] — (—1)T+1 Z log {1 — (—1)(T+1)B(a)j(a)t
i=0

aeAn,p

r—1

-
-11- _1qit . [H <1 + (1)’“B(a)j(a)t>]

O

Proposition 5.4. Up to multiplying the roots by roots of unity, the zeta function of the weighted projective
variety (with points counted via the stack quotient) defined by

aoxy® + -+ apzym =0
over any IFy is equal to,

r—1 -n"

(
1 - )
(x(t) = g 1—qit ’ [1;[ (1 +(=1) B(O‘)Jq(a)t>‘| )

where B(a) = Xap(ag ') -+ - Xa, (a;1) is a root of unity determined by o and the coefficients.

11



Proof. By Theorem 3.1 we can reduce the zeta function for X over I, to zeta function for X over F,v, where
v = ord,(¢q) and n = lem (n;) such that ¢" = 1 mod (lem (n;)). We know that (x, is equal to (x,, with
each root 3 replaced by /¥, Therefore, ¢ x, is determined up to roots of unity by Theorem 5.3. O

Corollary 5.4.1. The variety X is supersingular if and only if j,(a) = wq%l where w is a root of unity
for each oo € Ay, gv.

Proof. By Theorem 5.3 the roots and poles of the zeta function have the form (—1)"B(a)j, () or ¢*. Since
B(«) is a product of characters it is always a root of unity. Therefore, each root of (x has argument a root
of unity if and only if j,(«) does for each a. O

Corollary 5.4.2. Note that |g(xa)| = q and thus,

uq<a>|=:§+g<xao>r-~|g<xar>

Since the characters are roots of unity,

()T B(a)j(a)| =g

By the Riemann hypothesis, each of the a-derived roots are roots of P._1 in Weil’s factorization of the zeta
function. If r — 1 is even then a factor of (1 — q%lt) from the zeta function of P™ will also appear in P._.
Therefore, we can write,

x =GP
where (pr is the zeta function of projective r-space and,
Pooalt) =TT (14 (-1 Blaitae)

Therefore, we can write the Weil factorization of (x as,

1—q%t 0<i<2(r—1)isevenandi#r—1
Pi(t) = (} —q = t)-P_y(t) i=r—1is even
P._1(t) i=r—1"1s odd

Remark. The only interesting cohomology group is H"~! which shows up in the dimension of the surface.

Theorem 5.5. Let X be the weighted projective variety (with points counted via the stack quotient) defined

by
apzy® + - -+ apxyt =

over any Fy. Then the Betti numbers are determined,

1 0<i<2(r—1)isevenandi#r—1
dim H (X) = |Apql +1 i=r—1is even
|An 4l i=r—11s odd

Proof. By Theorem 3.1, changing the base field only changes the zeta function by multiplying its roots by
roots of unity. In particular, the magnitudes of the degrees of each P, and thus the Betti numbers are not
changed. Therefore, given X defined over F, take v = ord,(¢) and n = lem (n;) such that ¢¥ = 1( mod n).
Then we know that ¢ X, factors with,

1—q%t 0<i<2(r—1)isevenandi#r—1
Pi(t) = (} —q¢=t)-P_y(t) i=r—1iseven
P._4(t) i=r—11is odd

Therefore, the Betti numbers of X which are equal to the Betti numbers of X,. are equal to the degrees of
these polynomials. O
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Remark. Notice that whether a variety is supersingular or not is now determined explicitly by one compu-
tation of Gaussian sum.

Proposition 5.6. If a; + as =1, then g(Xa,)9(Xas) = Xao, (—1)D.
Proof. Notice that if ay + ag =1, then xo, = Xa,. We know that

9(0) =YY xley iz +y)

z#0 y#0
= x(@) Y _Yl=+ 1)y
z#0 y#0
The second sum has the value p — 1 for + = —1, and —1 when x # 0. As sum over all x € k* is 0, we get
9(Xa1)9(Xaz) = Xan (=1)p- O

In our example when n =4 and oy = 1/4, x1/4(—1) =1if p=1 mod 8, and x;,4(—1) = —1 otherwise.

Fact 5.7. Let K = Q({,) be a cyclotomic field. Then Ok is a PID if and only if n = m or, when m is odd,
n = 2m where m is one of the following,

1,3,4,5,7,8,9,11,12,13,15,16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84

Lemma 5.8 (Coyne). Let d =lcm (n;) and w; = d/n; then,

#{(xo’...,xr):zowimizo mod (d) andogmi<ni} lcrn an
Proof. Consider the homomorphism,
II Z/n;Z) — 7.)dZ

via (zg, -, ) — woZo + - - - + wpx,. Thus,
.
ker ® = {(mo,-~- LX) Zwlazl =0 mod (d) and 0 < z; < nl}
i=0
Suppose that p" || d then we know that p” || n; for some n;. Thus, p t w; so each prime dividing d cannot

divide all w;. However, w; | d so the list wy,- - ,w, cannot share any common factors. Thus, the ideal
(wo, - ,w,) = Z so the map @ is surjective. Therefore, by the first isomorphism theorem,

#(ker ®) = szm,>/#zmz IIm

Lemma 5.9. The number of alphas A,, 4 is given by the formula,

r—l—l sum(t)
Z lcm t; = H di
teT ief{it; =1}
where d; = ged (ng, ¢ — 1).
Proof. For each t € T, define the number,
Cy=+# {(;Uo,--- , Ty ) Zwixi =0 modlem(d;) and 0 <z; < d; and z;, =0 if t; = 0}
i=0

13



By inclusion-exclusion,

#(An,) = # {(xo, coLap) s Y wiw; =0 mod lem (d;) and 0 < 2; < di} = (-1t

=0 teT

However, letting,
B lem (d;)

then we know that g | w; for ¢; = 1 since w; = lem (d;)/d; and thus,

9

] =1
gl mla=1)
g d;

since d; is such that t; = 1. Therefore, the conditions,
T s
Zwia:i =0 mod lem (d;) <= Zu?fxl =0 modlem (d; | t; = 1)
i=0 i=0
are equivalent when x; = 0 for ¢; = 0. By Coyne’s Lemma,
-t II ¢
t = — i
lem (d; | t; = 1) ie{it;=1}

and thus the lemma follows. O

6 Gauss Sums

6.1 Previously Known Facts and Some Lemmas

Theorem 6.1. g(x.) = wq% where w is a Toot of unity if and only if a =1, %

Proof. See Chowla. O
Lemma 6.2. Let x be a character on F, of order m. Then g(x)™ € Q(¢m)-

Proof. Well-known fact. See Evans’ generalization of Chowla’s paper. O

Lemma 6.3. Let x be a character of order m on Fy for ¢ =p". Let K = Q((pr) with m|r and a an integer
1 (mod m) with (a,2p(q — 1)) = 1. Let 0 € Gal(K/Q) be the element such that

7 (Cap(a-1)) = Gp(g-1)

Then a(g(x)) = x(a)g(x)-

Proof. Let 1 be the nontrivial additive character such that:

9(x) = >_ x(a)i(a)

aclF,

Note that ¢ (z)? = ¢(px) = ¥(0) = 1. Thus ¢(z) = Cf,(m) for t : F; — Z. We can select ¢, to be the p-th
root of unity so that ¢(1) = 1. Note that as ¥(z + y) = ¥(2)¥(y), t(x +y) = t(z) + t(y). Thus as a is an
integer t(a) = a and t(ax) = at(x).

o(1h(z)) = o(G)"™) = 1) = 192) = (ax)

If w is a generator of F¥, as a =1 (mod m) and x has order m, we have o(x(w)) = x(w)* = x(w). Thus as
X is nontrivial,

14



Making the substitution ax — x gives,

O

Theorem 6.4. [See Lang’s Algebraic Number Theory] Let p be a prime lying over p in Q(¢mn) and let B be
a prime lying over p in Q(Cm,Cp). Let f be the order of p modulo m and ¢ = p’. Let x be a character of
F =T, such that

x(@) =a~@ /" (mod p)

Then for any integer r > 1 we have:
T(x") ~ P

a(r) = chzl:s ((q —Ts)w) ol

where

where the summation runs over all 0 < p < p — 1 relatively prime to p — 1 and where s(v) is the sum of the
digits of the p-adic expansion of v modulo q — 1. Furthermore, if u, ' are such that a;l‘p = U;/l‘B then

s ((q —ml)w"> _ ((q —Wll)u’v">

Remark. If f =1, then 0;1‘13 is distinct for all p € (Z/mZ)*. In general, by cyclotomic reciprocity, there

are @ distinct values of o, ' as pu ranges over all the elements of (Z/mZ)*

Lemma 6.5.

s(v)z(p—nff{ 2

i=0 ¢-1

Theorem 6.6. (From Evans’ Chowla Generalization) Let x,1 be two multiplicative characters modulo p of
order > 2. Then g(x) g()* has argument a root of unity if and only if j =k and x = or j = 2k, x = ¥
and Y has order 6.

6.2 Jacobi Sums
Proposition 6.7. Let J(x1,x2) = >, x1(z)x2(1 — x), where x is a character of Fy. If x1x2 # 1, then

9(x1)g9(x2)

J(X17X2) B Q(X1X2)

15



Proof.

90x)g(x2) = DD xa(@)xa)v(z +y)

= Z Z X1(=’C)X2(y - f)w(y)
= Z Z x1(z)x2(a — 2)(a) + Z x1()x2(—2)

r a#0

= O xe@)(@) - O xa(@)xa(1 — )

O
Proposition 6.8. Ifx;... X4|qu = xo where o is the trivial character then,
9(x1) - g9(xa) = J(x1,x2)J (x3, X1x2)xa(—1)q
6.3 Products of Gauss Sums
Theorem 6.9. Let x1,...,Xxn be nontrivial characters on F, for ¢ = p" with p an odd prime. If n is even

and x1--- Xn|1p; is not the trivial character or n is odd and x1 - - - Xn|zp; is not -1 or 1 everywhere, then

n

IT90)

i=1
does not have argument equal to a root of unity.

Proof. (adapted from theorem 1 in Evans’ Generalizations of Chowla paper)
Let L be the lem of the orders of the x;. Let

n

G =]J90x)

=1

By Lemma 6.2, g(x;)* € Q(¢). Thus G* € Q({z). Let € be the number of order 1 such that G = ¢™/%e.
Now suppose G does have argument equal to a root of unity. As G* € Q((z), G*¥ must be a 2L-th root of
unity. Thus € = (. for some integer v.

Now let a be an integer such that a =1 (mod 2)L? and a = g~! (mod p) where g is a generator modulo
p. Note that such an a exists as L|g — 1 and hence must be relatively prime to p. Now consider the Galois
group Gal(Q(C2pr2)/Q(¢2r2)) and the element o contained in it such that:

U(CQpLz) = Cgpm
This is a well-defined element as (a,2pL?) = 1 a = 1 (mod 2)L? so it fixes Q(Caz2). Note that as € is a
2L2-th root of unity o(e) = e. Furthermore, o(+/(q)) = £,/q. As
o(G) = o(q"?)o(e)

So o(G) = G if n is even and o(G) = +G if n is odd. However, we also have by lemma 6.3,

n

7(@) = [T otat) = [T xita otx) = G T xle )G T ks, (0

i=1 i=1

Hence if n is even,

[T xile(9) =1
i=1
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and if n is odd,
n
I xile, (9) = £1
i=1
Thus, as g is a generator, H?zl Xi|r, must be the trivial character if n is even and take value +1 everywhere

if n is odd. O

Proposition 6.10. If x1,x2 are two different nontrivial character on Fy of same order, and

=g’ (x1)g" (x2)g" /2 e U,

where g = p", and j # k, g(x) is gauss sum on Fq, U denote the group of all root of unity, then in Q((pg—1)),
we have (¢/?) divides (9(x;)), i-e.,
Og(x1) = O(¢"/*)a.

