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1 Affine Varieties

Theorem 1.1. Suppose X is the affine variety over Fq defined by the zero set of:

a0x
n0
0 + a1x

n1
1 + · · ·+ arx

nr
r

For each 0 ≤ i ≤ r, let Li = lcm ({nj}|j 6=i) and let n′i = gcd(ni, Li). Then the affine variety X ′ over Fq
defined by the zero set of:

a0x
n′0
0 + a1x

n′1
1 + · · ·+ arx

n′r
r

has |X ′| = |X|.

Proof. Let di = gcd(ni, q − 1) and let d′i = gcd(n′i, q − 1). By equation (3) from Weil’s paper we have:

|X| = qr + (q − 1)
∑
α∈S

χα0(a−1
0 ) · · ·χαr (a−1

r )j(α)

where S = {α = (α0, . . . , αr) : diαi ∈ Z;
∑
αi ∈ Z; 0 < αi < 1}. Similarly, we get:

|X ′| = qr + (q − 1)
∑
α∈S′

χα0(a−1
0 ) · · ·χαr (a−1

r )j(α)

where S′ = {α = (α0, . . . , αr) : d′iαi ∈ Z;
∑
αi ∈ Z; 0 < αi < 1}. We will show that S = S′ and hence the

two expressions must be equal. Note that as n′i|ni, d′i|di. Thus d′iα ∈ Z implies diα ∈ Z. As such, S′ ⊂ S.
Now suppose α ∈ S. If di = d′i for all i, the two sets are equal and we’re done. As such assume j is such
that d′j 6= dj . As gcd is commutative, d′j = gcd(dj , Lj). Then we can write, dj = d′jm. Now for each i, as

diαi ∈ Z and 0 < αi < 1, there exists ai such that αi = bi
di

. Now, as α ∈ S,

bj
d′jm

+
∑
i 6=j

bi
di
∈ Z

Let B
D =

∑
i 6=j

bi
di
∈ Z be a fraction in simplest form. Thus we have

bj
d′jm

+
∑
i 6=j

bi
di

=
bj
d′jm

+
B

D
=
bjD + d′jmA

d′jmD
∈ Z

As di|ni|Lj for all i 6= j, we have D|Lj . For the above expression to be an integer we must have d′jm|bjD.

As d′j = gcd(d′jm,D), this implies m|bj . However, this means d′jαj =
bj
m ∈ Z. By our reasoning, this holds

for all j. Thus S′ ⊂ S.
As explained before, this implies S = S′ and thus |X| = |X ′|.
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Theorem 1.2. Let X be the affine variety over Fq defined by the zero set of:

a0x
n0
0 + · · ·+ arx

nr
r

where the ai are nonzero and the ni are positive integers. If for all 1 ≤ i ≤ r we have gcd(n0, ni) = 1, then
X is supersingular.

Proof. By theorem 1.1, X has the same number of solutions as the variety X ′ defined by the zero set of

a0x
n′0
0 + · · ·+ arx

n′r
r

As n0 is relatively prime to the other ni, n
′
0 = 1. However, then a0x0 achieves every element of Fq exactly

once. Hence, regardless of the choice of x1, . . . , xr there is precisely one value of x0 for which the defining
equation of X ′ is 0. Thus |X| = qr. By the same reasoning if we define Nk to be the number of points of X
defined over Fqk , we have

Nk = (qk)r = qrk

As such the zeta function ζX is:

ζX(T ) = exp

∑
m≥1

qrm

m
Tm


= exp (− log(1− qrT ))

=
1

1− qrT

which implies that X is supersingular, as desired.

2 Projective Varieties

2.1 Conversion to Weighted Projective Space

Note on notation. From now on, unless otherwise specified, let X be an affine variety over Fq defined to be
the zero set of

a0x
n0
0 + · · ·+ arx

nr
r

such that the ai are nonzero. Let L = lcm (ni) and Ni = L/ni. For a given point P = (P0, . . . , Pr) let

SP = {Ni : Pi 6= 0}

Let dP = gcd(SP ). We also define V to be the image of X in weighted projective space.

Theorem 2.1. Suppose λ acts on X as follows: For any point (x0, . . . , xr) we have

λ · (x0, . . . , xr) = (λN0x0, . . . , λ
Nrxr)

Then for all P = (P0, . . . , Pr) ∈ X,
|Stab(P )| = gcd(SP )

In particular, Pi 6= 0 for all i, |Stab(P )| = 1.

Proof. Suppose λ · P = P . Then we have:

((λN0 − 1)P0, . . . , (λ
Nr − 1)Pr) = (0, . . . , 0)

This holds if and only if λNi = 1 for all Pi 6= 0. This is equivalent to λgcd(dP ,q−1) = 1, which has exactly
gcd(dP , q − 1) solutions.
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Corollary 2.1.1.

|V | =
∑

P∈X/{0}

gcd(dP , q − 1)

q − 1

Proof. By the orbit-stabilizer theorem, under the scaling action of weighted projective space, orb(P ) =
q−1

gcd(dP ,q−1) . This then follows from the fact that:

|V | =
∑

P∈X/{0}

1

orb(P )

We’ll now introduce one more piece of notation. Suppose t = (t0, . . . , tr) ∈ {0, 1}r+1. Say

Ct := {P ∈ X : Pi = 0 ⇐⇒ ti = 0}

and
St := {Ni : ti = 1}

and as before dt = gcd(St). Note that the Cts form a partition of X. We also define an ordering on {0, 1}r+1.
Suppose u = (u0, . . . , ur), t = (t0, . . . , tr) ∈ {0, 1}r+1. We say that t ≺ u if for all i, ui = 0 =⇒ ti = 0. Let

Xu =
⋃
t≺u

Ct

(Note that there is a bijection between Xu and the zero set of the equation:
∑
j aijx

nij where ij ranges only
over the values of i such that ui = 1. We make this note because using Weil’s paper we can count Xu more
directly than Cu). Lastly, for convenience, let T = {0, 1}r+1/{(0, 0, . . . , 0)}

Theorem 2.2.
|Cu| =

∑
t≺u

(−1)sum(u)−sum(t)|Xu|

Proof. As the Ct are disjoin we have:

|Xu| =
∑
t≺u
|Ct|

Let p0, p1, . . . , pr be distinct primes and for t ∈ {0, 1}r+1 let:

P (t) =
r∏
i=0

ptii

Let Q be the inverse of P . Note then that P (t)|P (u) if and only if t ≺ u. Thus our above equation becomes:

|Xu| =
∑
d|P (u)

|CQ(d)|

By the Mobius Inversion formula:

|Cu| =
∑
d|P (u)

|XQ(u)|µ
(
P (u)

d

)

Let t = Q(u). As P (u), d are squarefree, µ
(
P (u)
d

)
= µ(P (u))/µ(d). Note that µ(P (u)) = (−1)sum(u). Thus,

by the equivalence between P (t)|P (u) and t ≺ u, this summation is equivalent to

|Cu| =
∑
t≺u

(−1)sum(u)−sum(t)|Xu|

as desired.
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Theorem 2.3.

|V | =
∑
t∈T
|Ct|

gcd(dt, q − 1)

q − 1

Proof. Note that for all P ∈ Ct, dP = dt. As the Ct form a partition of X, this formula is just a restatement
of Corollary 2.1.1

2.2 Supersingular Projective Varieties

Lemma 2.4. For a given prime power q and integer N . Suppose N ′ is the largest divisor of N relatively
prime to q. Define:

g(k) = gcd(N, qk − 1)

Furthermore define

fr(k) =

{
1 r|k
0 else

Then

g(k) =

M∑
i=1

aifi(k)

where M = ordN ′(q) and

ai =
∑
d|i

g(d)µ(i/d)

for i|M and ai = 0 otherwise with µ the moebius function.

Proof. Set ai to be as claimed in the lemma statement. Note that

g(k) = gcd(N, qk − 1) = gcd(N ′, qk − 1)

By the Moebius inversion formula for k|M we have:

g(k) =
∑
i|k

ai

As fi(k) = 1 if i|k and 0 otherwise this is equivalent to:

g(k) =

M∑
i=1

aifi(k)

We now claim g(k) = g(gcd(k,M)). Clearly if A|qgcd(k,M)− 1, then A|qk − 1. Thus g(gcd(k,M))|g(k). Now
suppose A|qk − 1 for A|N ′. As A|N ′, A|qM − 1. Thus for all x, y A|qkx+My − 1. By Bezout’s identity,
A|qgcd(k,M) − 1. Thus g(k)|g(gcd(k,M)) and so g(k) = g(gcd(k,M)). Now let k be any integer. Note that
ai and fi(k) are both nonzero only if i divides M and k and hence gcd(i, k). Thus we have:

M∑
i=1

aifi(k) =
∑

i| gcd(k,M)

ai

However, as gcd(k,M) divides M we have already shown the latter expression to be g(gcd(k,M)). As this
equals g(k), we have for all k:

g(k) =

M∑
i=1

aifi(k)

as desired
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Lemma 2.5. For a given prime power q and integer N , define g(k) and ai and M as in the preceding lemma.
Then for all w, we have w|aw.

Proof. If w is not a divisor of M then aw = 0 and so the statement follows immediately. As such, from now
on we will assume w is a divisor of M so that we may use the inversion formula for aw.
We’ll begin by showing this is true for all N, q in the case where w = pi for some prime p. We have:

aw =
∑
d|w

g(d)µ(w/d) = g(pi)− g(pi−1)

If g(pi) = g(pi−1) then we have aw = 0 and so w|aw. Suppose g(pi) 6= g(pi−1). As qp
i−1 − 1|qpi − 1, we have

g(pi−1)|g(pi). Now let B be such that g(pi) = Bg(pi−1). Note that

gcd

(
qp
i − 1

qpi−1 − 1
, qp

i−1

− 1

)

can only be a power of p. If p|B, then p|qpi − 1 which occurs if and only if p|q− 1. If p|q− 1, then by lifting

the exponent lemma pi|qpi−1 − 1. So either pi divides both g(pi−1) and g(pi), in which case we’re done or
p - B. As p - B and

gcd

(
qp
i − 1

qpi−1 − 1
, qp

i−1

− 1

)
can only be a power of p, all prime factors of B cannot be factors of qp

i−1 − 1. Thus for all primes t|B we

have qp
i−1 6≡ 1 (mod t) but qp

i ≡ 1 (mod t) which implies pi|ordt(q)|t − 1. As for all primes t|B we have
t ≡ 1 (mod p)i, we have B ≡ 1 (mod p)i. Now

g(pi)− g(pi−1) = (B − 1)g(pi−1)

and thus pi|g(pi)− g(pi−1) as desired.

We’ll now show that if m,n are relatively prime positive integers such that regardless of the choice of
N, q we have n|an and m|am, then mn|amn. For notational purposes let gN,q(k) be g(k) for given N, q. We
have

amn =
∑
d|mn

g(d)µ(mn/d)

=
∑
x|m

µ(m/x)
∑
y|n

g(xy)µ(n/y)

=
∑
x|m

µ(m/x)
∑
y|n

gcd(N, (qx)y − 1)µ(n/y)

=
∑
x|m

µ(m/x)
∑
y|n

gN,qx(y)µ(n/y)

By our assumption that regardless of the choice ofN, q we have n|an andm|am we have n|
∑
y|n gN,qx(y)µ(n/y)

(as the latter is the formula for an for N , qx given). Thus n divides the total expression and hence amn. By
symmetry, m|amn.

Now suppose w =
∏
i p
ei
i . By the first part of our proof peii |apeii . By the second part of our proof all

of these divisibility statements together imply

w =
∏
i

peii |a∏i p
ei
i

= aw

as desired.
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Definition 2.6. Let p(T )
s(T ) be a rational function. Define p(T )

s(T ) to be supersingular if every root of both p, s

is of the form rα where r ∈ R≥0 and α is a root of unity.

Theorem 2.7. For given N, q let g(k) = gcd(N, qk − 1). Suppose

exp

∑
k≥1

h(k)
T k

k


defines a rational function p(T )

s(T ) . Then,

B(T ) := exp

∑
k≥1

h(k)g(k)
T k

k


also defines a rational function equal to

M∏
i=1

(
pi(T

i)

si(T i)

)bi
for some integers bi,M and with pk(T ) =

∏k
j=1 p(Te

2πij
k ) and sk defined similarly. Furthermore, if p(T )

s(T ) is

supersingular, then so is B(T ).

Proof. By Lemmas 2.4, for some M , we can write

g(k) =

M∑
i=1

aifi(k)

Plugging this into our formula for B(T ) gives:

B(T ) = exp

∑
k≥1

h(k)

M∑
i=1

aifi(k)
T k

k


= exp

 M∑
i=1

ai
∑
k≥1

h(k)fi(k)
T k

k


= exp

 M∑
i=1

ai
∑
k≥1

h(ik)
T ik

ik


=

M∏
i=1

exp

∑
k≥1

h(ik)
T ik

k


ai
i

Let

A(T ) =
∑
k≥1

h(k)
T k

k

so that p(T )
s(T ) = log(A(T )). Note note that if ζi is an i-th root of unity:

∑
k≥1

h(ik)
T ik

ik
=

∑i
j=1A(Tζji )

i

exp

∑
k≥1

h(ik)
T ik

k

 =

i∏
j=1

exp(A(Tζji ))

=
pi(T )

si(T )
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so our above expression becomes:

B(T ) =

M∏
i=1

(
pi(T )

si(T )

)bi
with bi = ai

i ∈ Z by Lemma 2.5. Now note that if p, s are supersingular, so are pi(T ) and si(T ) and thus
B(T ).