Proof. Notice that ‘
_ g a)xs(=1)
~ qUTR2gh(xg)”
And

. a(lg—1
V(gtn)) = V(g(xz)) = mingeq_1-15 (<m>>
But we also have V(g7 (x1)) = V(¢U=/2¢*(x3)), while V(¢'/?) = (p — 1)r/2. This give us the result. [

Remark. When is e; = (p — 1)r/2 for each i? Let us just act by Galois group again.

Remark. When is the conjugate of a gauss sum a gauss sum? Why is the equation

oa(Gr(x)) = X(a)Gr(x)?

Lemma 6.11. If K/Q is abelian then |o(2)|? = o(|z|?) for all 0 € Gal(K/Q). In particular, if |2|?> € Q
then o(|z|?) = |22| and thus |o(2)| = |z|.

Proof. Since K/Q is Galois complex conjugation 7 : K — K is an automorphism fixing Q so 7 € Gal(K/Q).
Furthermore, |0(2)|?> = o(2)7(0(2)) = 0(2)o(7(2)) = o(27(2)) = o(|2|?) since Gal(K/Q) is abelian. O

Lemma 6.12. Let K be a number field and z € Ok such that |o(z)| = 1 for all 0 € Gal(K/Q) then z is a
root of unity.

Proposition 6.13. The element q_(”‘l)/gg()(o) ... 9(xr) is an algebraic integer if and only if it is a root of
unity.

Proof. We know that |¢g="*+1/2g(x0)...g(x»)| = 1 and since o takes g(x) to another Gaussian sum which
must also have magnitude q% we know that,

lo(g= " 2g(x0) . .. g(xe))| = o (a2 o (g(x0))| - - lo(g(xr))| = | £ g~ TFTD/2|gr /2 = 1

Thus, if ¢~ "*+1/2g(x0) . .. g(x») is an algebraic integer then by Lemma 6.12 we know that ¢~ ("t9/2g(x0) ... g(xr)
is a root of unity. Conversely, if ¢~ "t1/2g(xq) ... g(x,) is a root of unity then clearly it is an algebraic in-
teger. O

Corollary 6.13.1. The element ¢~ "tV/2g(xq) ... g(x») is a root of unity if and only if the principal frac-
tional ideal generated by it in K = Q((m, Cp) 95 Ok if and only if it is an algebraic integer.

Proof. If it is a root of unity, then the ideal generated will be Og. If it is not a root of unity, by the
Proposition 6.13 it is not an algebraic integer. Thus the ideal cannot be Ok. O

Remark. By Stickelberger’s theorem, we can determine exactly when ¢~ ("+1/2g(xq) ... g(x,) is a unit.

17



Theorem 6.14. Let p be an odd prime (or r + 1 is even) and ¢ = pf. The normalized product w =

g~ = g(x) - g(x°") is a root of unity if and only if,

> ()~ r ity

=0

for each p € (Z/mZ)*

Proof. Consider the ideals generated by g(x¢°)---g(x¢") and by q% respectivly. By Lang’s formula, we
know the Gaussian sum factors into prime ideals as,

(g(x°)---g(x°)) = PP ... pDw

e ((0200)
=0

Lang’s formula contains a factor of f~!. However, 0;1‘3 ranges over each prime above p a total of f times
because the decomposition group has order f. The sets of o, mapping to a fixed prime are exactly the cosets
of the decomposition groups of which there are w = ¢(m)/f. In the field K = Q({,(p) the ideal (p) factors
as,

where,

() =By Py
Therefore, since Q(,/p) C Q(¢p) for p an odd prime, the ideal (¢F) = (p%f) fractors into primes as,

r41 r+1)f _ o e-Df

(@2 )=@>) =%
Therefore, the principal fractional ideal genreated by w factors as,
41

_ o Dy -t (p—1
@) = (@F) T gx™) g =BT T
Which implies that w € Ok if and only if,

D=3 (D) Ty

=0

. gp? (p—1)f

L (p-1)f

such that the fractional ideal it generates is an actual ideal of Ok . However, by Proposition 6.13, w € Ok
if and only if w is a root of unity. In particular, if w € Ok then w is a unit. Therefore, w is a root of unity

if and only if,
. q—1)pe; r+1
I e )
i=0 m

for each p € (Z/mZ)* if and only if

for each p € (Z/mZ)*. O

Theorem 6.15. Let X defined by,
apzy® + -+ apxpt =

be a variety over Fpe. Let n = lem (n;). And consider it’s zeta function over Fg, where ¢ = p! such that
f = ord,(p). This means that g =1 mod n. Then X is supersingular over F, if and only if

is ((%i)u&) = r;rl(p—l)f,

=0
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for each,

KG{((O,...,&):&EZ andn|z& and0<€i<nandn|€mi}

i=0
and each p € (Z/nZ)*. Notice in Lang (p97) that if o, (B;) = B,, then s (W) =5 (%)

Proof. When ¢ = p/, then X is supersingular over F, if and only if X is supersingular over [, if and only
if X is supersingular over F,:. Thus, we need only consider the supersingularity of X over ;. However, by
Lang, the above condition gives that the product of each tuple of Gaussian sums generates the same ideal as
qrTH and thus their ratio is a unit. By Proposition 6.13, this implies that each product has argument root
of unity. Therefore, by Corollary 5.4.1, we know that X is supersingular over IF,. O

Theorem 6.16. Let x be a multiplicative character of order p — 1 modulo p. Let x*, x?, x¢ be three multi-
plicative distinct characters modulo p of order > 2. Then g(x*)g(x®)g9(x¢)? does not have argument a root
of unity.

2 is a root of unity. To begin note that the unit part of g(x*)g(x?)g(x¢)? is:

So v b roevz _ 9X)g(xP)xe(=1)
P og(x)9(x")g(x)* = 0O)?

Thus the above must be a root of unity. Now consider the principal ideal generated by it in Q({p—1, (). By
Theorem 6.4, for each p relatively prime to p — 1, the prime ideal 0;1‘3 has index:

s(pa) + s(ub) — 2s(—pc) =0

WLOG assume 0 < a,b < p—1and let 0 < d < p—1 be such that d = —¢ (mod p) — 1. As s(ua) =

(1) {2

Proof. Assume g(x*)g(x")g(x°)

} the above is equivalent to:

RN

for all p relatively prime to p—1. Taking u = 1 gives 2d = a+b. Now let ¢/ t be such that ¢t = ged(d, p—1) and
d=c't. As x© has order > 2 We must have t < 5= L. Now there exists v < 2= such that vd =t (mod p—1)

and v is relatlvely prime to 2. Furthermore, for each k we will have (v + -1 —1k)d= (mod p—1). Taking

=v+ = LE: for some k glves

{(V—I—ptlk)a}Jr{(y—&-ptlk)b} 2t <1
p—1 p—1 p—1

va + pT_lka 2t
<
p—1 “p-1

and similarly for b. Now let s = ged(a,t) and take a = a’s. Then this becomes:

This implies that for all k:

I/a—f—(t/s)ka ot

<
p—1 “p—1

Note that k,a’ are both relatively prime to t/s. Thus va + (’; /Sl)ka (mod p — 1) ranges over all residues

z =va (mod 2= s 1), Pick the k that gives the largest = va + (p L) k:a (mod p—1) with0 <2z <p—1. We

(t/;s) (with equality if and only if ) (pzl)

d1V1des a and hence

know z > p—1— divides a’).

19



However, as z < 2t by the above, this implies:

(p—1)
>p—1
t/s =P
(p—1)

where equality can only occur if == divides a’. If s = t this follows immediately. Otherwise, note that ¢

[
is at most 2= and 2= is at most 251. Thus we have the followin possibilities:
3 /s 2 g

2t +

1. s=t
-1
3. t=2s, t =21 and =Y — 4 divides o’

. ‘

t

4. t=3s,t = ”3;1, and @ = 3 divides o’

Note that possibilities 3 and 4 can’t actually happen as the fact that 4|a’ contradicts ¢ = 2s and 3|a’
contradicts t = 3s. This same reasoning can be applied to b. Now suppose t < %. Then for both a,b we

must have case 1. Thus t|a and ¢|b. Let d = ¢'t,a = a't,b = b't. Note that the minimum value of {p”fal} is

% and similarly the minimum of {p“fl} is %. As ged(a,p — 1), ged(b,p — 1) > t and taking

[ = v gives us:
va n vb 2t
p—1 p—1 _p—l

We must have:

and thus ged(a,p — 1) = ged(b,p — 1) = t. Now note that v satisfies: vd = ¢ (mod p — 1) and va = ¢
(mod p — 1). This implies:
via—d)=0 (modp-—1)

which further gives:

But as v is relatively prime to pt;l this implies ¢’ = ¢’ (mod p;—l), which implies a = d. By the same
reasoning b = d, which is a contradiction.

Thus we have shown that x° must have order 3. Let s; = ged(¢, a) and s2 = ged(t,b). As s1, so are either
t or %, a and b must both be multiples of %. However, as ¢ = % or @ the only way that we can have
a+b=2cisifaorbdis %, which is a contradiction on x%, x* having order > 2.

As we have exhausted all possibilities,

g(x“)g(x")g(x%)

does not have argument a root of unity. O

7 Fermat Surfaces
Definition 7.1. Let F” denote the projective variety of dimension r — 1 in P" defined by the polynomial,
g+ F+ar=0

We call this the Fermat n,r hypersurface.
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Conjecture 7.2. Let p be an odd prime. Let Cx, be the zeta function of the Fermat-4,3 hypersurface over
F,. Then

(T_l)(PQT_l)(;%-ﬁ-l)lo(pT—l)l? p=3 (mod4)
(x, =
(Tfl)(pQTfl)(;:qu)Sgp(T)hp(T) p=1 (mod4)
where
(T +1)"? p=5 (mod?8)
9p(T) =
(T -1 p=1 (mod8)
and

= or-2) o)

where s = a+ bi is the unique complexr number with a an odd positive integer, b an even positive integer, and
|s| = p-

Proposition 7.3. For Fermat variety F' defined over Iy, the number of possible o is determined by the

formula,
T

$Ang =3 (1) (d - 1),

=1

where d = ged(n,q —1).

Proof. Recall that A, , = {(ag,..., ) :0<a; <1,% da; € Z,i=0,...,r} in this case. Since a; have the
same denominator, we consider only the numerator of «;, and our problem become counting x; such that

xo+z+ -+ 2z, €dZ.

Suppose we let z1, ..., z, take arbitrary value in {1,...,d — 1}, then the value of z( is uniquely determined.
This gives us (d—1)" possibilities. But we may be over counting. So apply the inclusion-exclusion formula. [

Corollary 7.3.1. The Betti numbers of the Fermat n,r hypersurface are,

1 0<i<2(r—1)isevenandi#r—1
r—1
dim H'(F) = j:O( Yn—-17+1 i=r is even
r—1
Y (-1 (n-1)  i=r—1isodd
j=0

Corollary 7.3.2. The Euler Characteristic of the Fermat n,r hypersurface is,
r—1
X =7+ (1)) (=1 (n— 1)/
§=0

Theorem 7.4. The Fermat hypersurface F)!_; is never supersingular over F, whenp =1 mod n andn > 2.