Corollary 2.7.1. Let V be the weighted projective space over Fq defined to be the zero set of

xr1 + xr2 = 0

Then V is supersingular over Fqi for some i.

Proof. Let X be the same curve just over affine space instead of projective space. Using our notation from
before, note that |C[0,1]| = |C[1,0]| = 0 and |C[0,0]| = 1 and thus |C[1,1]| = |X| − 1. By our definitions
d[1,1] = 1. Thus:

|V | = |X| − 1

q − 1

Let R = gcd(r1, r2). By Lemma 1.1, |X| = |X ′| where X ′ is the set of solutions to

xR1 + xR2 = 0

over Fq. There is one solution where one of the components is 0. If x1, x2 6= 0, this equation is equivalent to:

(x1x
−1
2 )R = −1

If yR = −1 has no solutions in Fq, the number of solutions is 0. If it does have a solution, then it has
precisely gcd(R, q−1) solutions. In which case there are (q−1) gcd(R, q−1) solutions as there are R choices
for which root x1x

−1
2 , q − 1 choices for x1 and then 1 choice for x2. In net, |V | = gcd(R, q − 1) if yR = −1

has a solution as 0 otherwise. yR = −1 will have a solution if and only if 2 gcd(R, q − 1)|q − 1.
Now consider when yR = −1 has a solution over various Fqk . As this will depend on what the highest

power of 2 divising qk − 1 is (we need v2(qk − 1) ≥ v2(R) + 1), there will exist an i such that yR = −1 has a
solution if and only if i|k. Thus, over Fqi ,

ζV =
∑
k≥1

gcd(R, qik − 1)
T k

k

which is supersingular by theorem 2.7.

3 Some Conjectures and Basic Theorems

Theorem 3.1. Let X be a variety. If X is supersingular over Fq then it is supersingular over Fqk . Fur-
thermore, if X is nonsingular (weighted) projective and defined by the reduction modulo p of a nonsingular
variety over a number field, then if it is supersingular over Fqk it is also supersingular over Fq.

Proof. Let ζX be the zeta function of X over Fq:

ζX = exp

∑
i≥0

ai
T i

i


Then the zeta function ζXk for X over Fqk is:

ζXk = exp

 ∞∑
i≥0

aik
T i

i


7



Let

A(T ) =
∑
i≥0

ai
T i

i

Let ζ be a k-th root of unity. Then ∑k
j=1A(Tζj)

k
=
∑
i≥0

aik
T ik

ik

k∑
j=1

A(T 1/kζj) =
∑
i≥0

aik
T i

i

And thus:

ζXk =

k∏
j=1

ζX(T 1/kζj)

Now suppose

ζX =
P (T )

S(T )
=

∏m
i=1(T − ri)∏m
i=1(T − si)

Then

ζXk = ±
∏m
i=1(T − rki )∏m
i=1(T − ski )

which implies that ζXk is supersingular if ζX is.
We’ll now do the second part. WLOG assume P

S is in simplest form. Note that the only way ζXk is
supersingular but ζX is not is if the roots that do not have complex unit part a root of unity cancel in ζXk .
However, by the fourth part of the weil conjectures, the numerator and denominator of the rational functions
of ζX and ζXk have the same degree. Thus there is no cancellation, and so ζX is supersingular.

Theorem 3.2. Given
xn0

0 + · · ·+ xn3
3 = 0

over field Fp, there exists d such that the variety is unirational if q ≡ −1 mod d, where d = lcm(n0, . . . , n3).

Proof. Given
xn0

0 + · · ·+ xn3
3 = 0,

let l = lcm(n0, n1, n2, n3) Let x′i = x
l/ni
i . Then we get a homogeneous equation of degree l, which is

unirational over Fp if there exists a v such that pv ≡ −1 mod l by Shioda’s paper.

Theorem 3.3. Let X be the variety defined by

a0x
n0
0 + · · ·+ arx

nr
r .

If all the exponents are coprime, then X is isomorphic to the hyperplane Hr−1 in Pr, where r is the dimension
of image of Veronese embedding.

Proof. Notice that X is in the weighted projective space P(w0, . . . , wr). If d = lcm (n0, . . . , nr), then wi =
d/ni, and we see that our equation has weighted homogeneous degree d. Then the image of our variety by
Vernose embedding will be in PR, and the coordinate ring of the image is generated by yi = xnii , and these
elements only.
The reason is that a monomial

∏
xaii has weighted degree d is and only if

∑
aiwi = d, which is equivalent to∑ ai

ni
= 1

because we know wi = d/ni. And again, we can write this sum as

a0

n0
+
A

N
=
a0N +An0

n0N
= 1, ai ∈ Z+.

8



Since n0 divides a0N + An0, we will have n0|a0N . But we assume that all the exponents are coprime, so
gcd(n0, N) = 1, and n0|a0, so either a0 = 1 or a0 = n0. We know that a0 cannot be any larger because∑ ai

ni
= 1. Therefore, we know that the only monomial that will appear in the image of Vernose embedding

are of the form yi = xnii , and there will be no other cross terms. Then we also know that the only relation
that these new coordinate satisfies is the diagonal equation that we have, i. e., y0 + · · · + yr = 0. Since a
variety is isomorphic to the image of the Vernose embedding, and the image of the Vernose embedding give
us a hyperplane in Pr, we know that X is isomorphic to a hyperplane in Pr.

Theorem 3.4. A variety X defined by

a0x
n0
0 + · · ·+ arx

nr
r .

in weighted projective space is singular in Fq if and only if (i) q|ni for some i, or (ii) in weighted projective
space P(w0, . . . , wr), there exists a prime number p such that set xj = 0 when p does not divide nj, we get a
new equation that has solution over Fq.

Proof. First, if q|ni for some i, then the Jacobian ring for X will be

(n0x
n0−1
0 , . . . , 0, . . . , nrx

nr−1
r ).

And we see that this ideal can be zero for some nonzero point. Thus (i) is true.

Second, we claim that the only singular points of the weighted projective space P(w0, . . . , wr) are of the
form

SingpP(w0, . . . , wr) = {x ∈ P(w0, . . . , wr) : xi 6= 0 only if p|wi}
for some prime p.

We contend that
SingP(w0, . . . , wr) =

⋃
SingpP(w0, . . . , wr).

Corollary 3.4.1. If X is singular over Fq, then it is singular over Fkq .

Theorem 3.5. Let X be a variety defined by,

a0x
n0 + · · ·+ arx

nr = 0

over Fq where q = pf and let ñi = ni
pvp(ni)

i.e. ni with all powers of p removed. Define the ”base” variety X̄

by the equation,
a0x

ñ0 + · · ·+ arx
ñr = 0

over Fq. Then X̄ is smooth as an affine variety away from zero. Furthermore, There exits a bijective
morphism X → X̄ so #(X) = #(X̄) over each Fq and thus ζX = ζX̄ .

Proof. Let ti = vp(ni). Let Frobp : Fq → Fq denote the Frobenius automorphism x 7→ xp. Now we define

the Frobenius morphism X → X̄ via (x0, · · · , xr) 7→ (Frobt0p (x0), · · · ,Frobtrp (xr)) = (xp
t0

0 , · · · , xptrr ). This
map is well defined because if,

a0x
n0
0 + · · ·+ arx

nr
r = 0

then we have,

a0(xp
t0

0 )ñ0 + · · ·+ ar(x
ptr
r )ñr = 0

Clearly this map is a morphism and it is bijective because I can exhibit an inverse map, (x0, · · · , xr) 7→
(Frob−t0p (x0), · · · ,Frob−trp (xr)). Therefore, #(X) = #(X̄) over any Fq. This implies that ζX = ζX̄ . Fur-

thermore, as an affine variety, X̄ has Jacobian,

(a0ñ0x
ñ0−1
0 , · · · , arñrxñr−1

r )

Since p - ñi for the Jacobian to have rank zero we must have aiñix
ñi−1
i = 0 =⇒ xi = 0 for each i. Therefore,

X̄ is smooth away from zero.
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4 Additional Facts

Fact 4.1. A variety is rational over affine space if and only if it is rational over weighted projective space.

Fact 4.2. P(w, x, y, z) ∼= P(w, xd, yd, zd)

Corollary 4.2.1. The two varieties described in Theorem 1.1 are isomorphic over weighted projective space

Fact 4.3. Let X be the variety defined by the curve:

a0x
n0
0 + · · ·+ arx

nr
r = 0

Let L = lcm (n0, . . . , nr) and let wi = L/ni. If∑
i

wi − L > 0

then X is rational.

5 Zeta Functions

Definition 5.1. For a r-tuple of exponents n,

An,q =
{

(α0, . . . , αr) : 0 < αi < 1 and diαi ∈ Z and
∑

αi ∈ Z where di = gcd (ni, q − 1)
}

Theorem 5.2. The variety X defined by,

xn0
0 + · · ·+ xnrr = 0

and the variety Xa defined by,
a0x

n0
0 + · · ·+ arx

nr
r = 0

have equal zeta functions up to multiplication of the roots by zth-roots of unity where

z = [E : Fq]

and E is the splitting field of the polynomial,

r∏
i=0

(xni − ai)

over Fq.

Proof. Consider the variety Xa defined over E. Each ai has all nth
i roots so we can write ai = bnii for each

i. Therefore, Xa is defined by the polynomial equation over E,

bn0
0 xn0 + · · ·+ bnrr xnrr = (b0x0)n0 + · · ·+ (brxr)

nr = 0

Therefore, over E the varietiesXa andX are isomorphic via the linear E-map (x0, · · · , xr) 7→ (b0x0, · · · , brxr)
so ζXE = ζXa,E . However, the zeta function over E and over Fq are equal up to replacing each root and pole
of ζ by a zth root. Thus ζX and ζXa are equal up to choices of zth root and thus up to multiplications by
zth roots of unity.

Theorem 5.3. For the weighted projective variety (with points counted via the stack quotient) defined by

a0x
n0
0 + · · ·+ arx

nr
r = 0

over Fq such that q ≡ 1 mod (lcm (ni)), the zeta function of X equals,

ζX(t) =

r−1∏
i=0

1

1− qit
·

[∏
α

(
1 + (−1)rB(α)jq(α)t

)](−1)r

,

where B(α) = χα0
(a−1

0 ) . . . χαr (a
−1
r ) is a root of unity determined by α and the coefficients.
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Proof. Notice that An,α, the set of all possible (αi), is the same for Fqk for any positive integer k. The
reason is that

q ≡ 1 mod (lcm (ni)) ⇐⇒ q ≡ 1 mod ni.

Then di = gcd(ni, q− 1) = ni, and we know di ≤ ni, so di will not increase as the size of field increase. Thus
the set An,p is completely determined by the situation in Fq. And we shall determine An,p explicitly later.
By Weil’s paper, the formula for the number of solution over Fq is

N1 = qr + (q − 1)
∑

α∈An,p

B(α)jq(α),

where,

B(α) = χα0
(a−1

0 ) . . . χαr (a
−1
r ) and jq(α) =

1

q
g(χα0

) . . . g(χαr )

are algebraic numbers depends on r-tuple α. Because the set of α for each extension of Fq are defined over
Fq we can use the reduction formula,

g′(χ′α) = −[−g(χα)]k

where g′ is the gaussian sum in the extension Fqk . Furthermore, for x ∈ Fq,

χ′α(x) = χα(x)k

Therefore, the number of solution in Fqk is,

Nk = qrk + (qk − 1)
∑

α∈An,p

(−1)(r+1)(k+1)B(α)kj(α)k.

Using the stack quotient, we get the formula for the number of solution in weighted projective space:

N ′k =
Nk − 1

qk − 1
=

r−1∑
i=0

(qik) +
∑

α∈An,p

(−1)(r+1)(k+1)B(α)kj(α)k.

Thus, the zeta function becomes,

ζX(t) = exp

r−1∑
i=0

∞∑
k=1

qik

k
tk +

∑
α∈An,p

(−1)r+1
∞∑
k=1

(−1)k(r+1)B(α)kj(α)k

k
tk


= exp

− r−1∑
i=0

log
[
1− qit

]
− (−1)r+1

∑
α∈An,p

log
[
1− (−1)(r+1)B(α)j(α)t

]
=

r−1∏
i=0

1

1− qit
·

[∏
α

(
1 + (−1)rB(α)j(α)t

)](−1)r

Proposition 5.4. Up to multiplying the roots by roots of unity, the zeta function of the weighted projective
variety (with points counted via the stack quotient) defined by

a0x
n0
0 + · · ·+ arx

nr
r = 0

over any Fq is equal to,

ζX(t) =

r−1∏
i=0

1

1− qit
·

[∏
α

(
1 + (−1)rB(α)jq(α)t

)](−1)r

,

where B(α) = χα0
(a−1

0 ) . . . χαr (a
−1
r ) is a root of unity determined by α and the coefficients.
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Proof. By Theorem 3.1 we can reduce the zeta function for X over Fq to zeta function for X over Fqv , where
v = ordn(q) and n = lcm (ni) such that qv ≡ 1 mod (lcm (ni)). We know that ζXq is equal to ζXqv with

each root β replaced by β1/v. Therefore, ζXq is determined up to roots of unity by Theorem 5.3.

Corollary 5.4.1. The variety X is supersingular if and only if jq(α) = ωq
r−1
2 where ω is a root of unity

for each α ∈ An,qv .

Proof. By Theorem 5.3 the roots and poles of the zeta function have the form (−1)rB(α)jq(α) or qi. Since
B(α) is a product of characters it is always a root of unity. Therefore, each root of ζX has argument a root
of unity if and only if jq(α) does for each α.

Corollary 5.4.2. Note that |g(χα)| = q and thus,

|jq(α)| = 1

q
|g(χα0)| · · · |g(χαr )| =

1

q
q
r+1
2 = q

r−1
2

Since the characters are roots of unity, ∣∣∣(−1)(r+1)B(α)j(α)
∣∣∣ = q

r−1
2

By the Riemann hypothesis, each of the α-derived roots are roots of Pr−1 in Weil’s factorization of the zeta

function. If r − 1 is even then a factor of (1− q r−1
2 t) from the zeta function of Pr will also appear in Pr−1.

Therefore, we can write,

ζX = ζPr · P̃ (−1)r

r−1

where ζPr is the zeta function of projective r-space and,

P̃r−1(t) =
∏
α

(
1 + (−1)rB(α)j(α)t

)
Therefore, we can write the Weil factorization of ζX as,

Pi(t) =


1− q i2 t 0 ≤ i ≤ 2(r − 1) is even and i 6= r − 1

(1− q r−1
2 t) · P̃r−1(t) i = r − 1 is even

P̃r−1(t) i = r − 1 is odd

Remark. The only interesting cohomology group is Hr−1 which shows up in the dimension of the surface.

Theorem 5.5. Let X be the weighted projective variety (with points counted via the stack quotient) defined
by

a0x
n0
0 + · · ·+ arx

nr
r = 0

over any Fq. Then the Betti numbers are determined,

dimHi(X) =


1 0 ≤ i ≤ 2(r − 1) is even and i 6= r − 1

|An,q|+ 1 i = r − 1 is even

|An,q| i = r − 1 is odd

Proof. By Theorem 3.1, changing the base field only changes the zeta function by multiplying its roots by
roots of unity. In particular, the magnitudes of the degrees of each Pi and thus the Betti numbers are not
changed. Therefore, given X defined over Fq take v = ordn(q) and n = lcm (ni) such that qv ≡ 1( mod n).
Then we know that ζXpv factors with,

Pi(t) =


1− q i2 t 0 ≤ i ≤ 2(r − 1) is even and i 6= r − 1

(1− q r−1
2 t) · P̃r−1(t) i = r − 1 is even

P̃r−1(t) i = r − 1 is odd

Therefore, the Betti numbers of X which are equal to the Betti numbers of Xpv are equal to the degrees of
these polynomials.

12



Remark. Notice that whether a variety is supersingular or not is now determined explicitly by one compu-
tation of Gaussian sum.

Proposition 5.6. If α1 + α2 = 1, then g(χα1)g(χα2) = χα1(−1)p.

Proof. Notice that if α1 + α2 = 1, then χα1 = χα2 . We know that

g(χ)g(χ) =
∑
x 6=0

∑
y 6=0

χ(xy−1)ψ(x+ y)

=
∑
x 6=0

χ(x)
∑
y 6=0

ψ[(x+ 1)y]

The second sum has the value p − 1 for x = −1, and −1 when x 6= 0. As sum over all x ∈ k∗ is 0, we get
g(χα1)g(χα2) = χα1(−1)p.

In our example when n = 4 and α1 = 1/4, χ1/4(−1) = 1 if p ≡ 1 mod 8, and χ1/4(−1) = −1 otherwise.

Fact 5.7. Let K = Q(ζn) be a cyclotomic field. Then OK is a PID if and only if n = m or, when m is odd,
n = 2m where m is one of the following,

1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84

Lemma 5.8 (Coyne). Let d = lcm (ni) and wi = d/ni then,

#

{
(x0, · · · , xr) :

r∑
i=0

wixi ≡ 0 mod (d) and 0 ≤ xi < ni

}
=

1

lcm (ni)

r∏
i=0

ni

Proof. Consider the homomorphism,

Φ :

r∏
i=0

(Z/niZ)→ Z/dZ

via (x0, · · · , xr) 7→ w0x0 + · · ·+ wrxr. Thus,

ker Φ =

{
(x0, · · · , xi) :

r∑
i=0

wixi ≡ 0 mod (d) and 0 ≤ xi < ni

}

Suppose that pr || d then we know that pr || ni for some ni. Thus, p - wi so each prime dividing d cannot
divide all wi. However, wi | d so the list w0, · · · , wr cannot share any common factors. Thus, the ideal
(w0, · · · , wr) = Z so the map Φ is surjective. Therefore, by the first isomorphism theorem,

#(ker Φ) = #

(
r∏
i=0

Z/niZ

)/
#(Z/dZ) =

1

d

r∏
i=0

ni

Lemma 5.9. The number of alphas An,q is given by the formula,

#(An,q) =
∑
t∈T

(−1)r+1−sum(t)

lcm (di | ti = 1)

∏
i∈{i:ti=1}

di

where di = gcd (ni, q − 1).

Proof. For each t ∈ T , define the number,

Ct = #

{
(x0, · · · , xr) :

r∑
i=0

wixi ≡ 0 mod lcm (di) and 0 ≤ xi < di and xi = 0 if ti = 0

}

13



By inclusion-exclusion,

#(An,q) = #

{
(x0, · · · , xr) :

r∑
i=0

wixi ≡ 0 mod lcm (di) and 0 < xi < di

}
=
∑
t∈T

(−1)r+1−sum(t)Ct

However, letting,

g =
lcm (di)

lcm (di | ti = 1)

then we know that g | wi for ti = 1 since wi = lcm (di)/di and thus,

w̃ti =
wi
g

=
lcm (di | ti = 1)

di
∈ Z

since di is such that ti = 1. Therefore, the conditions,

r∑
i=0

wixi ≡ 0 mod lcm (di) ⇐⇒
r∑
i=0

w̃tixi ≡ 0 mod lcm (di | ti = 1)

are equivalent when xi = 0 for ti = 0. By Coyne’s Lemma,

Ct =
1

lcm (di | ti = 1)

∏
i∈{i:ti=1}

di

and thus the lemma follows.

6 Gauss Sums

6.1 Previously Known Facts and Some Lemmas

Theorem 6.1. g(χα) = ωq
1
2 where ω is a root of unity if and only if α = 1, 1

2 .

Proof. See Chowla.

Lemma 6.2. Let χ be a character on Fq of order m. Then g(χ)m ∈ Q(ζm).

Proof. Well-known fact. See Evans’ generalization of Chowla’s paper.

Lemma 6.3. Let χ be a character of order m on Fq for q = pr. Let K = Q(ζpr) with m|r and a an integer
1 (mod m) with (a, 2p(q − 1)) = 1. Let σ ∈ Gal(K/Q) be the element such that

σ(ζ2p(q−1)) = ζa2p(q−1)

Then σ(g(χ)) = χ̄(a)g(χ).

Proof. Let ψ be the nontrivial additive character such that:

g(χ) =
∑
a∈Fq

χ(a)ψ(a)

Note that ψ(x)p = ψ(px) = ψ(0) = 1. Thus ψ(x) = ζ
t(x)
p for t : Fq → Z. We can select ζp to be the p-th

root of unity so that t(1) = 1. Note that as ψ(x + y) = ψ(x)ψ(y), t(x + y) = t(x) + t(y). Thus as a is an
integer t(a) = a and t(ax) = at(x).

σ(ψ(x)) = σ(ζp)
t(x) = ζat(x)

p = ζt(ax)
p = ψ(ax)

If w is a generator of F×q , as a ≡ 1 (mod m) and χ has order m, we have σ(χ(w)) = χ(w)a = χ(w). Thus as
χ is nontrivial,
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σ(g(χ)) =
∑
x∈F×q

σ(χ(x))σ(ψ(x))

=
∑
x∈F×q

χ(x)ψ(ax)

Making the substitution ax 7→ x gives,

σ(g(χ)) =
∑
x∈F×q

χ(a−1x)ψ(x)

= χ̄(a)
∑
x∈F×q

χ(x)ψ(x)

= χ̄(a)g(χ)

Theorem 6.4. [See Lang’s Algebraic Number Theory] Let p be a prime lying over p in Q(ζm) and let P be
a prime lying over p in Q(ζm, ζp). Let f be the order of p modulo m and q = pf . Let χ be a character of
F = Fq such that

χ(a) ≡ a−(q−1)/m (mod p)

Then for any integer r ≥ 1 we have:
τ (χr) ∼ Pα(r)

where

α(r) =
1

f

∑
µ

s

(
(q − 1)µr

m

)
σ−1
µ

where the summation runs over all 0 < µ < p− 1 relatively prime to p− 1 and where s(v) is the sum of the
digits of the p-adic expansion of v modulo q − 1. Furthermore, if µ, µ′ are such that σ−1

µ P = σ−1
µ′ P then

s

(
(q − 1)µr

m

)
= s

(
(q − 1)µ′r

m

)
Remark. If f = 1, then σ−1

µ P is distinct for all µ ∈ (Z/mZ)×. In general, by cyclotomic reciprocity, there

are φ(m)
f distinct values of σ−1

µ P as µ ranges over all the elements of (Z/mZ)×

Lemma 6.5.

s (v) = (p− 1)

f−1∑
i=0

{
piv

q − 1

}
Theorem 6.6. (From Evans’ Chowla Generalization) Let χ, ψ be two multiplicative characters modulo p of
order > 2. Then g(χ)jg(ψ)k has argument a root of unity if and only if j = k and χ = ψ̄ or j = 2k, χ = ψ̄2

and ψ has order 6.

6.2 Jacobi Sums

Proposition 6.7. Let J(χ1, χ2) =
∑
x χ1(x)χ2(1− x), where χ is a character of Fq. If χ1χ2 6= 1, then

J(χ1, χ2) =
g(χ1)g(χ2)

g(χ1χ2)

.
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Proof.

g(χ1)g(χ2) =
∑
x

∑
y

χ1(x)χ2(y)ψ(x+ y)

=
∑
x

∑
y

χ1(x)χ2(y − x)ψ(y)

=
∑
x

∑
a 6=0

χ1(x)χ2(a− x)ψ(a) +
∑
x

χ1(x)χ2(−x)

= (
∑
a

χ1χ2(a)ψ(a)) · (
∑
x

χ1(x)χ2(1− x))

Proposition 6.8. If χ1 . . . χ4|F×q = χ0 where χ0 is the trivial character then,

g(χ1) . . . g(χ4) = J(χ1, χ2)J(χ3, χ1χ2)χ4(−1)q

6.3 Products of Gauss Sums

Theorem 6.9. Let χ1, . . . , χn be nontrivial characters on Fq for q = pr with p an odd prime. If n is even
and χ1 · · ·χn|F×p is not the trivial character or n is odd and χ1 · · ·χn|F×p is not -1 or 1 everywhere, then

n∏
i=1

g(χi)

does not have argument equal to a root of unity.

Proof. (adapted from theorem 1 in Evans’ Generalizations of Chowla paper)
Let L be the lcm of the orders of the χi. Let

G =

n∏
i=1

g(χi)

By Lemma 6.2, g(χi)
L ∈ Q(ζL). Thus GL ∈ Q(ζL). Let ε be the number of order 1 such that G = qn/2ε.

Now suppose G does have argument equal to a root of unity. As GL ∈ Q(ζL), GL must be a 2L-th root of
unity. Thus ε = ζv2L2 for some integer v.

Now let a be an integer such that a ≡ 1 (mod 2)L2 and a ≡ g−1 (mod p) where g is a generator modulo
p. Note that such an a exists as L|q − 1 and hence must be relatively prime to p. Now consider the Galois
group Gal(Q(ζ2pL2)/Q(ζ2L2)) and the element σ contained in it such that:

σ(ζ2pL2) = ζa2pL2

This is a well-defined element as (a, 2pL2) = 1 a ≡ 1 (mod 2)L2 so it fixes Q(ζ2L2). Note that as ε is a
2L2-th root of unity σ(ε) = ε. Furthermore, σ(

√
(q)) = ±√q. As

σ(G) = σ(qn/2)σ(ε)

So σ(G) = G if n is even and σ(G) = ±G if n is odd. However, we also have by lemma 6.3,

σ(G) =

n∏
i=1

σ(g(χi)) =

n∏
i=1

χi(a
−1)g(χi) = G

n∏
i=1

χi(a
−1)G

n∏
i=1

χi|Fp(g)

Hence if n is even,
n∏
i=1

χi|Fp(g) = 1
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and if n is odd,
n∏
i=1

χi|Fp(g) = ±1

Thus, as g is a generator,
∏n
i=1 χi|Fp must be the trivial character if n is even and take value ±1 everywhere

if n is odd.