Proof. The Gaussian sum g(xq) over [, is never a root of unity when normalized to the unit circle unless
a = 1,1/2 (Chowla). Therefore, consider a« = (1/n,---,1/n) which satisfied the conditions to be in A, ,
since r + 1 = n. Therefore,

(=1)"B(a)j(a) = (=1)"B(a)g(x1/n)"
which is a root of (x cannot be a root of unity when normalized to the unit circle because (—1)"B(«) is
a root of unity but g(x1/,)" is not since g(xi/n) is not either by Chowla because n > 2. Therefore, (x
contains a root which is not of the form wq? where w is a root of unity so X is not supersingular. O
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Theorem 7.5. Let n > 4 be an integer and let p =1 (mod n) be a prime number. Then the zeta function
for the Fermat curve (with points counted via the ”stack quotient”) given by the zero set of:

w2ty +2" =0
is not supersingular

Proof. By Theorem 5.3, we just need to show that

3

Hg(XOti)

=0

has argument not equal to a root of unity. For n = 4 we take a; = i for all i. By Theorem 6.1 this is does

not have argument equal to a root of unity. For n = 6 we take ay = % and a; = % for ¢ # 0. Again, by
Theorem 6.1 this is does not have argument equal to a root of unity. For all other n > 4 we take oy = "T’?’
and o; = 711 for i # 0. By Theorem 6.6 this does not have argument equal to a root of unity. O

8 Non-Supersingularity using Factorization of Gauss Sums

In this section, let X be a variety defined by,

Ny

apzy® + -+ apxpt =
over [F,,, where p is a prime not dividing m = lem (no, ..., n,). Furthermore, let f = ord,,(p).
Proposition 8.1. If p=1 mod m for m > 4 and r > 3 then F" is not supersingular.

Proof. Notice that in this case f =1, and ¢ = p. If F]™ were supersingular then, by Theorem 6.15, for each
choice of u € (Z/mZ)* and character powers e, - - - e, that,

> (L) oy

=0

Consider the case =1 and choose a set of characters such that

r
eo+-~-+e,»:mL§J

This is always possible with 0 < e; < m sincer+1<m L%J < mr. In this case, since f =1 and p =1,

N (CEL 2 JRASY) Y ) SUASY) SE S A P

=0 =0 =0

Therefore, by Theorem 6.14, F™ cannot be supersingular. O

oy . f_1
Proposition 8.2. Let p be a prime, and f > 2, let n = pp_l

. Then F3' is not supersingular over IFp,.

Proof. Let p =1, and 7 = (1,1,1,m — 3). We know that s(%) = p — 1 when r = 1 using the fraction
part formula for s because all the terms are less than 1.

Now consider o |
. <(m—325q—1)) _ (p_l)z{(m;;’))pz}

If i < f — 1, then 3p' < m, so




. If i = f — 1, then use the relation
pPrrt=m—tpt-+p’ ),

SO

{(m3)(m(1+p+-~+pf2))} 31 +pt-+p?)
. As aresult, s (W) =(p-1)(f—-1). And
S((q_l)ri) =(f+2)p-1)<2f(p-1)
=0

n

3

if f > 2. Therefore, F3' cannot be supersingular if f > 2. O

. . f_ . .
Proposition 8.3. When f is even, and n = 22—7}, then F3' is not supersingular.

Proof. Let p = 1, 7 = (1,1,1,n — 3), and write m = 1+ p? + p* + .-+ + p/~2. Notice that p/=1 =
pm—(p+p®+--+p/7%). When r =1,

f-1
()= - Y2y

fﬁzi M — ff
= (- () Pt
=0
-+ L
=2(p—1).

When r = m — 3, we have

-1 m—
S(M) =(p—1) Z{%}

m

f—2

' m — m — f—
— - - D iyt e )
i=0

f-2 i B
=(p-1(f -1+ Z(—%) L3ty +W'L"+pf 3))

i=0
— -1 —1- 2
=(@-1(f-4)

In total we still have .
s(@) =(f+2)p—1)<2f(p—1).

1=0

O

Proposition 8.4. When n = p+a for 1 < a < p, and ord,(p) = 2, the Fermat variety X,, is not
supersingular.

Proof. Still consider 4 =1, 7 = (1,1,1,n—3). We have {1/n}+{p/n} = (1+p)/n < 1for r = 1. And since
ord, (p) = 2, n does not divides p — 1 but n divides p* — 1, so n|(p+1). Then {(n —3)/n} + {(n —3)p/n} is
an integer. Thus it has to be 1. This tell us that the sum of the s functions is less than 4(p — 1). Therefore,
X, is not supersingular. O
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Conjecture 8.5. For p a prime, and f > 2, let n = ®¢(p) = pkf(f)l, then ord, (p) = f, and the Fermat

surface F3' is not supersingular.

Lemma 8.6. Let X be a variety defined by the zero set of the equation:
aorg” + a1y’ + axwy® +agry® =0

over Fpe with a; € Z,n; € Zx>1. Let m = lem (ng,n1,n2,n3) and let w; = > for i = 0,1,2,3. Then X
is supersingular if and only if for all u € (Z/mZ)* and eg,e1,e2,e3 € Z with mleg + e1 + ea + e3, wjle;,
0 < e; <m we have:

(e C I (E )

Proof. By Theorem 3.1, we only need to prove that it is supersingular over F, for some power ¢ = p/.
Suppose r is the smallest positive integer such that p” = —1 (mod m). We'll take f = 2r, so that f is the
minimal integer for which m|p/ — 1.

Let x be a character of order m. Now, by Corollary 5.4.1, X is supersingular if the product of Gaussian
sums for each « has argument root of unity. That is,

must always have argument a root of unity where mleg + €1 + ea + €3, 0 < ¢; < m, and w;|e; for each i.
Consider the ideal generated by,

o1 e 9(X)g(x)xe e (1)
1 gg(x )= g(x2)g(x )

By Corollary 6.13.1, this is a root of unity if and only if the ideal generated by it is O, which will occur if
and only if the valuation of each prime ideal in Q((, () is 0. By Theorem 6.4, this will occur if and only if:

s <(q_;)/wo) +s <(q_n11)”61) s (—(q —ml)/t€2> ts (—(q —ml)ueg)

for all p relatively prime to m where s(n) is the sum of the digits of n (mod g — 1) in base p. Even Further,
by [Lang’s Algebraic Number Theory Page 96], this is equivalent to:

(e C ()

as desired. O

Definition 8.7. Define the sum,

Suteor e = (U )y (D) S (fuet ) e )

=0

Corollary 8.7.1. X is supersingular if and only if the value of the sum,

Suleose1) = fZ (b))

for each fized value of p € (Z/mZ)* depends only on E = eg + e; mod m.
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Proof. We know that X is supersingular if and only if,

(e C ()

for each p € (Z/mZ)* and eg, e1, ea, e3 such that m | eg + €1 + e2 + es and w; | e;. Therefore, whenever,

E=ey+e =—ey—e3 modm
we must have that S, (eg,e1) = S, (—ez2, —es). This is equivalent to S, depending on E alone. O

Lemma 8.8. Let p be a prime number, f be a positive integer, m be an integer not divisible by p, and
w € (Z/mZ)*. For integers m 1t eg, ey define:

= a1 {H ) ()

where 1t =0,...,f —1, then

f ; ; f-1
7 7 +
O (oIS ) B (Lt A

=0 =

ey
m m

is either equal to {W} or {W} + 1. If it is equal to the former, then

pleo+e)p' | o [ peop!
m - m
If it is equal to the latter, then

{uiipi}{u(eo;m)pi}{;ﬁpi}+l> {u(eo;f/’l)pi}

{H(Eo+€1)pi } {N(€0+€1)Pi } > {/wopi }
{Meopl} N {Melpz} _ m m m
m m {u(eoj-nel)p" } +1 {u(eo—;el)pi } < {ueﬁlpi }

Proof. Note that

Thus we have:

O
Corollary 8.8.1. Ifeg+e; =0 mod m then Syu(ep,e1) = Ny(eo,e1) = f.
Proof.
2 f peop’ perp’ fi(eo +e1)
0 1 0o Tel
sionen = ({0} {15 ]) =t e 3 P20
However, m | eg + e; so the fractional part of all multiplies of their quotient is zero. Thus,
pleoter'| _
m
Therefore, the second sum is zero. Furthermore, since mt eg and (m,p) = (m, u) = 1 we have that,
0< {Meopi }
m
for each i. Therefore, N(eg,e1) = f. O
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Lemma 8.9. The product ¢~ 2g(x*)g(x**)g(x°?)g(x*) is a root of unity if and only if N, (eo, e1)+N,(e2, e3) =
f for each p € (Z/mZ)*

Proof. By Theorem 6.14 we need only check if,

is (m_n?“) =2p—1)f

i=0
for each p € (Z/mZ)*. However, because m | eg + e1 + ez + e4 by Corollary 8.8.1,

S,(eo+e1)+ Sulea+e3) = Su(eg +er,ea+e3) = f

Furthermore, by Lemma, 8.8,
Suleo,e1) + Su(ez, e3) = Nyu(eo, €1) + Ny(ea, €3) + Suleo +e1) + Su(e2 +e3) = Nu(eo,e1) + Nu(ez,e3) + f
Thus,
1

3
S, (eo,e1) + S, (e2,e3) = o1 Zs ((q—ml),uel> =2f < Nj(eog,e1) + Ny(ez,e3) = f

i=0
Theorem 8.10. Let X be a variety defined by the zero set of the equation:
aox(® + arz]t + asxy? + agzy® =0

over Fpe with a; € Z,n; € Z>1. Let m = lem (ng,ny,n2,n3). If a; # 0 in Fy, for all i and there exists v such
that p" = —1 (mod m), then X is supersingular.

Proof. By Corollary 8.7.1, if we can show that for all p € (Z/mZ)* and eg,e; with 0 < eg,e; < m the sum
S, (eo,e1) is only a function of E = ey + e;, then X is supersingular. Let N(eg,e1) be as defined in lemma

8.8. If m|E, then we will always have:
pu(eo + e1)p’ - preop’
m m

and thus N(eg,e1) = f. If m{ E, then note that as p” = —1 (mod m), we have:

pEPTY _ [ —nEp'\ _ . [pEp
m m m

Therefore, applying this procedure to the above inequality,

{u(eo+e1)pi+r}<{ueopi+’"} — 1_{u(eo+e1)pi}<l_{ueopi} - {ueopi}<{u(eo+€1)pi}
m m m m m m

Furthermore, since m { ey, e1 the inequality must always be strict. Since f = 2r, this symmetry implies that
N(eg,e1) = % Note that N(eg,e;) is constant. Thus by Lemma 8.8,

Suleorer) = fZ (b))

is a function of F alone and thus X is supersingular. O

Theorem 8.11. If there exists v € Z such that p* = —1 mod m then F" is supersingular for any r.
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Proof. Consider the sum,

T B ) r f* j
Su(erserrren) = —— 37 (ﬁdq1061> _ {;uap }
0

m

—

i=0 j=0
which we can rearrange as,

ro (571 piesp? 51 pe;pitE
Suler,....ep) = {l}—i— {Z}

m m
i=0 \ j=0 §=0

(]

However, since f = ord,,,p and the hypothesis, we know that pg

peipit _ {—ueipj} L {ueipi}
m m m

= —1 mod m. Thus,

Therefore, plugging in,

r (i1 ; L1 . r L1
_ pe;p? pe;p? _ _ /
Sﬂ(elv"'7e’r‘)_z Z{m}+ |:]._{m}:| —ZZl—(T+1)§
=0 7=0 7=0 =0 j=0
Thus, by Theorem 6.15, F™ is supersingular. O

Lemma 8.12. Let 0 € S, be a permutation and C € S, be the standard n-cycle,
C=(123---n)

Define the function,
g(o.k) = #{i € [n] | o(i) < aC*(i)}

Then g(o,k) + g(o,n —k) =n for all 0 < k < n.
Proof. Since o is a permutation, we can reindex the set in the definition of g by j = () such that,
g(o.k) = #{j € [n] | j < aC a7 (5)}
However, conjugation is an automorphism so,
oCFo~l = (cCo™ 1)k = CF
where C, = 0Co~! is also an n cycle (with order n) since conjugation preserves cycle type. Thus,

g(o,k) = #{j € [n] | j < C5(7)}
However, if j < C*(j) then define j = C¥(j) or equivalently C"~*(j) = j such that,
Co7 () <

However, n cycles act freely on [n] so there are no fixed points of C* for any 0 < k < n. Thus, the

set of j such that C;’_k(j’) < j is exactly the compliment of the set such that j < C"=F(j). Therefore,
j€glok) < j¢glo,n—k) so,

glok) =1{j € n]| C77"(j) <j} =n—glo,n—k)
O

Corollary 8.12.1. If there exists 0 € S,, such that g(o,k) = g(o,n — k) then g(o,k) = 5. In particular,
this is true if g(o, k) is constant for 0 < k < n.
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Corollary 8.12.2. Ifn is odd then g(o,k) # g(o,n — k) for all 0 < k < n. In particular, this means that if
n is odd, then there cannot exits o € Sy, such that g(o, k) is constant for all 0 < k < n.

Lemma 8.13. Let m,p,eq,e1, f, N(eo,e1) be as in lemma 8.8. If f > 1, m|pf — 1 and E is such that
m{t E(p—1) and there exists a K such that for all e; + e2 = E (mod M) with m { ey, ea, we have

N#(eo, 61) = K
then K = % where p € (Z/mZ)* is fized.

Proof. Suppose that such an F exists. Let

Ei
{2
m

Note as m|pf — 1, we have ai+f = a;. Suppose a; = a; for some integers ¢,j. Then we have:
Ep' = Ep’  (mod m)

which is true if and only if o
E(p™ —-1)=0 (mod m)

This we hold only when i — j is multiple of some integer ¢. As a result a;.; = a; but ag,aq,...,a;—1 are
distinct. Furthermore, since m { E(p — 1) we have ¢ > 1. For notation purposes. We now let permutations
m € S; act on the sequence a;. As ag,a1,...,a;_1 are distinct, there exists a permutation o € S; such that
fori=0,...,t—1. a,(i) < a,(j) if and only if i < j for 0 <, j <t —1. Since the condition N,(eg,e1) = K
must hold for all g + e; = F mod m we may pick a particualr value of],

60|j = Epj and 61|j =F— 60‘]‘

{M€O|jpi} B
—— = Q4
m

Thus if we let C = (12 --- t) € S;, then this can be rewritten as:
eal i
{u ol,P } = GCi(s)
m

K = Ny(eolj,e1l;) =#{0< i<t @ a; < aqj}

for any 1 < j <t — 1. In this case,

By definition,

As a; is periodic, this is implies

K= %#{Z Day < aCJ(Z)}

=T o <o @@ = La0 )

However, by lemma 8.12,
glo™hj) = g(k) =t — g(t — k)
As t > 1, taking k = 1 implies g(o %, k) = % Thus:

Theorem 8.14. If f is odd and f > 1, then F3* is not supersingular
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Proof. By Corollary 8.7.1, F{"* is supersingular only if for all ey, e; with 0 < eg,e1 < m we have that

Su(eo,e1) = fi:l ({Mizpi} + {“Zpi })

=0

is only a function of E = eg+e;. Consider the case E = 1. Let N(eg, e1) be defined as in lemma 8.8. By the
same lemma, the above being a function of E is equivalent to IV §eo7 e1) being constant across ey + e1. By
lemma 8.13, if it is constant for fixed E, then it must always be 5. However, as N(eg, ;) is integer-valued
this is impossible. Thus we have a contradiction, so F3" is not supersingular. [

Theorem 8.15. Let f = ord, (p). If f is odd and f > 1, then F}' is not supersingular

Proof. By Theorem 3.1, we only need to prove that it is supersingular over F, for some power ¢ = pf. Let
x be a character of order n. By Theorem 5.3, we have that

C(T):ﬁ

where p(T') = —1 and the roots of ¢(T) are of the form:

~—

where mleg 4+ e1 + e and 0 < e; < n, and w;|e; for each i. The product H?:o X% (a; ") will always be a root
of unity. Thus to show {(T') is supersingular, we just need to show that H?:o g(x°") always has argument a
root of unity. We will now do so.

Consider the ideal generated by,

L8 T ey — IGO0 )X (1)
q gg(x ) q12g(x*)

By Corollary 6.13.1, this is a root of unity if and only if the ideal generated by it is R, which will occur if
and only if the valuation of each prime ideal in Q((,,¢,) is 0. By Theorem 6.4, this will occur if and only if:

S(@—;M%)+S<M—;Mﬁ>:S(—@:;M@>+£

By [Lang Algebra Page 96] this is equal to,

£ (e} (-2

2
However, as eg + e; = —ea (mod n), each term in the above summation must be either 1 or 0. Thus the left
hand side is an integer. However, if f is odd, the right hand side is not. Thus this equality cannot possibly
happen. [

Theorem 8.16. Let f be odd and m be even, then the Fermat variety F3" is not supersingular.

Proof. We know that X is supersingular if and only if ¢—2 H?:o g(x) is a root of unity, where m|eg + e +
es +e3 and 0 < e; < m for each 4.

Let eg +e1 = Epy, and ey + e3 = FEs. By lemma 8.9, we know that V,,, is supersingular if and only if
N(eg,e1) + N(ea,e3) = f. Now let Eg + F3 = 3m, and eg = e3, e; = e3. Then Ey = 3/2m is an integer
because m is even. But Ny # f/2 because Ny is an integer but f is odd, so f/2 is not an integer. We also
know that Ny = g, since ey = e2, e; = e3. Thus it is impossible that Ny + Ny = f. Therefore, F3"* is not
supersingular. O
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Theorem 8.17. Let f be odd, the Fermat variety F" is not supersingular if r is odd.

Proof. We prove this using Theorem 7?7 and Lemma 8.8.
We know that F™* is supersingular if and only if

> Suler) = (0= 1)(r +1)f/2
=0

for all p € (Z/mZ)*, and m|eg +e1 +---+ e, and 0 < e; < m for each 7. Thus, we can choose e; for i > 3
such that m|e; + e;11. Then for any given u, S, (e;,e;+1) = f by Lemma 8.8.

On the other hand, choose ey, ..., es as in Theorem ??, then S, (e, e1, €2, €3) # 2f.

Therefore, we have

> Suler) # (= 1)(r +1)f/2

1=0

for this chosen set of e;, so F]™ is not supersingular.
O

Conjecture 8.18. Let ¢ = p", p a prime and n € Z™, be the order of our finite field F, and let N, be the
number of solutions (eg, ey, ez, e3) with 0 < e; < q — 1 all distinct and p € Z with (u,q — 1) = 1 satisfying
s(peo) + s(per) = s(pez) + s(pes). We conjecture that Ny = Ny, and for yuj, pr > p, Ny, = Ny, if py and
i share the same largest factor.

9 Sum-Product Varieties

9.1 Introduction

In this section we concern ourselves with the family of varieties,
T+ +xg= AT Tg

over the finite field F,. In the process, we will study the m-values which are solutions to the set of simulta-
neous equations,
r1+--+zg=2 and x---x4=y

over F,. (Motivation?)

Definition 9.1. The integer, mgvg is the number of solutions to the set simultaneous of equations,

s

l'1+"'+$d:Z

Ty Tg =Y

over F,.

Definition 9.2. The diagonal hyper-plane number is the number of solutions,
HYS)=#{x1+ - +ag=2z|x; €S}

where § C K and z € K for some field K.

d—

Proposition 9.3. For any z € F, we have HX(F,) = ¢! and for z € F, we have,

HI(Fy) = = [(q— 1) + (g8 — 1)(-1)]

| =
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Proof. For any choice of x1,--- ,z4-1 € [F; there is a unique z4 € F,; such that 1 + --- 4+ 24 = 2. Thus,
HZ(F,) = ¢?=!. We will no count how many solutions contain no zeros. By inclusion exclusion,

i) = ey - () + () o)+ () ComeEs

g( ) Jam T e Z% ré (?)(—1)"(1‘“

1=

+ (_1)(152

0
[ (¢—1)* = (=) + (-1)%.

where the factor of &, comes from the fact that for z # 0 the set H2(F,) is empty but for z = 0 has one
element representing the all zero solution to the original problem. Therefore,

HI(FY) = é (g — 1) + (¢0: — 1)(~1)%]

Proposition 9.4.
B 1
mp2 =g =~ [g = 1"+ (g0: - )(-1)"]

Proof. Solutions to the set of simultaneous equations x; + -+ x4y = z and x1 --- x4 = 0 are exactly those
solutions to x1 + - - - + x4 = 2z which are not all elements of IB‘; Therefore,

mb? = HA(F,) — HIFY) = ¢~ — é (g — 1) + (g8, — 1)(~1)7]

O
Corollary 9.4.1. For z # 0 we have, mgzz — mg:g =(-1)4
Proposition 9.5.
-1y #0
I oI
yEF, 2€F, 4q q y=
Proof.
Zm’q*#{x1+ dag=z2 |z €F}=HYF,) =q¢* "
IS
Likewise,
g—1 d—1 0
Zm’q—#{xl'--xd:ﬂxie]Fq}: (d ) 4 v
=, ¢“-(-1)" y=0
because if y # 0 then every solution to x1-- x4 = y must have z; # 0 for each i and for any choice of
Ty, ,Tq_1 € F; there is a unique choice of x4 such that z1-- x4 = y. Thus, in the case y # 0 there are
exactly (¢ — 1)%~! solutions. However, if ¥ = 0 then the condition ;- --x4 = 0 is equivalent to not all z;
being in Fy and thus #(Fy)? — #(F* )% = ¢* — (¢ — 1)*. O
Proposition 9.6.
1
5wt == 1%+ (0. - -1y
yeFRS
Proof. Since having some product y # 0 is equivalent to all z; # 0 we have,
1
ST ombt = {a+ g =2 | 2 # 0} = HUF)) = p [(q— 1)+ (g0, — 1)(—-1)7]
yeFS
O
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9.2 Relationships Between m-values

Lemma 9.7.
# (Fy/(F)") = ged(n, g — 1)
—1

Proof. Let w € F;{ be a generator. The group, F;)" is generated by w™ which has order m. Therefore,
#(F;)n = ﬁ;fl) and thU.S,
# (Fy /(FS)") = ged(n,q — 1)
O

Proposition 9.8. Let m:F; — F;/(]qu)d be the projection map. If w(y) = w(y’) then mig = md qO

Proof. Suppose that 7(y) = m(y’). Then, 3’ = y\%. Suppose that x; + -+ x4 =0and z;---24 = y is a
solution for m%%y,0. Then, consider the point Azq,--- , Azg. We have,

Azy+ o+ Arg = Mo+ +2q) =0

and
Ay deg = A xy - xq) = Ny =

Therefore, Axy,- -+, Azq is a solution for my . Furhtermore, A # 0 so multiplication by A is invertible. [

Corollary 9.8.1. If ged(d,q— 1) =1 then my ¢= 52?0 for ally,y' € Fy,.

Proposition 9.9. Let o be an automorphism of F, then mZ:g = mg’é)’g(z).

Proof. Since ¢ is an automorphism, it is an invertible map Which preserves the structure of polynomial

equations and therefore gives a bijection between ng and ma’(y) o(2)" O
Proposition 9.10. Ify,z # 0 then for any A € F;* we have md 1= mi’fy,/\z.
Proof. Multiplication by A € F¢ is invertible and takes solutions for md 4 to solutions for m‘id e O

Corollary 9.10.1. If ¢ — 1| d then fory, z,2" # 0 we have mZ:Z = m‘;:‘;/,

Proof. We know that for any A € F; we have mg;g = mi’fyykz. However, ¢ — 1 | d so d is an exponent of F
so A4 =1. O
Lemma 9.11. Let Z, 1m 0. If q—1|d then Z, is an integer.