Proposition 6.10. If χ1, χ2 are two different nontrivial character on Fq of same order, and

µ = gj(χ1)gk(χ2)q(j+k)/2 ∈ U,

where q = pr, and j 6= k, g(χ) is gauss sum on Fq, U denote the group of all root of unity, then in Q(ζp(q−1)),

we have (q1/2) divides (g(χi)), i.e.,
Og(χ1) = O(q1/2)a.

Proof. Notice that

µ =
gj(χ1)χk2(−1)

q(j−k)/2gk(χ2)
.

And

V (g(χ1)) = V (g(χ2)) = min(a,q−1)=1s

(
a(q − 1)

m

)
But we also have V (gj(χ1)) = V (q(j−k)/2gk(χ2)), while V (q1/2) = (p− 1)r/2. This give us the result.

Remark. When is ei = (p− 1)r/2 for each i? Let us just act by Galois group again.

Remark. When is the conjugate of a gauss sum a gauss sum? Why is the equation

σa(Gr(χ)) = χ(a)Gr(χ)?

Lemma 6.11. If K/Q is abelian then |σ(z)|2 = σ(|z|2) for all σ ∈ Gal(K/Q). In particular, if |z|2 ∈ Q
then σ(|z|2) = |z2| and thus |σ(z)| = |z|.

Proof. Since K/Q is Galois complex conjugation τ : K → K is an automorphism fixing Q so τ ∈ Gal(K/Q).
Furthermore, |σ(z)|2 = σ(z)τ(σ(z)) = σ(z)σ(τ(z)) = σ(zτ(z)) = σ(|z|2) since Gal(K/Q) is abelian.

Lemma 6.12. Let K be a number field and z ∈ OK such that |σ(z)| = 1 for all σ ∈ Gal(K/Q) then z is a
root of unity.

Proposition 6.13. The element q−(r+1)/2g(χ0) . . . g(χr) is an algebraic integer if and only if it is a root of
unity.

Proof. We know that |q−(r+1)/2g(χ0) . . . g(χr)| = 1 and since σ takes g(χ) to another Gaussian sum which

must also have magnitude q
1
2 we know that,

|σ(q−(r+1)/2g(χ0) . . . g(χr))| = |σ(q−(r+1)/2)||σ(g(χ0))| · · · |σ(g(χr))| = | ± q−(r+1)/2|q(r+1)/2 = 1

Thus, if q−(r+1)/2g(χ0) . . . g(χr) is an algebraic integer then by Lemma 6.12 we know that q−(r+1)/2g(χ0) . . . g(χr)
is a root of unity. Conversely, if q−(r+1)/2g(χ0) . . . g(χr) is a root of unity then clearly it is an algebraic in-
teger.

Corollary 6.13.1. The element q−(r+1)/2g(χ0) . . . g(χr) is a root of unity if and only if the principal frac-
tional ideal generated by it in K = Q(ζm, ζp) is OK if and only if it is an algebraic integer.

Proof. If it is a root of unity, then the ideal generated will be OK . If it is not a root of unity, by the
Proposition 6.13 it is not an algebraic integer. Thus the ideal cannot be OK .

Remark. By Stickelberger’s theorem, we can determine exactly when q−(r+1)/2g(χ0) . . . g(χr) is a unit.
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Theorem 6.14. Let p be an odd prime (or r + 1 is even) and q = pf . The normalized product ω =

q−
r+1
2 g(χe0) · · · g(χer ) is a root of unity if and only if,

r∑
i=0

s

(
(q − 1)µei

m

)
=
r + 1

2
(p− 1)f

for each µ ∈ (Z/mZ)×.

Proof. Consider the ideals generated by g(χe0) · · · g(χer ) and by q
r+1
2 respectivly. By Lang’s formula, we

know the Gaussian sum factors into prime ideals as,

(g(χe0) · · · g(χer )) = PD1
1 · · ·PDw

w

where,

Dj =

r∑
i=0

s

(
(q − 1)µei

m

)
Lang’s formula contains a factor of f−1. However, σ−1

µ P ranges over each prime above p a total of f times
because the decomposition group has order f . The sets of σµ mapping to a fixed prime are exactly the cosets
of the decomposition groups of which there are w = φ(m)/f . In the field K = Q(ζm, ζp) the ideal (p) factors
as,

(p) = P
(p−1)
1 · · ·P(p−1)

w

Therefore, since Q(
√
p) ⊂ Q(ζp) for p an odd prime, the ideal (q

r+1
2 ) = (p

r+1
2 f ) fractors into primes as,

(q
r+1
2 ) = (p

r+1
2 )f = P

r+1
2 (p−1)f

1 · · ·P
r+1
2 (p−1)f

w

Therefore, the principal fractional ideal genreated by ω factors as,

(ω) = (q
r+1
2 )−1(g(χe0) · · · g(χer )) = P

D1− r+1
2 (p−1)f

1 · · ·PDw− r+1
2 (p−1)f

w

Which implies that ω ∈ OK if and only if,

Dw =

r∑
i=0

s

(
(q − 1)µei

m

)
≥ r + 1

2
(p− 1)f

such that the fractional ideal it generates is an actual ideal of OK . However, by Proposition 6.13, ω ∈ OK
if and only if ω is a root of unity. In particular, if ω ∈ OK then ω is a unit. Therefore, ω is a root of unity
if and only if,

r∑
i=0

s

(
(q − 1)µei

m

)
≥ r + 1

2
(p− 1)f

for each µ ∈ (Z/mZ)× if and only if

r∑
i=0

s

(
(q − 1)µei

m

)
=
r + 1

2
(p− 1)f

for each µ ∈ (Z/mZ)×.

Theorem 6.15. Let X defined by,
a0x

n0
0 + · · ·+ arx

nr
r = 0

be a variety over Fpt . Let n = lcm (ni). And consider it’s zeta function over Fq, where q = pf such that
f = ordn(p). This means that q ≡ 1 mod n. Then X is supersingular over Fq if and only if

r∑
i=0

s

(
(q − 1)µ`i

n

)
=
r + 1

2
(p− 1)f,
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for each,

` ∈

{
(`0, . . . , `r) : `i ∈ Z and n |

r∑
i=0

`r and 0 < `i < n and n | `ini

}

and each µ ∈ (Z/nZ)×. Notice in Lang (p97) that if σµ(Pj) = Pj, then s
(

(q−1)µri
n

)
= s

(
(q−1)ri

n

)
.

Proof. When q = pf , then X is supersingular over Fp if and only if X is supersingular over Fq if and only
if X is supersingular over Fpt . Thus, we need only consider the supersingularity of X over Fq. However, by
Lang, the above condition gives that the product of each tuple of Gaussian sums generates the same ideal as

q
r+1
2 and thus their ratio is a unit. By Proposition 6.13, this implies that each product has argument root

of unity. Therefore, by Corollary 5.4.1, we know that X is supersingular over Fq.

Theorem 6.16. Let χ be a multiplicative character of order p − 1 modulo p. Let χa, χb, χc be three multi-
plicative distinct characters modulo p of order > 2. Then g(χa)g(χb)g(χc)2 does not have argument a root
of unity.

Proof. Assume g(χa)g(χb)g(χc)2 is a root of unity. To begin note that the unit part of g(χa)g(χb)g(χc)2 is:

p−2g(χa)g(χb)g(χc)2 =
g(χa)g(χb)χc(−1)

g(χ−c)2

Thus the above must be a root of unity. Now consider the principal ideal generated by it in Q(ζp−1, ζp). By
Theorem 6.4, for each µ relatively prime to p− 1, the prime ideal σ−1

µ P has index:

s(µa) + s(µb)− 2s(−µc) = 0

WLOG assume 0 < a, b < p − 1 and let 0 < d < p − 1 be such that d ≡ −c (mod p) − 1. As s(µa) =

(p− 1)
{

µc
p−1

}
, the above is equivalent to:{

µa

p− 1

}
+

{
µb

p− 1

}
= 2

{
µc

p− 1

}
for all µ relatively prime to p−1. Taking µ = 1 gives 2d = a+b. Now let c′, t be such that t = gcd(d, p−1) and
d = c′t. As χc has order > 2 we must have t < p−1

2 . Now there exists ν < p−1
t such that νd ≡ t (mod p− 1)

and ν is relatively prime to p−1
t . Furthermore, for each k we will have

(
ν + p−1

t k
)
d ≡ (mod p− 1). Taking

µ = ν + p−1
t k for some k gives:{(

ν + p−1
t k
)
a

p− 1

}
+

{(
ν + p−1

t k
)
b

p− 1

}
=

2t

p− 1
< 1

This implies that for all k: {
νa+ p−1

t ka

p− 1

}
≤ 2t

p− 1

and similarly for b. Now let s = gcd(a, t) and take a = a′s. Then this becomes:νa+ (p−1)
t/s ka′

p− 1

 ≤ 2t

p− 1

Note that k, a′ are both relatively prime to t/s. Thus νa + (p−1)
t/s ka′ (mod p − 1) ranges over all residues

x ≡ νa (mod p−1
t/s ). Pick the k that gives the largest x = νa+ (p−1)

t/s ka′ (mod p− 1) with 0 < x < p− 1. We

know x ≥ p− 1− (p−1)
t/s (with equality if and only if (p−1)

t/s divides a and hence (p−1)
t divides a′).
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However, as x ≤ 2t by the above, this implies:

2t+
(p− 1)

t/s
≥ p− 1

where equality can only occur if (p−1)
t divides a′. If s = t this follows immediately. Otherwise, note that t

is at most p−1
3 and (p−1)

t/s is at most p−1
2 . Thus we have the following possibilities:

1. s = t

2. t = 2s, t = p−1
3

3. t = 2s, t = p−1
4 , and (p−1)

t = 4 divides a′

4. t = 3s, t = p−1
3 , and (p−1)

t = 3 divides a′

Note that possibilities 3 and 4 can’t actually happen as the fact that 4|a′ contradicts t = 2s and 3|a′
contradicts t = 3s. This same reasoning can be applied to b. Now suppose t < p−1

3 . Then for both a, b we

must have case 1. Thus t|a and t|b. Let d = c′t, a = a′t, b = b′t. Note that the minimum value of
{
µa
p−1

}
is

gcd(a,p−1)
p−1 and similarly the minimum of

{
µb
p−1

}
is gcd(b,p−1)

p−1 . As gcd(a, p − 1), gcd(b, p − 1) ≥ t and taking

µ = ν gives us: {
νa

p− 1

}
+

{
νb

p− 1

}
=

2t

p− 1

We must have: {
νa

p− 1

}
=

{
νb

p− 1

}
=

t

p− 1

and thus gcd(a, p − 1) = gcd(b, p − 1) = t. Now note that ν satisfies: νd ≡ t (mod p − 1) and νa ≡ t
(mod p− 1). This implies:

ν(a− d) ≡ 0 (mod p− 1)

which further gives:

ν(a′ − c′) ≡ 0 (mod
p− 1

t
)

But as ν is relatively prime to p−1
t this implies a′ ≡ c′ (mod p−1

t ), which implies a = d. By the same
reasoning b = d, which is a contradiction.

Thus we have shown that χc must have order 3. Let s1 = gcd(t, a) and s2 = gcd(t, b). As s1, s2 are either

t or t
2 , a and b must both be multiples of p−1

6 . However, as c = p−1
3 or 2(p−1)

3 the only way that we can have

a+ b = 2c is if a or b is p−1
2 , which is a contradiction on χa, χb having order > 2.

As we have exhausted all possibilities,

g(χa)g(χb)g(χc)2

does not have argument a root of unity.

7 Fermat Surfaces

Definition 7.1. Let Fnr denote the projective variety of dimension r − 1 in Pr defined by the polynomial,

xn0 + · · ·+ xnr = 0

We call this the Fermat n, r hypersurface.
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Conjecture 7.2. Let p be an odd prime. Let ζXp be the zeta function of the Fermat-4,3 hypersurface over
Fp. Then

ζXp =


−1

(T−1)(p2T−1)(pT+1)10(pT−1)12 p ≡ 3 (mod 4)

−1
(T−1)(p2T−1)(pT−1)8gp(T )hp(T ) p ≡ 1 (mod 4)

where

gp(T ) =


(pT + 1)12 p ≡ 5 (mod 8)

(pT − 1)12 p ≡ 1 (mod 8)

and

hp(T ) =

(
pT − s2

p

)(
pT − s̄2

p

)
where s = a+ bi is the unique complex number with a an odd positive integer, b an even positive integer, and
|s| = p.