Proof. Any solution 1 +---+x4 = 0 and 1 - - -z, = y can be taken to another distinct solution Az +---+
Arg = A1+ - +24) =0 and \zy - - Azg = A(z1 - 24) = Ay = y by multiplication by A. Since y # 0

we have that z1,---, x4 € FJ for any such solution (since their product is nonzero) and thus multiplication
by A € F acts freely on the set of solutions. Thus, each orbit has size #(IE‘qX) = g — 1 but the orbits form a
partition so ¢ — 1 | mZ:g. O

d,q
q _ s
y’z =m,, then,

Lemma 9.12. If for y,z,2’ # 0 we have m
m = (g—1)4-2 - Z,
Proof. For y,z # 0 we have that,

(q—Vmgd +myd =" mb?=(qg—1)""
z€F,

Thus,

1
dg _ _ d,q
m®d = =1 [(q 1) my’o}
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Lemma 9.13. If my ¢= Z}?O for ally,y" € B then,

for each y € F.
Proof. We have that,

(q_l yO_ZmyO_i q_l) (q_l)( 1)d]
q
yEF,
Therefore,
1
miyh =~ [la= 1"+ (=1)]

9.3 Powers of Gauss Sums

Theorem 9.14. Let x : F, — C* be a multiplicative character. If ¢ — 1| d then,

T=q Y Zyx(y) =6 [(a =D+ (=1)]

IS

Proof. Let ¢ : Fg — C* be a nontrivial additive character. Consider,

900" = | > x@@)| = > > x( (za)¥(x1) -~ Y(2a)
z€F, z1€Fy  mq€Fy
- Z Z J(xy + -+ xq) = Z Z Z X(y)(z)
o1eF, c4€F, yelF, z€F, Ilaj‘fl’;‘vi’df:d;,z
=D xly) Yy myd
yEF, z€F,

However, since ¢ — 1 | d, by Lemma 9.10.1 we know that myg = mZ:Z, ify,z2 € IF‘qX. Therefore,

g00 =" x() Y mdtp(z) + x(0) > my?

y€eFy z€lFq z€Fq
d d, d,
= > X() | myfe(0) +myd Y (=) | +x(0) | mige(0) + my? Y w(2)
yeFy z€F) z€F,

Because v is a nontrivial character,

YD) =0 = Y w(z)=-

z€l, 2€FF

since ¥(0) = 1. Therefore,

d, R d, d,
900" = 3 x(») [t — mit] +x(0) [mirg — mit?]
yeFy

where z is an arbitrary nonzero element (since these numbers are independent of choice of z # 0). Further-
more, by Lemma 9.12 we know that,

. L - :
my s —myS = myg 4 —gmyy — (¢ DT =aZ, — (- )T
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Furthermore, by Lemma 9.4.1, mgjg - mg:g = (—1)?. Putting these facts together,
900" =" xW) [aZ, — (g — 1D)*7?] = x(0)(-1)
yeFy
Now we consider the case when y is the trivial character yo and when x # xo. When x # xo we know that
x(0) = 0 and that,
> x(y) =0

yeFy

Therefore we get,

900 =q Y Zyx(y)

yeFS

When y is the trivial character, x(y) =1 for all y € F,. Therefore,

900 =0q > Zyx(y) - [(¢— 1D+ (-1)7]

S

Theorem 9.15. Let E be the character group of Fy and ¢ — 1| d. Then,

1 _ _
Zy= 10D X%;Ag(x)d X(W) + [(¢— 1)1 + (=1)4]

Proof. By Theorem 9.15, we know that,

a4 Y Zyx(y) = 900 + 6y [(a = D)+ (—1)]

y€eFy
We will make use the character orthogonality relation,

> x(@)x(y) = {(q ~1) 2=y

~ 0

o= rFY

for x,y € F*. Using this relation,
S0 o (e DT+ DX =a > D Zx(XW) =q Y Z.(q—1)dy—. =qlqg—1)Z.
x€F, x€EF, z€Fy z€Fy

Furthermore, for x = xo we have X(y) = 1. Thus,

dg—1)7Z. =Y g0)* ) + [(g— D"+ (-1)]
XGJFAq

9.4 Special Cases of Sum-Product Varieties

Definition 9.16. The sum-product variety, Vf’q is defined by the equation x1 + -+ - + x4 = Ax1 - - - x4 Over
F,. Clearly, the number of points on a sum-product variety is given by,

#OR =D my3,

yqu
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Proposition 9.17. Suppose that mgjjg = forally,z, 2" € B then,

y Z’
#(VH) =g~ = (=1)?

Proof. We know that,

d, d, d, d, d,
Zmy/\y_mOOJery/\y: 0,0 T myg:z my,'] + [mgg — mg’i]
yel, yeFY y€eFy (S
=g = (-1)?
O
Corollary 9.17.1. If ¢ — 1| d then,
#VD) =gt = (=1)?
Proposition 9.18. The number of points on a sum-product variety is determined entirely by 771‘;’?170 via,
d, d, - - d,
#FVO) = #(V0) = ¢t - (q— 1)d >+ qm/\fl 0
Proof. Choose any 1, ,24-1 € Fq. Denote S = 21 4+ -+ +24-1 and P = 21 ---x4—1. Then finding a
point on the variety is equivalent to solving,
S+xyg=APry < x4= 5
4= d TP -1
when P # A~!. Therefore, for any choice of z1,--- ,24-1 € F, there is a unique point on the variety when
P # X"t When P=\"1 there are no solutions for S # 0 and any x4 gives a point on the variety if S = 0.
There are ¢%= — (¢ — 1)472 choices for 21, ,24_1 € IF, which do not have P = A~! since to get P = A~}
we can take the first d — 2 to be arbitrary elements of IE‘X and then there is a unique x4 € IFX such that
Tq--- = A~!. Thus, the total number of solutions is,
#V) =g = (g = D+ gmi
O
Proposition 9.19. If my ¢= Z}?O forally,y" € Fy then,
#V) ="+ (- 2)(a - D)+ (-1
for each A € F.
Proof. By Lemma 9.13 we know that,
1
d, -
mA3170 = 6 [(q - 1)d ! + (_]‘)d]
Therefore, by Proposition 9.4,
HVND) =" = (g= D)+ (@ =)+ (=) ="+ (g - 2)(g - )7+ (=1)*
O

Corollary 9.19.1. If ged(d,q — 1) =1 then for each A € F,

#V) = ¢+ (¢ - 2)(g — D)2 + (-1)¢
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Theorem 9.20. Let ¢ =p" and d = p® then, for each X\ € ¥, the zeta function of the variety, V;i’q equals,

-1)? d ; (-1
C L 1 1 ( 1) H (1 _ qzt)2 (L)( )
VT L gt |1 -t el R

=
and therefore, V)fl 1 s supersingular.

Proof.

#V
Cv;z,q = exp Z Mtk

E>1

However, (d,¢" — 1) = (p*,p"™* — 1) = 1 for all k. Therefore, by Corollary 9.19.1,

d
#(VAdvqk) :q(d—l)k+(qk _2)(qk_1)d—2+(_1)d:qk(d—1) +( q —9 Z( > d i k:z
=0
Thus,
k(d—1) _1\d d ki
q ko, (D k. d _qyd—i 9 .k
Cyea —exp( ot +(q 2)2 (Z>( 1) ot
k>1 i=0 E>1
k(d—1) _1\d d k(i+1) d ki
_ 4q ko, (=19 d d—i q d _q\d—i a4 K
_exp( — kt+z (i(l) > 1 2y R ICY Zkt
k>1 i=0 E>1 i=0 E>1
4 r/d r/d
o d—1 d d—1 i+1 d—1
~exp (—bgu—q 0= (g~ = 32| (7)ot~ #2320 | () 1og[1—q]]>
R d i

Lemma 9.21. Let w € FX be a generator. Then, a =w" is a n™ power if and only if gcd(ng — 1) | r.
Proof. Suppose that a = b™ where b = w*. Then, w" = w™® which is equivalent to nz = r mod (¢ — 1).

This equation has solutions if and only if ged(n,g — 1) | 7. O

10 Relationships Between Diagonal Varieties

Lemma 10.1. Let ¢ : X — Y be a surjective morphism then the induced map on £-adic cohomology
©* H* (Y, Q) — H*(X,Qy) is injective.

Proof. See Kleiman, Algebraic Cycles and the Weil Conjectures, Proposition 1.2.4. Further, use the fact
that ¢-adic cohomology is a Weil cohomlogy theory. O

Proposition 10.2. We say a scheme X overF is supersingular if and only if the frobenius map Fx : X — X
induces a map F% : H(X,Qu) — H'(X, Q) on l-adic cohomology with all eigenvalues of the form wq? where
w 15 a root of unity.

Theorem 10.3. Let p : X — Y be a surjective morphism then X being supersingular implies that Y is
supersingular.

Proof. The induced map ¢* : H(Y,Q,) — H*(X,Qy) is injective by Proposition 10.2 and commutes with
the Frobenuius maps,
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HI(Y, Q) <2 HI(X,Qy)

= [
H(Y,Qp) —5— H(X, Q)
Suppose that X is supersingular then every eigenvalue of Fxx : Hi(X,Q)) — H'(X,Qy) has the form

A = wq? where w is a root of unity. Suppose that v # 0 is an eigenvector of Fy: such that Fy = Av. By
commutativity of the diagram,

p* o Fy(v) = Fx(¢™(v))

Furthermore, since ¢™* is a linear map,

@ o Fy(v) = ¢" (M) = Ap™(v)
and therefore,
Fx(¢*(v)) = A¢™(v)
Since ¢ is injective and v # 0 we know that ¢*(v) # 0 so ¢*(v) is an eigenvector of F'y with eigenvalue A.

Therefore, since X is supersingular, A = wq? with w a root of unity. Since \ is an abitrary eigenvalue of s
we have that Y is supersingular. O

Definition 10.4. Let X and Y be diagonal varieties of dimension 7 — 1 over the field k, defined respectively
by the equations,
apzg® + -+ a,x =0 and box(® + - + boalt =

Then we say that X | Y iff n; | m; for each 0 <14 <r.

Lemma 10.5. If X and Y are diagonal varieties of dimension r — 1 over an algebraically closed field k and
X | Y then there exists a surjective morphism, ¢ : Y — X.

Proof. Define the map ¢ : Y — X via,

(Tos -y me) = (200, z™™)
This map is well-defined because if the point (z,...,z,) satisfies,

x6”0+...+x;n7':

mo my

Then the point (yo,...,yr) = (4°,..., 2" ) satisfies the equation,

Yo' ety

th
Furthermore, ¢ is surjective because k is algebraically closed and thus each y; € k is an (T) power. [J

Remark. Theorem 3.5 is a special case of this result in which the map ¢ has additional properties due to
the characteristic of k.

Corollary 10.5.1. Suppose X | Y. If Y is supersingular then X is supersingular.

Proof. This follows immediately from Lemma 10.3 and Lemma 10.5. However, we also give an elementary
proof. Take ¢ to be a power of p such that ¢ = 1 modulo the LCM for X and Y. Since X | Y each o € Ax
for X satisfies the correct divisibility relations for Y. Thus, Ax 4 C Ay,q. Therefore, if Y is supersingular
then each o € Ay 4 gives a product of gauss sums which is a root of unity. Since Ax ; C Ay, 4 the same holds
for X so X is supersingular. O
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Corollary 10.5.2. Let X be a diagonal variety over an algebraically closed field k defined by the equation,
apzy® + - +arxy =0
Define the LCM extension X, and GCD reduction X, of X by,
X, = Fm ™) gnd X, = Feed ()
respectively. Then there exist surjective maps,
X, 2 x 1 X,

Corollary 10.5.3. If X, is supersingular then X is supersingular. If X, is not supersingular then X is not
supersingular.

Theorem 10.6. Let X be a diagonal variety. Then X is supersigular over F,, if there exists v € Z such that
p’ = —1 mod lem (n;) and X is not supersingular if for all v € Z we have p* Z —1 mod ged (n;).

Proof. This follows from Shioda’s theorem via Corollary 10.5.3. O

11 Newton Polygons

Proposition 11.1. The set of slopes that appear in the Newton polygon is determined by

S )

1 3 (¢g—Dr; B
ponf =t !

where ) = € 7, i. e., the set of 7= is in the set of all possible c.

Proof. See Koblitz’s paper p-adic variation of the zeta function over the families of varieties defined over
finite fields. O

Proposition 11.2. When f =1, the Newton Polygon of the Fermat variety F}', is of the form
(0,0), (0,a), (ba — a,by — 2a), (b2, b2),
where a = (m;1)7 and by is the second betti number.

Proof. Since f =1, we know that

But m|rg + r1 + ro + r3, so the only possible value for Z?:o {%} is 1,2, 3, and these corresponds to slope
0,1,2.
To count the length of z-axis where the slope is 0, we need to find the number of solution to the equation

ro+r1+ra+r3=m,

which is (m; 1). By duality of the cohomology, this length is equal to the length of the last segment, i. e.,

the segment with slope 2. O
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12 Surfaces of the form z? + y? + 2P% + w?

Theorem 12.1. Let p,q,w be primes such that p,q,w = 1 mod s for some s and let X be the variety
defined by,
xh 42 +af+ 23’ =0

over Fy,. If w is a primitive root modulo p and q then X is supersingular.

Proof. By Theorem 6.14, we need only check that for each o = (eg/m,...,es/m) € A(X) that,

3 f-1 j
e;w’
Su(eo,e17€2,€3):ZZ{'um }:2f

i=0 j=0
where m = pgs and f = ord,,s(w). However, we also know that « can be written as a tuple, (ao,...,as)
such that,
@ a9 a3 _ saotar  saztay _ g(saotay) tp(saptas) o,
p bs q qs ps qs pgs

Since p and ¢ are coprime, we must have,
plsag+a and q|sas+ as

Thus, let, sag + a1 = pn, and saz + ag = qng. This reduces the above condition to,
n n
L+ €e€Z < n,+n,;=0 mod s
S 5

Now, using Lemma 8.8,

Su(eo,e1,e2,e3) = Syu(eg,e1) + Sulez, e3)

Ny (o, ex) + Noene5) + jil Hﬂ(eo + eq)w’ } " {M(eg + eg)w? H

m m

3=0
However, ey + e1 = g(sap + a1) = pgn, and ez + e3 = p(saz + a3) = pgn, and thus,

S [{uleot e es +eg)u |1 _ X [ f pmpd i ] L
e )] ) )]

Jj=0

since pw’ (n, 4+ ny) =0 mod s. We need not worry about the case n, = n, =0 mod s because in that case
m | e+ e and m | ex +e3 50 S,(eg,e1) = Su(ea, e3) = f which is the condition we need.

It remains to show that,
N, (eg,e1) + Ny(e2,e3) = f = Suleo,e1,e2,e3) =2f

Consider the number, N, (eg,e1) which counts all 0 < j < f such that,
J J
[} )
S p
pnyw? _ {@} _ [1np]s
s s s

Furthermore, w is a primitve root modulo p so the numbers pagw’ give a complete set of residues modulo p.
Because p — 1 = ord,(w) | ordygs(w) = f we can write f = u,(p — 1) and similarly f = u,(¢ —1). Therefore,

Ny (e, e1) = uyp {#{0§i<p—l‘[lmsp]s<;}} =, (p—l— {p[/mp]sJ)

S

However, w =1 mod s and thus,
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However, p=1 mod s so p = sk, + 1 and thus because 0 < [un,]s < s we have,

[M”p] s

gl 222k | — k).

Finally,

Nyleo,er) = f = upkylpmy)s = f = upp; 1[:‘“117]5 =f (1 - [lmsp]s)

and identical argument gives,

Nu(ez,e3) = f (1 - W)

and thus,

N, (eo,e1) + Ny(ez,e3) = f (2 _ W) g

because [pny|s + [ungls = s. O
Theorem 12.2. Let X be the variety defined by,
apzy® + - +arxr =0
and let n =lecmn;. Now define the polynomial,
2 _ 2w T pn(rl) _ gwi(r+1)

Bx(x) =[] xxzwi —1 11 zwi(r+1) — 1

i=0 i=0

Suppose that p =1 mod n then the total degree of X minus the picard number of X is given by,

n(r+1

)
POX)= > Bx(Chpin)

i=1
In particular, X is supersingular iff P°(X) = 0.

Proof. When p = 1 mod n then f = 1 so we know that a given product of Gaussian sums applied for
a € A, p is a root of unity if and only if,

Z {@} _ r+1
n 2
for each p € (Z/nZ)*. (WIP) O

13 Rationality
Theorem 13.1. The variety X defined by equation

2!+ yl+ 2P +wP =0
is rational when ged(p, q) = 1.

Proof. This variety is in the weighted projected space P(p, p, ¢, ¢). We want to define a map f from P(p, p, q, q)
to P x P by

(zo 1@y w2 w3) = ((wo 2 @1), (22 : 23)),

and we consider the locus D4 (zox2) C P(p,p, q,q) and its image D, (xo) X Dy (x2) 2 A x A C P x P under

f
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We know that

1
D, (zox2) = SpecR  where R = kxg, 1, T2, 23] [x . }
042 |

Define the change of variable

1 3 xh
1,0 =", T32=—, 220 = —g;
i) i) )

we content that Dy (zox2) = Spec(k[z1,0, 3,2, 2,0, mgé]), as proved in lemma.

On the other hand, we can write D (xg) X Dy (x2) = Spec(k[s] @ k[t]) = A x A by let

L1
§=—, t=
i) xTo

Zs3
Then we can define the ring map

fo i kls| @ k[t] = R

by
S+ 1,0, t— 3 2.

Now consider the variety X = V(zf + 2 + 2} + 2%) = V(I) in the affine patch D4 (zoz2). The defining
equation of X after change of variable can be written as

f=1+a]g+ao0+ a8 00 =220(1+25,)+ (1+2],)
Thus it is clear that
kw10, %32, 22,0, 25 0]/ (x2,0(1 + 78 5) + (1 + 21 ) = Frac(R/I)

Notice that f* : k[s] ® k[t] — Frac(R/I) is surjective because we can write x5 o and x;é as a rational
function in term of 19 and 3. Furthermore, it is easy to see that f* is injective. Thus, f* is a bijective
rational map. For the inverse map of f*, we map

Tio0hrH>» S, T332 t.
We thus show that X is birationally equivalent to P x P. O

Lemma 13.2. Let R = k [xo, x1, 22, 23] be a weighted ring with weight (p,p,q,q) and ged(p,q) = 1. Then

1
-1
Ry = k[vo, 71,72, 73] [ = k21,0, 73,2, 72,0, T9 9],
oo 0
where
1 Z3 xh
T1,0=-—,Tz2=—,T20= —7-
Zo T9 )

Proof. We proceed by showing that if
_ p'wy aytay’
mgoxgz
for a;,b; > 0 with ¢ = 0,1,2,3 and j = 0,1, and m has degree 0, then m can be written as a product of
71,0, 73,2, 2,0, OT T0,2.
If ag > by and ag > by, then it is impossible for m to have degree 0.

If ag > by and ag < by, then let bs — as = ¢o and ag — by = ¢o. For m to have degree 0, we need
pco + pai + qaz = qca.

Since ged(p, ¢) = 1, it must be the case that g|(co + a1). Write ¢g + a1 = gk for some k € Z. Our equation
now become
pk+ a3z = c
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Thus we can write m as

ai .Co ..a1 .03 asz
_ [ %o To Xy X3 z3 _ a1 a3k
m = a1 _pk = T1,073,2%0,2
Ty To T2

If ag < bg and as < ba, let cg = by — ag and co = by — as. Then we have the equation
pai + qaz = pco + gcz

with ai,as, co,ca > 0.
Since ged(p, ¢) = 1, we can write dip + dag = 1, and |dq| < ¢ and |da| < p. Notice that dydy < 0.
Moreover, any other such equation can be written as (dy + gr)p + (d2 — pr)q = 1 for r € Z. Without loss
of generality, let d; > 0 and dy < 0. Then

(dy 4 qr)(dy — pr) = dydy — prdy + (1 — dip) — pgr?
= didy + 1 — 2d1pr — pgr?

If r > 0, the only positive term is r thus we know (dy + ¢r)(da — pr) < 0.

If r < 0, we have —2d;pr > 0, but 2di1p < pq|r| since |d1| < g. Thus, it is impossible for both of the
coeflicient to be positive at the same time. However, a1, as, cg, co > 0. Therefore, it is also impossible for m
in this case to have degree 0. O

14 Surfaces of the Form 2% + y® + 2¢ + w®*

Lemma 14.1. (From Shioda’s On Fermat Varieties) Let p be a prime, n be an integer not divisible by p,
and f = ord, (p). Suppose that for all u relatively prime to n:

f—1

> {2-1

=0

Then there does not exist a primitive character x modulo n such that x(—1) = —1 and x(p) = 1.

Proof. Suppose there does exist such a character. As y is primitive with x(—1) = —1,

04 21,x) = "IV S sk
k=1

As g(x) is non-zero we must have:
n

> xX(k)k#0

k=1
Now let G be (Z/abcZ)* and let H be the subgroup of G generated by p. As x is trivial on H:

Doxkk= " x(w) Yk
k=1

neG/H kepuH

Now we have that:

Thus

Note that x is a nontrivial character on G/H. Thus

> x(w)=0

neG/H

and so we have a contradiction. O
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Lemma 14.2. Let p,ay,as,...,a, be distinct primes. Suppose f = ordgp.(p) and f; = ordg,(p). There
exists a primitive character modulo ajas - - - a, such that x(—1) = —1 and x(p) =1 if and only if there exist
integers 0 < a; < a; — 1 for each i such that

and a1 + ag + -+ + a, is odd.
Proof. Let A =ajas---a, and x : (Z/AZ)* — S be a character. As:

T

(z/Az)* = [](2/aiz)"

i=1
There exists characters x; : (Z/a;Z)* — S* such that
X(7) = x1()x2(5) - - xr (4)

As the a; are prime, there exists generators g; modulo a; for each ¢ such that:

a;—1
g =p (mod a;)

Now there exists «; for each i such that:

x(9i) = exp ( 2 )

ai—l

Using these above definitions, the condition x(p) = 1 is equivalent to

T

«@
< €7
i=1 fr
and the condition x(—1) = —1 translates to oy + as + -+ + ;- is odd. Lastly, the condition that x is
primitive just implies that x1, x2, X3 are not trivial. Thus we lastly need oy Za—1,a0 #b—1,a3 # ¢ — 1,
as desired. 0

Lemma 14.3. Let a,b,c,p be distinct primes. Suppose f = ordap(p), fi = ord.(p), fo = ordy(p), and
fz = ord.(p) and let 27,25 2t be the highest power of 2 dividing f1, f2, f3 respectively. Then there exists a
character x primitive modulo abc such that x(—1) = —1 and x(p) = 1 only if one of the following holds

e p//2 = —1 (mod abc)
o fo=b—-1,fs=c—1r>s,s=1t=1
e fi=a—-1,fo=b—-1,fs=c—1r>ss=2,t=1

Proof. We will do this by casework, using the result of lemma 14.2. To make things easier for ourselves
suppose f1, f4, f4 are the largest odd numbers dividing fi, fa, f3 respectively. Let ai, @z, a3 be as in the
statement of lemma 14.2:

Case (r = s =1t): This is simply equivalent to w//? = —1 (mod p).
Case (r > s >t): Ift # 1 taking a1 = f12" %, ag = f5(257 — 1),a3 = f}2!"1 gives us a primitive
character satisfying the desired conditions. If t = 1 and s # 2, taking a3 = f{2" "1 ay = 325771 a3 =

f4(2t —1) gives us a primitive character satisfying the desired conditions. As there exists no such characters,
these cases are impossible. Hence r > s =2 >t =1.
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Now suppose we have r > s = 2 >t = 1. Consider the case ay = f{2"% s = 3f4, a3 = 2f4. This implies
that f3 = 2f5 = ¢ — 1, as otherwise this gives a character and hence a contradiction. Similarly, consider the
case a; = 12775 ay = 4f} a3 = f;. By the same reasoning, this implies that fo = 4f, = gb — 1. Lastly,
consider the case a1 = 12", a0 = 2f}, a3 = fi. Again, this implies that f; = 2" f) = a — 1. This completes
our analysis of this case.