Proposition 7.3. For Fermat variety Fnr defined over Fq, the number of possible α is determined by the
formula,

#An,q =

r∑
i=1

(−1)i(d− 1)i,

where d = gcd(n, q − 1).

Proof. Recall that An,p = {(α0, . . . , αr) : 0 < αi < 1,
∑
dαi ∈ Z, i = 0, . . . , r} in this case. Since αi have the

same denominator, we consider only the numerator of αi, and our problem become counting xi such that

x0 + x1 + · · ·+ xr ∈ dZ.

Suppose we let x1, . . . , xr take arbitrary value in {1, . . . , d− 1}, then the value of x0 is uniquely determined.
This gives us (d−1)r possibilities. But we may be over counting. So apply the inclusion-exclusion formula.

Corollary 7.3.1. The Betti numbers of the Fermat n,r hypersurface are,

dimHi(Fnr ) =



1 0 ≤ i ≤ 2(r − 1) is even and i 6= r − 1
r−1∑
j=0

(−1)j(n− 1)j + 1 i = r − 1 is even

r−1∑
j=0

(−1)j(n− 1)j i = r − 1 is odd

Corollary 7.3.2. The Euler Characteristic of the Fermat n,r hypersurface is,

χ(Fnr ) = r + (−1)r−1
r−1∑
j=0

(−1)j(n− 1)j

Theorem 7.4. The Fermat hypersurface Fnn−1 is never supersingular over Fp when p ≡ 1 mod n and n > 2.

Proof. The Gaussian sum g(χα) over Fp is never a root of unity when normalized to the unit circle unless
α = 1, 1/2 (Chowla). Therefore, consider α = (1/n, · · · , 1/n) which satisfied the conditions to be in An,p
since r + 1 = n. Therefore,

(−1)rB(α)j(α) = (−1)rB(α)g(χ1/n)n

which is a root of ζX cannot be a root of unity when normalized to the unit circle because (−1)rB(α) is
a root of unity but g(χ1/n)n is not since g(χ1/n) is not either by Chowla because n > 2. Therefore, ζX

contains a root which is not of the form ωq
i
2 where ω is a root of unity so X is not supersingular.
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Theorem 7.5. Let n ≥ 4 be an integer and let p ≡ 1 (mod n) be a prime number. Then the zeta function
for the Fermat curve (with points counted via the ”stack quotient”) given by the zero set of:

wn + xn + yn + zn = 0

is not supersingular

Proof. By Theorem 5.3, we just need to show that

3∏
i=0

g(χαi)

has argument not equal to a root of unity. For n = 4 we take αi = 1
4 for all i. By Theorem 6.1 this is does

not have argument equal to a root of unity. For n = 6 we take α0 = 1
2 and αi = 1

6 for i 6= 0. Again, by
Theorem 6.1 this is does not have argument equal to a root of unity. For all other n ≥ 4 we take α0 = n−3

n
and αi = 1

n for i 6= 0. By Theorem 6.6 this does not have argument equal to a root of unity.

8 Non-Supersingularity using Factorization of Gauss Sums

In this section, let X be a variety defined by,

a0x
n0
0 + · · ·+ arx

nr
r = 0

over Fp, where p is a prime not dividing m = lcm (n0, . . . , nr). Furthermore, let f = ordm(p).

Proposition 8.1. If p ≡ 1 mod m for m ≥ 4 and r ≥ 3 then Fmr is not supersingular.

Proof. Notice that in this case f = 1, and q = p. If Fmr were supersingular then, by Theorem 6.15, for each
choice of µ ∈ (Z/mZ)× and character powers e0, · · · er that,

r∑
i=0

s

(
(q − 1)µri

m

)
=
r + 1

2
(p− 1)f

Consider the case µ = 1 and choose a set of characters such that

e0 + · · ·+ er = m
⌊r

2

⌋
This is always possible with 0 < ei < m since r + 1 ≤ m

⌊
r
2

⌋
< mr. In this case, since f = 1 and µ = 1,

r∑
i=0

s

(
(q − 1)µri

m

)
= (p− 1)

r∑
i=0

{ ei
m

}
= (p− 1)

r∑
i=0

ei
m

= (p− 1)
⌊r

2

⌋
< (p− 1)

r + 1

2

Therefore, by Theorem 6.14, Fmr cannot be supersingular.

Proposition 8.2. Let p be a prime, and f > 2, let n = pf−1
p−1 . Then Fn3 is not supersingular over Fp.

Proof. Let µ = 1, and r = (1, 1, 1,m − 3). We know that s( (q−1)µr
m ) = p − 1 when r = 1 using the fraction

part formula for s because all the terms are less than 1.
Now consider

s

(
(m− 3)(q − 1)

m

)
= (p− 1)

f−1∑
i=1

{
(m− 3)pi

m

}
If i < f − 1, then 3pi < m, so {

(m− 3)pi

m

}
= 1− 3pi

m
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. If i = f − 1, then use the relation

pf−1 = m− (1 + p+ · · ·+ pf−2),

so {
(m− 3)(m− (1 + p+ · · ·+ pf−2))

m

}
=

3(1 + p+ · · ·+ pf−2)

m

. As a result, s
(

(q−1)(m−3)
m

)
= (p− 1)(f − 1). And

r∑
i=0

s

(
(q − 1)ri

n

)
= (f + 2)(p− 1) < 2f(p− 1)

if f > 2. Therefore, Fn3 cannot be supersingular if f > 2.

Proposition 8.3. When f is even, and n = pf−1
p2−1 , then Fn3 is not supersingular.

Proof. Let µ = 1, r = (1, 1, 1, n − 3), and write m = 1 + p2 + p4 + · · · + pf−2. Notice that pf−1 =
pm− (p+ p3 + · · ·+ pf−3). When r = 1,

s(
(q − 1)

m
) = (p− 1)

f−1∑
i=1

{p
i

m
}

= (p− 1)(

f−2∑
i=0

(
pi

m
) + {pm− (p+ p3 + · · ·+ pf−3)

m
})

= (p− 1)(1 +
1 + p2 + · · ·+ pf−2

m
)

= 2(p− 1).

When r = m− 3, we have

s(
(q − 1)(m− 3)

m
) = (p− 1)

f−1∑
i=1

{p
i(m− 3)

m
}

= (p− 1)(

f−2∑
i=0

(1− 3pi

m
) + { (m− 3)(pm− (p+ p3 + · · ·+ pf−3))

m
})

= (p− 1)(f − 1 +

f−2∑
i=0

(−3pi

m
) +

3(p+ p3 + · · ·+ pf−3)

m
)

= (p− 1)(f − 1− 3m

m
)

= (p− 1)(f − 4).

In total we still have
r∑
i=0

s(
(q − 1)ri

n
) = (f + 2)(p− 1) < 2f(p− 1).

Proposition 8.4. When n = p + a for 1 < a < p, and ordn(p) = 2, the Fermat variety Xn is not
supersingular.

Proof. Still consider µ = 1, r = (1, 1, 1, n− 3). We have {1/n}+ {p/n} = (1 + p)/n < 1 for r = 1. And since
ordn(p) = 2, n does not divides p− 1 but n divides p2 − 1, so n|(p+ 1). Then {(n− 3)/n}+ {(n− 3)p/n} is
an integer. Thus it has to be 1. This tell us that the sum of the s functions is less than 4(p− 1). Therefore,
Xn is not supersingular.
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Conjecture 8.5. For p a prime, and f > 2, let n = Φf (p) = pf−1
k(p) , then ordn(p) = f , and the Fermat

surface Fn3 is not supersingular.

Lemma 8.6. Let X be a variety defined by the zero set of the equation:

a0x
n0
0 + a1x

n1
1 + a2x

n2
2 + a3x

n3
3 = 0

over Fpk with ai ∈ Z, ni ∈ Z≥1. Let m = lcm (n0, n1, n2, n3) and let wi = m
ni

for i = 0, 1, 2, 3. Then X

is supersingular if and only if for all µ ∈ (Z/mZ)× and e0, e1, e2, e3 ∈ Z with m|e0 + e1 + e2 + e3, wi|ei,
0 < ei < m we have:

f−1∑
i=0

({
µe0p

i

m

}
+

{
µe1p

i

m

})
=

f−1∑
i=0

({
−µe2p

i

m

}
+

{
−µe3p

i

m

})
Proof. By Theorem 3.1, we only need to prove that it is supersingular over Fq for some power q = pf .
Suppose r is the smallest positive integer such that pr ≡ −1 (mod m). We’ll take f = 2r, so that f is the
minimal integer for which m|pf − 1.

Let χ be a character of order m. Now, by Corollary 5.4.1, X is supersingular if the product of Gaussian
sums for each α has argument root of unity. That is,

3∏
i=0

g(χei)

must always have argument a root of unity where m|e0 + e1 + e2 + e3, 0 < ei < m, and wi|ei for each i.
Consider the ideal generated by,

q−2
3∏
i=0

g(χei) =
g(χe0)g(χe1)χe2+e3(−1)

g(χ−e2)g(χ−e3)

By Corollary 6.13.1, this is a root of unity if and only if the ideal generated by it is O, which will occur if
and only if the valuation of each prime ideal in Q(ζm, ζp) is 0. By Theorem 6.4, this will occur if and only if:

s

(
(q − 1)µe0

m

)
+ s

(
(q − 1)µe1

m

)
= s

(
−(q − 1)µe2

m

)
+ s

(
−(q − 1)µe3

m

)
for all µ relatively prime to m where s(n) is the sum of the digits of n (mod q− 1) in base p. Even Further,
by [Lang’s Algebraic Number Theory Page 96], this is equivalent to:

f−1∑
i=0

({
µe0p

i

m

}
+

{
µe1p

i

m

})
=

f−1∑
i=0

({
−µe2p

i

m

}
+

{
−µe3p

i

m

})
as desired.

Definition 8.7. Define the sum,

Sµ(e0, . . . , et) = s

(
(q − 1)µe0

m

)
+ · · ·+ s

(
(q − 1)µet

m

)
=

f−1∑
i=0

({
µe0p

i

m

}
+ · · ·+

{
µetp

i

m

})
Corollary 8.7.1. X is supersingular if and only if the value of the sum,

Sµ(e0, e1) =

f−1∑
i=0

({
µe0p

i

m

}
+

{
µe1p

i

m

})
for each fixed value of µ ∈ (Z/mZ)× depends only on E ≡ e0 + e1 mod m.
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Proof. We know that X is supersingular if and only if,

f−1∑
i=0

({
µe0p

i

m

}
+

{
µe1p

i

m

})
=

f−1∑
i=0

({
−µe2p

i

m

}
+

{
−µe3p

i

m

})
for each µ ∈ (Z/mZ)× and e0, e1, e2, e3 such that m | e0 + e1 + e2 + e3 and wi | ei. Therefore, whenever,

E ≡ e0 + e1 ≡ −e2 − e3 mod m

we must have that Sµ(e0, e1) = Sµ(−e2,−e3). This is equivalent to Sµ depending on E alone.

Lemma 8.8. Let p be a prime number, f be a positive integer, m be an integer not divisible by p, and
µ ∈ (Z/mZ)×. For integers m - e0, e1 define:

Nµ(e0, e1) = #

{
i :

{
µ(e0 + e1)pi

m

}
<

{
µe0p

i

m

}}
,

where i = 0, . . . , f − 1, then

Sµ(e0, e1) =

f−1∑
i=0

({
µe0p

i

m

}
+

{
µe1p

i

m

})
= Nµ(e0, e1) +

f−1∑
i=0

{
µ(e0 + e1)pi

m

}
= Nµ(e0, e1) + Sµ(e0 + e1).

Proof. Note that {
µe0p

i

m

}
+

{
µe1p

i

m

}
is either equal to

{
µ(e0+e1)pi

m

}
or
{
µ(e0+e1)pi

m

}
+ 1. If it is equal to the former, then{

µ(e0 + e1)pi

m

}
≥
{
µe0p

i

m

}
If it is equal to the latter, then{

µe0p
i

m

}
=

{
µ(e0 + e1)pi

m

}
−
{
µe1p

i

m

}
+ 1 >

{
µ(e0 + e1)pi

m

}
Thus we have:

{
µe0p

i

m

}
+

{
µe1p

i

m

}
=


{
µ(e0+e1)pi

m

} {
µ(e0+e1)pi

m

}
≥
{
µe0p

i

m

}
{
µ(e0+e1)pi

m

}
+ 1

{
µ(e0+e1)pi

m

}
<
{
µe0p

i

m

}

Corollary 8.8.1. If e0 + e1 ≡ 0 mod m then Sµ(e0, e1) = Nµ(e0, e1) = f .

Proof.