Case (r = s >t): Taking ay = f{,as = f5(2°7t —1),a3 = f4(2" — 1) gives us a primitive character
satisfying the desired conditions. Thus we get a contradiction, so this case is impossible.

Case (r>s=1t): Ift#1, taking oy = 2""°f], ap = f5(2° — 2), a3 = f4 gives us a primitive character
satisfying the desired conditions. Hence ¢ = 1.

Now suppose we have r > s =t = 1. Consider the case a; = 2" 1, as = f5, a3 = 2f5. This implies
that f3 = 2f5 = ¢ — 1, as otherwise this gives a character and hence a contradiction. Similarly, consider the
case a1 = f12" 7Y an = 2f5, a3 = fi. By the same reasoning, fo = 2f} =b— 1.

We have now exhausted all possible cases and have shown that the only possible choices are those in the
theorem statement. O

Lemma 14.4. (Coyne) Let R be a positive integer and let ay,as, ..., ax be positive integers all dividing R.
Then the number of solutions (by,...,by) € Hle Z/a;Z to

Z Rbi =0 (mod R)

Q;
i=1
is equal to
ged(aq,ag, ..., ax) Hle a;
R
Proof. Consider the homomorphism:
k
¢:|]2/aiz — Z/RZ
i=1

given by

uny -
¢(b1,~-~,bk)zz all (mod R)
i=1 "

The size of the kernel of this map is precisely the quantity we are looking for. Now consider im ¢. This will
be the elements of Z/RZ with nonzero image in Z/ ged(ay, as, ..., a;)Z. Thus:

R
ged(aq, ag, ..., ax)

im ¢| =
Lastly, by the first isomorphism theorem,

[[Tisy Z/aiZ] _ ged(ar,as,... ax) TTiy s
[img| R

YE

O

Lemma 14.5. Let a,b,c,p be distinct primes. Suppose f = ordap(p), fi = ord.(p), fo = ordy(p), and
f3 = ord.(p) and let 27,252 be the highest power of 2 dividing f1, f2, f3 respectively. Lastly, let f1, f}, f} be
the largest odd integers dividing f1, fa, f3 respectively. If r > s>t >1 and pf/? # —1 (mod abc), there does
not exist a character x primitive modulo a,b,c such that x(—1) = —1 and x(p) = 1 if and only if f1, f5, f4
are pairwise coprime and one the following two conditions holds:

1. fo=b—-1,fs=c—1,r>s,s=1t=1

44



2. fi=a—-1,fo=b—-1,f3=c—1,r>s,s=2,t=1

Proof. By lemma 14.3, all that is left to show is that if one of the two cases holds then fi, f3, f4 being
pairwise coprime is a necessary and sufficient condition on the existence of a character. By lemma 14.2, such
a character exists if and only if we can find «ay, as, ag such that:
aq a2 asg
M T AT

and a+ g +ag € Z. In the first of our two conditions, the only possible values of a1, s, a3 modulo 27, 2%, 2¢
such that the sum of the «; is odd and the denominator of S is odd are a; = 2"~ (mod 2") and exactly one
of ag, a3 is odd. Thus, as the choice of oy, s, a3 modulo f1, f}, f5 will determine if S is an integer, there
does not exist such a primitive character if and only if the only choices of awg, a3 have fj|as and fi|as.

Similarly, in the second of our two conditions, the only possible values have one of aj,as, @3 modulo
27,25 2t that do give rise to a character has one of the as 0 in the respective modulus. Furthermore, there
exists at least one choice of modular remainders for which each of them is 0 and no others are. Thus there
does not exist such a primitive character if and only the only choices of a1, aq, ag are divisible by f1, f5, f4
respectively.

In both cases, this comes down to determining whether there are solutions to:

T(y1,72,73) := T+7+76Z
1 2 3

with f; { v; as we can pick oy, as, az modulo f, f3, f4 respectively such that v; = 2¢ay, 12 = 2/ g, 73 = 2¥a3
for any i, j, k.
Let R = lem (f1 f5f4) and w;. Any choice of v; with T' € Z will have fj|aq, fi|as if and only if f1|a;.
Thus T € Z if and only if the number of solutions to:
R R R
s
fi i fi
is 1. By lemma 14.4, this occurs if and only if:

Jifafzged(f1, fa, f3) = lem (f1, f2, f3)

Which occurs if and only if f1, f2, f3 are pairwise coprime, as desired. O

=0 (mod R)

Theorem 14.6. Let a,b,c,p be distinct primes. Suppose that the order of p modulo each of a,b,c is even.
Then he projective variety V' defined by

wabc+xa+yb+zczo
over F,, is supersingular if and only if for all p relatively prime to abe,
'\ _f
abc 2

Proof. By (Insert Citation), V is supersingular if and only if for all a1 81,b1 B2, c1 B3, abc t B4 such that

we have:

up1p’ uB2p uB3p puBap® || _
I R e e SR b IR

As p has even order modulo each of a,b, ¢ there exists a power of it which is -1 modulo each of a,b,c. As

such we can pair up to get
Ef:{uﬂlp} i{m}:i{uﬁsp}

i=0 i=0 i=

N\\
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Hence the above condition is equivalent to:

{uﬁwi} _f
abc T2

As ufBy ranges over the same set as just p, this is equivalent to for all u relatively prime to abc:

-
abe [ 2

as desired O

Theorem 14.7. Let a,b,c,p be distinct primes. Suppose f = ordap.(p), f1 = orda(p), fa = ordy(p), and
f3 = ord.(p) and let 27,22 be the highest power of 2 dividing f1, f2, f3 respectively. Lastly, let f1, f}, f} be
the largest odd integers dividing f1, f2, f3 respectively. If r > s >t > 1 and the projective variety V defined
by

wabc+xa+yb+zc:0

over F,, is supersingular and pf/2 £ —1 (mod abc) then f], 5, fs are pairwise coprime and one the following
two holds:

o fo=b—1,fs3=c—1,r>ss=1t=1
e fi=a—-1,fo=b—-1,fs=c—1,r>s,s=2,t=1

Proof. By theorem 14.6, we have for all p relatively prime to abc:

'\ _f

abc 2
The result of lemma 14.1 then implies that there does not exist a character x primitive modulo abc such
that x(p) =1, x(—1) = —1. From this, lemma 14.5 gives us the desired result. O

Lemma 14.8. Suppose a,b,c,p are primes with f = ordape(p) and f1 = ordp.(a). Let H be the subgroup of
(Z/aZ)* generated by p/*. Then for all u not divisible by a,b, c we have:

> Jf {ufzpi} _ fla=)

he(Z/aZ)* JH i=0

if and only if for all p not divisible by b, c we have:

S AR S
Z { be }: ; { be }

=0

where u = a~' (mod be).
Proof. Note that we have:

Zle{uhpi}_ > fz{ukp} 33 1{uk:p} fz{uup} Q)
abc abc abe pare be

heH i=0 kE(Z/aZ)* i=0 ke(Z/aZ) i=0

where we view k € (Z/aZ)* as the element = for which:

x=k (mod a)
x=1 (mod d)
x=1 (mod c)
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Now as f1 = ord,(bc) for each pair of remainders f (mod b),g (mod c) there exists at most one remainder
modulo e (mod a) such that there exists an ¢ for which p* is equivalent to each of those in the respective
modulus. As such we have:

3 flzl{ukp } “thzl{up +ch}

ke(Z/az)* i=0 j=0 i=0

i+ b 1
{up +J C}<

abe a

Now for each i let j; be the j for which

We then get:

-1 i a—1 f1—1 ; . .
> fZ e :th P
; abe ; abc
ke(Z/aZ)* =0 =0 =0

a—1 [fi—1 .
~+ Job
_ [Z {Np Jo C}—Fﬂ

fi—1 ; .
_(a=1)f1 pp* + jobe
o 2 + Z “ abe

Al

Now as {%} < % we have
o e+ dobe [ pap' + joabe | _ [ pp'
abc abc be

s - £

ke(Z/aZ)x i=0

Thus we get:

Plugging this back into equation gives:

S8y

heH i=0

1

e

Rearranging we get:

e A T php
Z{bc}:Z{bc} Z {abc}
=0 heH =0

i=0
which implies the desired result. O

Theorem 14.9. Suppose a,b,c,p are primes with f = ordep.(p). Let fi = ordy(p), f2 = ordy(p), f3 =
ord.(p). Let 27,25 2! be the highest power of 2 dividing f1, fa, f3 respectively. If r > s=t=1, fo =b—1,
f3 = c—1, the largest odd divisors of f1, fa, f3 are comprime, and there exists i,j such that p* = b (mod ac)
and p' = (mod ab) then the projective variety V defined by

wabC+Ia—|—yb+ZCZO

over I, is supersingular.
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Proof. Let u be defined to be the integer satisfying the following equivalences:
u=1 (mod a)

—1 (mod b)
u=1 (mod c)

Similarly let v be an integer such that
v=1 (mod a)
v=1 (mod b)
v=-1 (mod c)
Let H be the subgroup of (Z/abcZ)* generated by p. Let S be a set of coset representatives for H in
(Z/abcZ)* . We claim for all x € S the cosets «H, —xH,uxH,vxH are distinct. Note that asr >s=1t>0
—1,u,v cannot be powers of p. Thus wH,vH,—H are distinct from H. Now note that u? = v? = 1.
Furthermore, uv € —H as:
—p?2=1 (mod a)
—p?2=—-1 (mod b)
—p?2=—-1 (mod ¢)

Thus (uH)? = H, (vH)? = H,(uH)(vH) = —H. Thus implies H, —H,uH,vH are the distinct cosets of H
and hence xH, —xH,uxH,vrH are distinct. Now define

w=3-{}

i=1

By theorem 14.6, V is supersingular if and only if:

for all p relatively prime to abc. As g(u) = g(pp), we then only need to show equation 14 holds for all € S.
We will now show that those equivalences holds. Due to pairing up:

g(pw) +9(—p) = f

Now as b lies in the subgroup generated by p modulo ac, we have for all pu:

()£ )

=0 =0

Thus by lemma 14.8, for all u relatively prime to abc,

> S{my-ree

gE(Z/bZ)* /G i=1

where G is the subgroup of (Z/bZ)* generated by p’* for fi = ordu.(p) = lem (f1, f3). As the odd parts
of fi, fa, f3 are coprime, p is a primitive root modulo b, and r > s = 1, we will have ged(fs,0 — 1) =
ged(fy, f2) = 2. Thus G will be the set of squares modulo b. As s =1, b = 3 (mod 4) and so —1 is not a
square modulo b. As such, 1,u are the coset representatives of (Z/bZ)*/G. Thus we have:

g(p) +glup) = f
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As (wwpH) = —pH, plugging in —p gives:

g(—=p) +glvp) = f

As g(—p) + g(p) = f, this means g(u) = g(vu). Applying the same reasoning to the subgroup generated by
p modulo ab:

g(p) +gvp) = f

which implies for all p relatively prime to abc we have: g(u) = f/2. As stated before, this implies V is
supersingular. O

Theorem 14.10. Suppose d, e, g,p are primes with p a primitive root modulo e, g and va(e—1) > va(g—1) =1
and ged(e — 1,9 — 1) = 2. If the projective variety V' defined by

wdeg+xd+ye+zg =0
over I, is supersingular then there exists i such that p' =d (mod eg).