Sµ(e0, e1) =

f−1∑
i=0

({
µe0p

i

m

}
+

{
µe1p

i

m

})
= Nµ(e0, e1) +

f−1∑
i=0

{
µ(e0 + e1)pi

m

}
However, m | e0 + e1 so the fractional part of all multiplies of their quotient is zero. Thus,{

µ(e0 + e1)pi

m

}
= 0

Therefore, the second sum is zero. Furthermore, since m - e0 and (m, p) = (m,µ) = 1 we have that,

0 ≤
{
µe0p

i

m

}
for each i. Therefore, N(e0, e1) = f .
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Lemma 8.9. The product q−2g(χe0)g(χe1)g(χe2)g(χe3) is a root of unity if and only if Nµ(e0, e1)+Nµ(e2, e3) =
f for each µ ∈ (Z/mZ)×

Proof. By Theorem 6.14 we need only check if,

3∑
i=0

s

(
(q − 1)µei

m

)
= 2(p− 1)f

for each µ ∈ (Z/mZ)×. However, because m | e0 + e1 + e3 + e4 by Corollary 8.8.1,

Sµ(e0 + e1) + Sµ(e2 + e3) = Sµ(e0 + e1, e2 + e3) = f

Furthermore, by Lemma, 8.8,

Sµ(e0, e1) + Sµ(e2, e3) = Nµ(e0, e1) +Nµ(e2, e3) + Sµ(e0 + e1) + Sµ(e2 + e3) = Nµ(e0, e1) +Nµ(e2, e3) + f

Thus,

Sµ(e0, e1) + Sµ(e2, e3) =
1

p− 1

3∑
i=0

s

(
(q − 1)µei

m

)
= 2f ⇐⇒ Nµ(e0, e1) +Nµ(e2, e3) = f

Theorem 8.10. Let X be a variety defined by the zero set of the equation:

a0x
n0
0 + a1x

n1
1 + a2x

n2
2 + a3x

n3
3 = 0

over Fpk with ai ∈ Z, ni ∈ Z≥1. Let m = lcm (n0, n1, n2, n3). If ai 6= 0 in Fp for all i and there exists r such
that pr ≡ −1 (mod m), then X is supersingular.

Proof. By Corollary 8.7.1, if we can show that for all µ ∈ (Z/mZ)× and e0, e1 with 0 < e0, e1 < m the sum
Sµ(e0, e1) is only a function of E = e0 + e1, then X is supersingular. Let N(e0, e1) be as defined in lemma
8.8. If m|E, then we will always have: {

µ(e0 + e1)pi

m

}
<

{
µe0p

i

m

}
and thus N(e0, e1) = f . If m - E, then note that as pr ≡ −1 (mod m), we have:{

µEpi+r

m

}
=

{
−µEpi

m

}
= 1−

{
µEpi

m

}
Therefore, applying this procedure to the above inequality,{
µ(e0 + e1)pi+r

m

}
<

{
µe0p

i+r

m

}
⇐⇒ 1−

{
µ(e0 + e1)pi

m

}
< 1−

{
µe0p

i

m

}
⇐⇒

{
µe0p

i

m

}
<

{
µ(e0 + e1)pi

m

}
Furthermore, since m - e0, e1 the inequality must always be strict. Since f = 2r, this symmetry implies that
N(e0, e1) = f

2 . Note that N(e0, e1) is constant. Thus by Lemma 8.8,

Sµ(e0, e1) =

f−1∑
i=0

({
µe0p

i

m

}
+

{
µe1p

i

m

})
is a function of E alone and thus X is supersingular.

Theorem 8.11. If there exists v ∈ Z such that pv ≡ −1 mod m then Fmr is supersingular for any r.
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Proof. Consider the sum,

Sµ(e1, . . . , er) =
1

p− 1

r∑
i=0

s

(
µ(q − 1)ei

m

)
=

r∑
i=0

f−1∑
j=0

{
µeip

j

m

}
which we can rearrange as,

Sµ(e1, . . . , er) =

r∑
i=0

 f
2−1∑
j=0

{
µeip

j

m

}
+

f
2−1∑
j=0

{
µeip

j+ f
2

m

}
However, since f = ordmp and the hypothesis, we know that p

f
2 ≡ −1 mod m. Thus,{

µeip
j+ f

2

m

}
=

{
−µeipj

m

}
= 1−

{
µeip

j

m

}
Therefore, plugging in,

Sµ(e1, . . . , er) =

r∑
i=0

 f
2−1∑
j=0

{
µeip

j

m

}
+

f
2−1∑
j=0

[
1−

{
µeip

j

m

}] =

r∑
i=0

f
2−1∑
j=0

1 = (r + 1)
f

2

Thus, by Theorem 6.15, Fmr is supersingular.

Lemma 8.12. Let σ ∈ Sn be a permutation and C ∈ Sn be the standard n-cycle,

C = (1 2 3 · · · n)

Define the function,
g(σ, k) = #{i ∈ [n] | σ(i) < σCk(i)}

Then g(σ, k) + g(σ, n− k) = n for all 0 < k < n.

Proof. Since σ is a permutation, we can reindex the set in the definition of g by j = σ(i) such that,

g(σ, k) = #{j ∈ [n] | j < σCkσ−1(j)}

However, conjugation is an automorphism so,

σCkσ−1 = (σCσ−1)k = Ckσ

where Cσ = σCσ−1 is also an n cycle (with order n) since conjugation preserves cycle type. Thus,

g(σ, k) = #{j ∈ [n] | j < Ckσ(j)}

However, if j < Ckσ(j) then define j̃ = Ckσ(j) or equivalently Cn−kσ (j̃) = j such that,

Cn−kσ (j̃) < j̃

However, n cycles act freely on [n] so there are no fixed points of Ckσ for any 0 < k < n. Thus, the
set of j̃ such that Cn−kσ (j̃) < j̃ is exactly the compliment of the set such that j̃ < Cn−kσ (j̃). Therefore,
j ∈ g(σ, k) ⇐⇒ j̃ /∈ g(σ, n− k) so,

g(σ, k) = {j̃ ∈ [n] | Cn−kσ (j̃) < j̃} = n− g(σ, n− k)

Corollary 8.12.1. If there exists σ ∈ Sn such that g(σ, k) = g(σ, n − k) then g(σ, k) = n
2 . In particular,

this is true if g(σ, k) is constant for 0 < k < n.
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Corollary 8.12.2. If n is odd then g(σ, k) 6= g(σ, n− k) for all 0 < k < n. In particular, this means that if
n is odd, then there cannot exits σ ∈ Sn such that g(σ, k) is constant for all 0 < k < n.

Lemma 8.13. Let m, p, e0, e1, f,N(e0, e1) be as in lemma 8.8. If f > 1, m|pf − 1 and E is such that
m - E(p− 1) and there exists a K such that for all e1 + e2 ≡ E (mod M) with m - e1, e2, we have

Nµ(e0, e1) = K

then K = f
2 where µ ∈ (Z/mZ)× is fixed.

Proof. Suppose that such an E exists. Let

ai =

{
µEpi

m

}
Note as m|pf − 1, we have ai+f = ai. Suppose ai = aj for some integers i, j. Then we have:

Epi ≡ Epj (mod m)

which is true if and only if
E(pi−j − 1) ≡ 0 (mod m)

This we hold only when i − j is multiple of some integer t. As a result ai+t = ai but a0, a1, . . . , at−1 are
distinct. Furthermore, since m - E(p − 1) we have t > 1. For notation purposes. We now let permutations
π ∈ St act on the sequence ai. As a0, a1, . . . , at−1 are distinct, there exists a permutation σ ∈ St such that
for i = 0, . . . , t− 1. aσ(i) < aσ(j) if and only if i < j for 0 ≤ i, j ≤ t− 1. Since the condition Nµ(e0, e1) = K
must hold for all e0 + e1 ≡ E mod m we may pick a particualr value of,

e0|j = Epj and e1|j = E − e0|j

for any 1 ≤ j ≤ t− 1. In this case, {
µe0|jpi

m

}
= ai+j

Thus if we let C = (1 2 · · · t) ∈ St, then this can be rewritten as:{
µe0|jpi

m

}
= aCj(i)

By definition,
K = Nµ(e0|j , e1|j) = #{0 ≤ i < t : ai < ai+j}

As ai is periodic, this is implies

K =
f

t
#{i : ai < aCj(i)}

=
f

t
#{i : σ−1(i) < σ−1(Cj(i))} =

f

t
g(σ−1, j)

However, by lemma 8.12,
g(σ−1, j) = g(k) = t− g(t− k)

As t > 1, taking k = 1 implies g(σ−1, k) = t
2 . Thus:

K =

(
f

t

)(
t

2

)
=
f

2

Theorem 8.14. If f is odd and f > 1, then Fm3 is not supersingular
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Proof. By Corollary 8.7.1, Fm3 is supersingular only if for all e0, e1 with 0 < e0, e1 < m we have that

Sµ(e0, e1) =

f−1∑
i=0

({
µe0p

i

m

}
+

{
µe1p

i

m

})
is only a function of E = e0 + e1. Consider the case E = 1. Let N(e0, e1) be defined as in lemma 8.8. By the
same lemma, the above being a function of E is equivalent to N(e0, e1) being constant across e0 + e1. By
lemma 8.13, if it is constant for fixed E, then it must always be f

2 . However, as N(e0, e1) is integer-valued
this is impossible. Thus we have a contradiction, so Fm3 is not supersingular.

Theorem 8.15. Let f = ordn(p). If f is odd and f > 1, then Fn2 is not supersingular

Proof. By Theorem 3.1, we only need to prove that it is supersingular over Fq for some power q = pf . Let
χ be a character of order n. By Theorem 5.3, we have that

ζ(T ) =
p(T )

q(T )

where p(T ) = −1 and the roots of q(T ) are of the form:

2∏
i=0

χei(a−1
i )

2∏
i=0

g(χei)

where m|e0 + e1 + e2 and 0 < ei < n, and wi|ei for each i. The product
∏2
i=0 χ

ei(a−1
i ) will always be a root

of unity. Thus to show ζ(T ) is supersingular, we just need to show that
∏2
i=0 g(χei) always has argument a

root of unity. We will now do so.
Consider the ideal generated by,

q−3/2
2∏
i=0

g(χei) =
g(χe0)g(χe1)χe2(−1)

q−1/2g(χ−e2)

By Corollary 6.13.1, this is a root of unity if and only if the ideal generated by it is R, which will occur if
and only if the valuation of each prime ideal in Q(ζn, ζp) is 0. By Theorem 6.4, this will occur if and only if:

s

(
(q − 1)µe0

n

)
+ s

(
(q − 1)µe1

n

)
= s

(
−(q − 1)µe2

n

)
+
f

2

By [Lang Algebra Page 96] this is equal to,

f∑
i=0

({
µe0p

i

n

}
+

{
µe1p

i

n

}
−
{
µ− e2p

i

n

})
=
f

2

However, as e0 + e1 ≡ −e2 (mod n), each term in the above summation must be either 1 or 0. Thus the left
hand side is an integer. However, if f is odd, the right hand side is not. Thus this equality cannot possibly
happen.

Theorem 8.16. Let f be odd and m be even, then the Fermat variety Fm3 is not supersingular.

Proof. We know that X is supersingular if and only if q−2
∏3
i=0 g(χei) is a root of unity, where m|e0 + e1 +

e2 + e3 and 0 < ei < m for each i.
Let e0 + e1 = E0, and e2 + e3 = E2. By lemma 8.9, we know that Vm is supersingular if and only if
N(e0, e1) + N(e2, e3) = f . Now let E0 + E2 = 3m, and e0 = e2, e1 = e3. Then E0 = 3/2m is an integer
because m is even. But N0 6= f/2 because N0 is an integer but f is odd, so f/2 is not an integer. We also
know that N0 = N2, since e0 = e2, e1 = e3. Thus it is impossible that N0 + N2 = f . Therefore, Fm3 is not
supersingular.
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Theorem 8.17. Let f be odd, the Fermat variety Fmr is not supersingular if r is odd.

Proof. We prove this using Theorem ?? and Lemma 8.8.
We know that Fmr is supersingular if and only if

r∑
i=0

Sµ(ei) = (p− 1)(r + 1)f/2

for all µ ∈ (Z/mZ)×, and m|e0 + e1 + · · ·+ er and 0 < ei < m for each i. Thus, we can choose ei for i > 3
such that m|ei + ei+1. Then for any given µ, Sµ(ei, ei+1) = f by Lemma 8.8.

On the other hand, choose e0, . . . , e3 as in Theorem ??, then Sµ(e0, e1, e2, e3) 6= 2f .
Therefore, we have

r∑
i=0

Sµ(ei) 6= (p− 1)(r + 1)f/2

for this chosen set of ei, so Fmr is not supersingular.

Conjecture 8.18. Let q = pn, p a prime and n ∈ Z+, be the order of our finite field Fq and let Nµ be the
number of solutions (e0, e1, e2, e3) with 0 < ei < q − 1 all distinct and µ ∈ Z+ with (µ, q − 1) = 1 satisfying
s(µe0) + s(µe1) = s(µe2) + s(µe3). We conjecture that N1 = Np, and for µj , µk > p, Nµj = Nµk if µj and
µk share the same largest factor.

9 Sum-Product Varieties

9.1 Introduction

In this section we concern ourselves with the family of varieties,

x1 + · · ·+ xd = λx1 · · ·xd

over the finite field Fq. In the process, we will study the m-values which are solutions to the set of simulta-
neous equations,

x1 + · · ·+ xd = z and x1 · · ·xd = y

over Fq. (Motivation?)