. o _ o« #(eg)
Proof. As p is a primitive root modulo e, g and ged(e — 19— 1) = 2, p generates a subgroup of order Tg
modulo eg. Thus if there does not exist an i for which p* = d (mod eg), d,p must generate (Z/egZ)*. By
theorem 14.6 and lemma 14.8, we must have for each p relatively prime to ac

¢(;y) _ . ¢(;y) _ .
> - 2
i=0 €9 i=0 €9
However, as d, p generate (Z/egZ)*, this implies for each
d>(;9) _1 ;
Y {W}
i=0 9
is constant and thus equal to @ as summing the sums for p = 1,4 = —1 gives ¢(eg) by cancellation.

However, by lemma 14.1, this implies there cannot exist a character primitive modulo eg with x(—1) =

—1,x(p) = 1. However, if we take oy = 5= Las= = L then:

—+—€Z

fi 3
and a1 + ag is odd. Thus by lemma 14.2, there should exist such a character satisfying those conditions,
which gives us a contradiction. Thus d is in the group generated by p modulo eg. O

Corollary 14.10.1. Suppose a,b, ¢, p are primes with p a primitive root modulo a,b, ¢, vo(a—1) > va(b—1) =
2 > wvy(a—1) =1, and the odd parts of a —1,b—1,¢— 1 relatively prime. If the projective variety V defined
by

wabc+xa+yb+zc:0
over F,, is supersingular then there exists i, j, k such thatp' = a (mod be), p’ = b (mod ac), p* = ¢ (mod ab).

Proof. The existence of i, j follow from theorem ??. Note that p generates a group of order ( % modulo

ab. By theorem 14.6 and lemma 14.8, we must have for each p relatively prime to ab

slab) 4 s(ab)
; ' < pep’
> (%t 2 )
=0 =0
Now if ¢, p generate (Z/abZ)*, then
¢ (ab) -1

> {7)

7=
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is constant across all u relatively prime to ab. If ¢,p don’t generate (Z/abZ)* then they generate a group
N = (¢, p) of index 2 over (p). As a result, ¢ € (p). Thus there exists an i such that
p'=c? (mod ab)

Assume the i above is minimal. If 7 is odd then vy(ord,,(c)) = r + 1, which cannot happen as max(ve(a —
1),v9(b — 1)) = r. If r is even, then there exists a u such that u?> = 1 (mod ab) and

p/? =uc (mod ab)

u must be +1 modulo each of a,b. If it is 1 mod b, then it is either equal to p?(@?)/4 or p®(ab)/8  Otherwise,

either p?(@)/8y = —1 or u = —1. Either way we have —1 € (¢, p). However, this implies
slab) ‘ slab) | ‘
< pp’ < —pp’
> - X {5
=0 =0

However, by cancellation the two sides of the above equality sum to ¢(ab)/4. Thus in both of our cases we
have:

olat) _ _
> { ' } _ ¢ty
i=0
However, by lemma 14.1, this implies there cannot exist a character primitive modulo ab with x(—1) =
—1,x(p) = 1. However, if we take a; = “771, o3 = @ then:
@ @
f—ll + f—j €z

and a; + ag is odd. Thus by lemma 14.2, there should exist such a character satisfying those conditions,
which gives us a contradiction. Thus c is in the group generated by p modulo ab, as desired.
O

Theorem 14.11. Suppose a,b,c,p are primes with f = ord.p.(p). Let f1 = ord,(p), fo = ordy(p), f3
ord.(p). Let 27,2% 2% be the highest power of 2 dividing f1, f2, f3 respectively. If r > s =2 >t = 1,
fi=a—-1, fo=b—-1, f3 =c—1, the largest odd divisors of f1, f2, f3 are coprime, and there exists i,j, k
such that p' = a (mod bc), p? = b (mod ac), and p* = ¢ (mod ab) then the projective variety V defined by

—_

wabc+ma+yb+zc:0
over F,, is supersingular.

Proof. Suppose i is an integer such that i> = —1 (mod b). Let «; be defined to be the integer satisfying the
following equivalences:

ar =1 (mod a)
a1 =4 (mod b)
1 (mod ¢)

aq

Let H = (p) in G = (Z/abcZ)*. Note that —1, a; generate the 8 cosets of H. Let G, be the subgroup of G
with elements =1 (mod bc) and let Gy, G.. be defined similarly. Let H, = G, N H and let Hy, H. be defined
similarly. Observe the following:

e The cosets of H, in G, are generated by —a?
e The cosets of Hy, in G} are generated by ay

e The cosets of H. in G, are generated by —aq
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Let
« [’
g(p) = ; {abc}
As a is in the group generated by p in (Z/bcZ)* we have for all u relatively prime to be

PIRCA S

i=0 =0

Thus by lemma 14.8, for all y relatively prime to abe,

3 fi:l {uipi} _ f1(a2— 1)

geGy/Hy =1

Which by observation 1, is equivalent to:

9(pw) +9(—aip) = f

By the same reasoning observation (2) becomes:

9(1) + glaap) + g(efp) + glaip) = 2f

and observation (3) becomes:

9(1) + g(—arp) + g(aip) + g(—aip) = 2f

These equations combined with:
9() +9(=p) = f
gives:
_f
9w =35
By theorem 14.6, V' is supersingular. O

Conjecture 14.12. Let a,b,c,p be distinct primes. Let f = ordape(p), fi = ord.(p), fo = ordy(p), f3 =
ord.(p) and let 27,25 2! be the largest powers of 2 dividing f1, f2, f3 respectively. If r > s > t, the variety V
defined by the equation:

xa+yb+zc+wabc
is supersingular if and only if pf/> = —1 (mod abc) or if conditions 1,2 hold and either of 3,4 hold:
1. r>s and %, %, % are pairwise coprime.
2. fo=b—1,f3 =c— 1 and there exists an integer j such that p’ = c¢ (mod ab)

3. s =t =1 and there exists an integer i such that p' =b (mod ac)

4. s=2,t=1, fi = a—1, and there exists an integer i such that p' = a (mod bc) and there exists an
integer j such that p’ = b (mod ac)

15 Surfaces of the Form w® + 2% + y® + 2%

Let X be the diagonal surface defined by w® + @ 4y + 2% over F,,.

Lemma 15.1. Let Hy, H> < G be normal subgroups with quotient maps m; : G — G/H; and consider the
maps,

Pij - H, — G Z; G/HJ

Then 1, is surjective iff o1 is surjective.
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Proof. Consider the commutative diagram with exact rows and columns,

0 0 0

0 — H1 N H2 H1 Kl 0
1,2 _

$1,2
0 H, G T G/Hy —— 0
2,1 -

0 K, — 2 5 Gq/H, C 0

0 0 0

where K; = H;/(H, N Hy) and the maps @; ; : K; — G/H; are induced by the maps ¢, ; and are injective
by the first isomorphism theorem. Exactness and commutativity are obvious except at C which I have yet
to define! By commutativity and surjectivity, im@; ; = 7,;(H) <imn; = G/H; so I@; ; is a normal subgroup
and thus cokerg; ; = (G/H;)/img; ; exists. Take C' = coker@; o. Furthermore, the exactness of columns
gives a surjective map G/H; — C which makes the bottom right square commute. By the nine lemma, the
bottom row is exact proving that C' = cokergs ;. Finally, by exactness,

1,2 is an isomorphism <= C =0 <= @3 is an isomorphism
But ¢; ; is a surjection iff ¢; ; is an isomorphism so ¢1 o is surjective iff ¢ ; is surjective. O

Lemma 15.2. Let p: G — G’ be surjective and H <G a normal subgroup. Then there exist coset represen-
tatives for G/H with fized image in G’ if and only if p(H) = G'. Furthermore, we if this holds, we may take
the coset representatives to be trivial in G'.

Proof. A set S C G contains a full set of coset represenatives for G/H if n(S) = G/H. Therefore, we require
that w(p~1(x)) = G/H for some z € G'. Since we must hit the identity, H N p~!(z) # @ so there exits
h € H such that p(h) = z. Thus, p~1(z) = hkerp so m(p~1(h)) = w(h)n(ker p) = m(ker p) so we may take
h = e. The conclusion holds if and only if w(kerp) = G/H.

Take Hy = H and Hs = kerp in Lemma 15.1 and thus,
impg 1 =nw(kerp) = G/H < imp; 2 =m(H)=G/kerp
but the map p naturally factors through G/ kerp as,

G i G’
KZ /'

G/ kerp

H

sop(H) =G < my(H) =G/ kerp. O
Theorem 15.3. Suppose there exists a subgroup H C (Z/abZ)* such thatp € H and —1 ¢ H
H < (Z/abZ)* — (Z/aZ)™

is surjective. Then X is not supersingular.
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Proof. By Theorem 6.15, if X is supersingular then,

1

3 f-
Z {Mezpj}zf
0

=0 j=
3

However, there is a projection map X — F?2 so F3 is supersingular and thus, by Shioda, p* = —1 mod a.
However, we know that,

ey ey eh e bley+ey)+ e+ el

70+71+72+72:(0 1)23€Z

a a ab ab ab
and thus b | ¢}, + e5. Thus we have,

-1

fz{upﬂ} Z{uelpﬂ}j‘l{u@pﬂ}j {u63p’}:2f
7=0

j=0 j=0 j=0
however because p¥ = —1 mod a,
Fo1oo iy Il
e e
{uop}+ {ulpf}:f
a : a
7=0 j=0
so we know that,
-1 -1
pesp? pesp’
+ f
ab : ab
7=0 7=0
Define the sum,
-1

=2 {%)

S(a) +5y) = f
whenever z +y =0 mod b. In particular, if x =y mod b then S(z) = S(y).

<.

The above gives the functional equation,

Let x : (Z/abZ)* — C* be a Dirichlet character such that y(H) = 1 and x(—1) = —1. This is possible
assuming that —1 ¢ H. Let mg be the conductor of x with a map ¢ : (Z/abZ)* — (Z/moZ)* and
Hy = ¢(H) and character xo : (Z/moZ)* — C* inducing x. Now define the sum,

e Z» {:lto} ) Wg; { (ab/ZZO)xt} 1) ﬂlkewls (Tﬁ@

tep({p

Thus, So(z) = So(y) whever mg | a(z —y) <= z =y mod my = mg/(mo,a). Next, let G = (Z/moZ)*
and K = ¢({p)) and consider7

ZXO = Z Z ZXo(x)mi: Z Xo(9 Z Z

2eG gHo€G/Ho he Ho /K ©EhgK O gHoeG/H, heHO/K I

> xol9) Y Solgh)

gHoE€G/Hy heHo/K

since g is trivial on Hy and thus descends to a nontrivial character on G/Hy. By Lemma 15.2, the surjective
map,

H < (Z/abZ)* — (Z/aZ)*

alows us to choose coset representatives of G/Hj which are all trivial under the map (Z/moZ)* — (Z/moZ)*.
Therefore, gh = h mod mg and thus,

ZXo(x)mi: > xole) D Sothy=1| Y Se(h)|- > xolg) | =0

2€G O yHoeG/H, heHy/K heHo/K gHo€G/Ho
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since o is a nontrivial character on G/Hy. This is a contradiction because,

> xo(9) ~ L(L;x0) #0

gHoEG/HO

16 Other Families

Theorem 16.1. Let X be the variety defined by,
xg + o + 28 +9:§b

where a and b are coprime. Suppose that ordy(p) is even. Then X is supersingular over F,, if and only if
p¥ = —1 mod ab for some v.

Theorem 16.2. Let X be the variety defined by,
T R  RENE o

where a and b are coprime and kq, ky > 2. Then X is supersingular over Fy, if and only if p* = —1 mod ab
for some v.

17 Conjectures

Lemma 17.1. [f,

()

i=0
for all a coprime to m then there does not exist a primitive character x modulo m such that x(—1) = —1
and x(p) = 1.

Lemma 17.2. [f,

w5}

i=0
for all a € Z/mZ then p®* = —1 mod m for some v € Z.
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