Definition 9.1. The integer, md,q
y,z is the number of solutions to the set simultaneous of equations,

x1+ · · ·+ xd = z

x1 · · ·xd = y

over Fq.

Definition 9.2. The diagonal hyper-plane number is the number of solutions,

Hd
z (S) = # {x1 + · · ·+ xd = z | xi ∈ S}

where S ⊂ K and z ∈ K for some field K.

Proposition 9.3. For any z ∈ Fq we have Hd
z (Fq) = qd−1 and for z ∈ Fq we have,

Hd
z (F×q ) =

1

q

[
(q − 1)d + (qδz − 1)(−1)d

]
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Proof. For any choice of x1, · · · , xd−1 ∈ Fq there is a unique xd ∈ Fq such that x1 + · · · + xd = z. Thus,
Hd
z (Fq) = qd−1. We will no count how many solutions contain no zeros. By inclusion exclusion,

Hd
z (F×q ) = Hd

z (Fq)−
(
d

1

)
Hd−1
z (Fq) +

(
d

2

)
Hd−2
z (Fq) + · · ·+

(
d

d

)
(−1)dH0

z (Fd)

=

d−1∑
i=0

(
d

i

)
(−1)iqd−1−i + (−1)dδz =

1

q

[
d−1∑
i=0

(
d

i

)
(−1)iqd−i

]
+ (−1)dδz

=
1

q

[
(q − 1)d − (−1)d

]
+ (−1)dδz

where the factor of δz comes from the fact that for z 6= 0 the set H0
z (Fq) is empty but for z = 0 has one

element representing the all zero solution to the original problem. Therefore,

Hd
z (F×q ) =

1

q

[
(q − 1)d + (qδz − 1)(−1)d

]

Proposition 9.4.

md,q
0,z = qd−1 − 1

q

[
(q − 1)d + (qδz − 1)(−1)d

]
Proof. Solutions to the set of simultaneous equations x1 + · · ·xd = z and x1 · · ·xd = 0 are exactly those
solutions to x1 + · · ·+ xd = z which are not all elements of F×q . Therefore,

md,q
0,z = Hd

z (Fq)−Hd
z (F×q ) = qd−1 − 1

q

[
(q − 1)d + (qδz − 1)(−1)d

]

Corollary 9.4.1. For z 6= 0 we have, md,q
0,z −m

d,q
0,0 = (−1)d

Proposition 9.5. ∑
y∈Fq

md,q
y,z = qd−1 and

∑
z∈Fq

md,q
y,z =

{
(q − 1)d−1 y 6= 0

qd − (q − 1)d y = 0

Proof. ∑
y∈Fq

md,q
y,z = # {x1 + · · ·+ xd = z | xi ∈ Fq} = Hd

z (Fq) = qd−1

Likewise, ∑
z∈Fq

md,q
y,z = # {x1 · · ·xd = z | xi ∈ Fq} =

{
(q − 1)d−1 y 6= 0

qd − (q − 1)d y = 0

because if y 6= 0 then every solution to x1 · · ·xd = y must have xi 6= 0 for each i and for any choice of
x1, · · · , xd−1 ∈ F×q there is a unique choice of xd such that x1 · · ·xd = y. Thus, in the case y 6= 0 there are

exactly (q − 1)d−1 solutions. However, if y = 0 then the condition x1 · · ·xd = 0 is equivalent to not all xi
being in Fq and thus #(Fq)d −#(F×q )d = qd − (q − 1)d.

Proposition 9.6. ∑
y∈F×q

md,q
y,z =

1

q

[
(q − 1)d + (qδz − 1)(−1)d

]
Proof. Since having some product y 6= 0 is equivalent to all xi 6= 0 we have,∑

y∈F×q

md,q
y,z = # {x1 + · · ·xd = z | xi 6= 0} = Hd

z (F×q ) =
1

q

[
(q − 1)d + (qδz − 1)(−1)d

]
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9.2 Relationships Between m-values

Lemma 9.7.
#
(
F×q /(F×q )n

)
= gcd(n, q − 1)

Proof. Let w ∈ F×q be a generator. The group, F×q )n is generated by wn which has order q−1
gcd(n,q−1) . Therefore,

#(F×q )n = q−1
gcd(n,q−1) and thus,

#
(
F×q /(F×q )n

)
= gcd(n, q − 1)

Proposition 9.8. Let π : F×q → F×q /(F×q )d be the projection map. If π(y) = π(y′) then md,q
y,0 = md,q

y′,0.

Proof. Suppose that π(y) = π(y′). Then, y′ = yλd. Suppose that x1 + · · · + xd = 0 and x1 · · ·xd = y is a
solution for md,qy, 0. Then, consider the point λx1, · · · , λxd. We have,

λx1 + · · ·+ λxd = λ(x1 + · · ·+ xd) = 0

and
λx1 · · ·λxd = λd(x1 · · ·xd) = λdy = y′

Therefore, λx1, · · · , λxd is a solution for md,q
y′,0. Furhtermore, λ 6= 0 so multiplication by λ is invertible.

Corollary 9.8.1. If gcd(d, q − 1) = 1 then md,q
y,0 = md,q

y′,0 for all y, y′ ∈ Fq.

Proposition 9.9. Let σ be an automorphism of Fq then md,q
y,z = md,q

σ(y),σ(z).

Proof. Since σ is an automorphism, it is an invertible map which preserves the structure of polynomial
equations and therefore gives a bijection between md,q

y,z and md,q
σ(y),σ(z).

Proposition 9.10. If y, z 6= 0 then for any λ ∈ F×q we have md,q
y,z = md,q

λdy,λz
.

Proof. Multiplication by λ ∈ F×q is invertible and takes solutions for md,q
y,z to solutions for md,q

λdy,λz
.

Corollary 9.10.1. If q − 1 | d then for y, z, z′ 6= 0 we have md,q
y,z = md,q

y,z′ .

Proof. We know that for any λ ∈ F×q we have md,q
y,z = md,q

λdy,λz
. However, q − 1 | d so d is an exponent of F×q

so λd = 1.

Lemma 9.11. Let Zy = 1
q−1m

d,q
y,0. If q − 1 | d then Zy is an integer.

Proof. Any solution x1 + · · ·+xd = 0 and x1 · · ·xy = y can be taken to another distinct solution λx1 + · · ·+
λxd = λ(x1 + · · · + xd) = 0 and λx1 · · ·λxd = λd(x1 · · ·xd) = λdy = y by multiplication by λ. Since y 6= 0
we have that x1, · · · , xd ∈ F×q for any such solution (since their product is nonzero) and thus multiplication
by λ ∈ F×q acts freely on the set of solutions. Thus, each orbit has size #(F×q ) = q − 1 but the orbits form a

partition so q − 1 | md,q
y,0.

Lemma 9.12. If for y, z, z′ 6= 0 we have md,q
y,z = md,q

y,z′ then,

md,q
y,z = (q − 1)d−2 − Zy

Proof. For y, z 6= 0 we have that,

(q − 1)md,q
y,z +md,q

y,0 =
∑
z∈Fq

md,q
y,z = (q − 1)d−1

Thus,

md,q
y,z =

1

q − 1

[
(q − 1)d−1 −md,q

y,0

]
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Lemma 9.13. If md,q
y,0 = md,q

y′,0 for all y, y′ ∈ F×q then,

md,q
y,0 =

1

q

[
(q − 1)d−1 + (−1)d

]
for each y ∈ F×q .

Proof. We have that,

(q − 1)md,q
y,0 =

∑
y∈Fq

md,q
y,0 =

1

q

[
(q − 1)d + (q − 1)(−1)d

]
Therefore,

md,q
y,0 =

1

q

[
(q − 1)d−1 + (−1)d

]

9.3 Powers of Gauss Sums

Theorem 9.14. Let χ : Fq → C× be a multiplicative character. If q − 1 | d then,

g(χ)d = q
∑
y∈F×q

Zyχ(y)− δχ ·
[
(q − 1)d−1 + (−1)d

]
Proof. Let φ : Fq → C× be a nontrivial additive character. Consider,

g(χ)d =

∑
x∈Fq

χ(x)ψ(x)

d =
∑
x1∈Fq

· · ·
∑
xd∈Fq

χ(x1) · · ·χ(xd)ψ(x1) · · ·ψ(xd)

=
∑
x1∈Fq

· · ·
∑
xd∈Fq

χ(x1 · · ·xd)ψ(x1 + · · ·+ xd) =
∑
y∈Fq

∑
z∈Fq

∑
x1+···+xd=z
x1···xd=y

χ(y)ψ(z)

=
∑
y∈Fq

χ(y)
∑
z∈Fq

md,q
y,zψ(z)

However, since q − 1 | d, by Lemma 9.10.1 we know that md,q
y,z = md,q

y,z′ if y, z, z′ ∈ F×q . Therefore,

g(χ)d =
∑
y∈F×q

χ(y)
∑
z∈Fq

md,q
y,zψ(z) + χ(0)

∑
z∈Fq

md,q
0,zψ(z)

=
∑
y∈F×q

χ(y)

md,q
y,0ψ(0) +md,q

y,z

∑
z∈F×q

ψ(z)

+ χ(0)

md,q
0,0ψ(0) +md,q

0,z

∑
z∈Fq

ψ(z)


Because ψ is a nontrivial character, ∑

z∈Fq

ψ(z) = 0 =⇒
∑
z∈F×q

ψ(z) = −1

since ψ(0) = 1. Therefore,

g(χ)d =
∑
y∈F×q

χ(y)
[
md,q
y,0 −md,q

y,z

]
+ χ(0)

[
md,q

0,0 −m
d,q
0,z

]
where z is an arbitrary nonzero element (since these numbers are independent of choice of z 6= 0). Further-
more, by Lemma 9.12 we know that,

md,q
y,0 −md,q

y,z = md,q
y,0 +

1

q − 1
md,q
y,0 − (q − 1)d−2 = qZy − (q − 1)d−2
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Furthermore, by Lemma 9.4.1, md,q
0,z −m

d,q
0,0 = (−1)d. Putting these facts together,

g(χ)d =
∑
y∈F×q

χ(y)
[
qZy − (q − 1)d−2

]
− χ(0)(−1)d

Now we consider the case when χ is the trivial character χ0 and when χ 6= χ0. When χ 6= χ0 we know that
χ(0) = 0 and that, ∑

y∈F×q

χ(y) = 0

Therefore we get,

g(χ)d = q
∑
y∈F×q

Zyχ(y)

When χ is the trivial character, χ(y) = 1 for all y ∈ Fq. Therefore,

g(χ)d = q
∑
y∈F×q

Zyχ(y)−
[
(q − 1)d−1 + (−1)d

]

Theorem 9.15. Let F̂q be the character group of Fq and q − 1 | d. Then,

Zy =
1

q(q − 1)

∑
χ∈F̂q

g(χ)d χ(y) +
[
(q − 1)d−1 + (−1)d

]
Proof. By Theorem 9.15, we know that,

q
∑
y∈F×q

Zyχ(y) = g(χ)d + δχ
[
(q − 1)d−1 + (−1)d

]
We will make use the character orthogonality relation,

∑
χ∈F̂q

χ(x)χ(y) =

{
(q − 1) x = y

0 x 6= y

for x, y ∈ F×q . Using this relation,∑
χ∈F̂q

(
g(χ)d + δχ

[
(q − 1)d−1 + (−1)d

])
χ(y) = q

∑
χ∈F̂q

∑
z∈F×q

Zzχ(z)χ(y) = q
∑
z∈F×q

Zz(q − 1)δy−z = q(q − 1)Zz

Furthermore, for χ = χ0 we have χ(y) = 1. Thus,

q(q − 1)Zz =
∑
χ∈F̂q

g(χ)d χ(y) +
[
(q − 1)d−1 + (−1)d

]

9.4 Special Cases of Sum-Product Varieties

Definition 9.16. The sum-product variety, V d,qλ is defined by the equation x1 + · · ·+ xd = λx1 · · ·xd over
Fq. Clearly, the number of points on a sum-product variety is given by,

#(V d,qλ ) =
∑
y∈Fq

md,q
y,λy
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Proposition 9.17. Suppose that md,q
y,z = md,q

y,z′ for all y, z, z′ ∈ F×q then,

#(V d,qλ ) = qd−1 − (−1)d

Proof. We know that,

#(V d,qλ ) =
∑
y∈Fq

md,q
y,λy = md,q

0,0 +
∑
y∈F×q

md,q
y,λy = md,q

0,0 +
∑
y∈F×q

md,q
y,1 =

∑
y∈Fq

md,q
y,1 + [md,q

0,0 −m
d,q
0,1]

= qd−1 − (−1)d

Corollary 9.17.1. If q − 1 | d then,

#(V d,qλ ) = qd−1 − (−1)d

Proposition 9.18. The number of points on a sum-product variety is determined entirely by md,q
λ−1,0 via,

#(V d,qλ ) = #(V d,qλ ) = qd−1 − (q − 1)d−2 + qmd,q
λ−1,0

Proof. Choose any x1, · · · , xd−1 ∈ Fq. Denote S = x1 + · · · + xd−1 and P = x1 · · ·xd−1. Then finding a
point on the variety is equivalent to solving,

S + xd = λPxd ⇐⇒ xd =
S

λP − 1

when P 6= λ−1. Therefore, for any choice of x1, · · · , xd−1 ∈ Fq there is a unique point on the variety when
P 6= λ−1. When P = λ−1 there are no solutions for S 6= 0 and any xd gives a point on the variety if S = 0.
There are qd−1 − (q − 1)d−2 choices for x1, · · · , xd−1 ∈ Fq which do not have P = λ−1 since to get P = λ−1

we can take the first d − 2 to be arbitrary elements of F×q and then there is a unique xd−1 ∈ F×q such that
x1 · · ·xd−1 = λ−1. Thus, the total number of solutions is,

#(V d,qλ ) = qd−1 − (q − 1)d−2 + qmd,q
λ−1,0

Proposition 9.19. If md,q
y,0 = md,q

y′,0 for all y, y′ ∈ F×q then,

#(V d,qλ ) = qd−1 + (q − 2)(q − 1)d−2 + (−1)d

for each λ ∈ F×q .

Proof. By Lemma 9.13 we know that,

md,q
λ−1,0 =

1

q

[
(q − 1)d−1 + (−1)d

]
Therefore, by Proposition 9.4,

#(V d,qλ ) = qd−1 − (q − 1)d−2 + (q − 1)d−1 + (−1)d = qd−1 + (q − 2)(q − 1)d−2 + (−1)d

Corollary 9.19.1. If gcd(d, q − 1) = 1 then for each λ ∈ F×q ,

#(V d,qλ ) = qd−1 + (q − 2)(q − 1)d−2 + (−1)d
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Theorem 9.20. Let q = pr and d = ps then, for each λ ∈ F×q , the zeta function of the variety, V d,qλ equals,

ζV d,qλ
=

1

1− qd−1t

[
1

1− t

](−1)d d∏
i=0

[
(1− qit)2

1− qi+1t

](di)(−1)d−i

and therefore, V d,qλ is supersingular.

Proof.

ζV d,qλ
= exp

∑
k≥1

#(V d,q
k

λ )

k
tk


However, (d, qk − 1) = (ps, prk − 1) = 1 for all k. Therefore, by Corollary 9.19.1,

#(V d,q
k

λ ) = q(d−1)k + (qk − 2)(qk − 1)d−2 + (−1)d = qk(d−1) + (−1)d + (qk − 2)

d∑
i=0

(
d

i

)
(−1)d−iqki

Thus,

ζV d,qλ
= exp

∑
k≥1

qk(d−1)

k
tk +

(−1)d

k
tk + (qk − 2)

d∑
i=0

(d
i

)
(−1)d−i

∑
k≥1

qki

k
tk


= exp

∑
k≥1

qk(d−1)

k
tk +

(−1)d

k
tk +

d∑
i=0

(d
i

)
(−1)d−i

∑
k≥1

qk(i+1)

k
tk

− 2

d∑
i=0

(d
i

)
(−1)d−i

∑
k≥1

qki

k
tk


= exp

(
− log [1− qd−1t]− (−1)d log [1− t]−

d∑
i=0

[(
d

i

)
(−1)d−i log [1− qi+1]

]
+ 2

d∑
i=0

[(
d

i

)
(−1)d−i log [1− qi]

])

=
1

1− qd−1t

[
1

1− t

](−1)d d∏
i=0

[
(1− qit)2

1− qi+1t

](di)(−1)d−i

Lemma 9.21. Let w ∈ F×q be a generator. Then, a = wr is a nth power if and only if gcd(nq − 1) | r.

Proof. Suppose that a = bn where b = wx. Then, wr = wnx which is equivalent to nx ≡ r mod (q − 1).
This equation has solutions if and only if gcd(n, q − 1) | r.

10 Relationships Between Diagonal Varieties

Lemma 10.1. Let ϕ : X → Y be a surjective morphism then the induced map on `-adic cohomology
ϕ∗ : H∗(Y,Q`)→ H∗(X,Q`) is injective.

Proof. See Kleiman, Algebraic Cycles and the Weil Conjectures, Proposition 1.2.4. Further, use the fact
that `-adic cohomology is a Weil cohomlogy theory.

Proposition 10.2. We say a scheme X over Fq is supersingular if and only if the frobenius map FX : X → X

induces a map F ∗X : Hi(X,Q`)→ Hi(X,Q`) on `-adic cohomology with all eigenvalues of the form ωq
i
2 where

ω is a root of unity.

Theorem 10.3. Let ϕ : X → Y be a surjective morphism then X being supersingular implies that Y is
supersingular.

Proof. The induced map ϕ∗ : Hi(Y,Q`) → Hi(X,Q`) is injective by Proposition 10.2 and commutes with
the Frobenuius maps,
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Hi(Y,Q`) Hi(X,Q`)

Hi(Y,Q`) Hi(X,Q`)

ϕ∗

F∗Y F∗X

ϕ∗

Suppose that X is supersingular then every eigenvalue of F∗X : Hi(X,Q`) → Hi(X,Q`) has the form

λ = ωq
i
2 where ω is a root of unity. Suppose that v 6= 0 is an eigenvector of F ∗Y such that F ∗Y = λv. By

commutativity of the diagram,
ϕ∗ ◦ F ∗Y (v) = F ∗X(ϕ∗(v))

Furthermore, since ϕ∗ is a linear map,

ϕ∗ ◦ F ∗Y (v) = ϕ∗(λv) = λϕ∗(v)

and therefore,
F ∗X(ϕ∗(v)) = λϕ∗(v)

Since ϕ∗ is injective and v 6= 0 we know that ϕ∗(v) 6= 0 so ϕ∗(v) is an eigenvector of F ∗X with eigenvalue λ.

Therefore, since X is supersingular, λ = ωq
i
2 with ω a root of unity. Since λ is an abitrary eigenvalue of F ∗Y

we have that Y is supersingular.

Definition 10.4. Let X and Y be diagonal varieties of dimension r−1 over the field k, defined respectively
by the equations,

a0x
n0
0 + · · ·+ arx

nr
r = 0 and b0x

m0
0 + · · ·+ brx

nr
r = 0

Then we say that X | Y iff ni | mi for each 0 ≤ i ≤ r.

Lemma 10.5. If X and Y are diagonal varieties of dimension r− 1 over an algebraically closed field k and
X | Y then there exists a surjective morphism, ϕ : Y → X.

Proof. Define the map ϕ : Y → X via,

(x0, . . . , xr) 7→ (x
m0
n0
0 , . . . , x

mr
nr
r )

This map is well-defined because if the point (x0, . . . , xr) satisfies,

xm0
0 + · · ·+ xmrr = 0

Then the point (y0, . . . , yr) = (x
m0
n0
0 , . . . , x

mr
nr
r ) satisfies the equation,

yn0
0 + · · ·+ ynrr

Furthermore, ϕ is surjective because k is algebraically closed and thus each yi ∈ k is an
(
mi
ni

)th

power.

Remark. Theorem 3.5 is a special case of this result in which the map ϕ has additional properties due to
the characteristic of k.

Corollary 10.5.1. Suppose X | Y . If Y is supersingular then X is supersingular.

Proof. This follows immediately from Lemma 10.3 and Lemma 10.5. However, we also give an elementary
proof. Take q to be a power of p such that q ≡ 1 modulo the LCM for X and Y . Since X | Y each α ∈ AX,q
for X satisfies the correct divisibility relations for Y . Thus, AX,q ⊂ AY,q. Therefore, if Y is supersingular
then each α ∈ AY,q gives a product of gauss sums which is a root of unity. Since AX,q ⊂ AY,q the same holds
for X so X is supersingular.

37



Corollary 10.5.2. Let X be a diagonal variety over an algebraically closed field k defined by the equation,

a0x
n0
0 + · · ·+ arx

nr
r = 0

Define the LCM extension X` and GCD reduction Xg of X by,

X` = F lcm (ni)
r and Xg = F gcd (ni)

r

respectively. Then there exist surjective maps,

X` X Xg
ϕ` ϕg

Corollary 10.5.3. If X` is supersingular then X is supersingular. If Xg is not supersingular then X is not
supersingular.

Theorem 10.6. Let X be a diagonal variety. Then X is supersigular over Fp if there exists v ∈ Z such that
pv ≡ −1 mod lcm (ni) and X is not supersingular if for all v ∈ Z we have pv 6≡ −1 mod gcd (ni).

Proof. This follows from Shioda’s theorem via Corollary 10.5.3.

11 Newton Polygons

Proposition 11.1. The set of slopes that appear in the Newton polygon is determined by

1

(p− 1)f

3∑
i=0

s(
(q − 1)ri

m
)− 1,

where
∑ ri

m ∈ Z, i. e., the set of ri
m is in the set of all possible α.

Proof. See Koblitz’s paper p-adic variation of the zeta function over the families of varieties defined over
finite fields.

Proposition 11.2. When f = 1, the Newton Polygon of the Fermat variety Fnp,r is of the form

(0, 0), (0, a), (b2 − a, b2 − 2a), (b2, b2),

where a =
(
m−1

3

)
, and b2 is the second betti number.

Proof. Since f = 1, we know that
3∑
i=0

s(
(q − 1)ri

m
) =

3∑
i=0

{ ri
m

}
But m|r0 + r1 + r2 + r3, so the only possible value for

∑3
i=0

{
ri
m

}
is 1, 2, 3, and these corresponds to slope

0, 1, 2.
To count the length of x-axis where the slope is 0, we need to find the number of solution to the equation

r0 + r1 + r2 + r3 = m,

which is
(
m−1

3

)
. By duality of the cohomology, this length is equal to the length of the last segment, i. e.,

the segment with slope 2.
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12 Surfaces of the form xp + yq + zps + wqs

Theorem 12.1. Let p, q, w be primes such that p, q, w ≡ 1 mod s for some s and let X be the variety
defined by,

xp0 + xps1 + xq2 + xqs3 = 0

over Fw. If w is a primitive root modulo p and q then X is supersingular.

Proof. By Theorem 6.14, we need only check that for each α = (e0/m, . . . , e3/m) ∈ A(X) that,

Sµ(e0, e1, e2, e3) =

3∑
i=0

f−1∑
j=0

{
µeiw

j

m

}
= 2f

where m = pqs and f = ordpqs(w). However, we also know that α can be written as a tuple, (a0, . . . , a3)
such that,

a0

p
+
a1

ps
+
a2

q
+
a3

qs
=
sa0 + a1

ps
+
sa2 + a3

qs
=
q(sa0 + a1) + p(sa2 + a3)

pqs
∈ Z

Since p and q are coprime, we must have,

p | sa0 + a1 and q | sa2 + a3

Thus, let, sa0 + a1 = pnp and sa2 + a3 = qnq. This reduces the above condition to,

np
s

+
nq
s
∈ Z ⇐⇒ np + nq ≡ 0 mod s

Now, using Lemma 8.8,

Sµ(e0, e1, e2, e3) = Sµ(e0, e1) + Sµ(e2, e3)

= Nµ(e0, e1) +Nµ(e2, e3) +

f−1∑
j=0

[{
µ(e0 + e1)wj

m

}
+

{
µ(e2 + e3)wj

m

}]
However, e0 + e1 = q(sa0 + a1) = pqnp and e2 + e3 = p(sa2 + a3) = pqnq and thus,

f−1∑
j=0

[{
µ(e0 + e1)wj

m

}
+

{
µ(e2 + e3)wj

m

}]
=

f−1∑
j=0

[{
µnpw

j

s

}
+

{
µnqw

j

s

}]
=

f−1∑
j=0

1 = f

since µwj(np +nq) ≡ 0 mod s. We need not worry about the case np ≡ nq ≡ 0 mod s because in that case
m | e0 + e1 and m | e2 + e3 so Sµ(e0, e1) = Sµ(e2, e3) = f which is the condition we need.

It remains to show that,

Nµ(e0, e1) +Nµ(e2, e3) = f =⇒ Sµ(e0, e1, e2, e3) = 2f

Consider the number, Nµ(e0, e1) which counts all 0 ≤ j < f such that,{
µnpw

j

s

}
<

{
µa0w

j

p

}
However, w ≡ 1 mod s and thus, {

µnpw
j

s

}
=
{µnp

s

}
=

[µnp]s
s

Furthermore, w is a primitve root modulo p so the numbers µa0w
j give a complete set of residues modulo p.

Because p− 1 = ordp(w) | ordpqs(w) = f we can write f = up(p− 1) and similarly f = uq(q− 1). Therefore,

Nµ(e0, e1) = up

[
#

{
0 ≤ i < p− 1

∣∣∣∣ [µnp]s
s

<
i

p

}]
= up

(
p− 1−

⌊
p[µnp]s

s

⌋)
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However, p ≡ 1 mod s so p = skp + 1 and thus because 0 < [µnp]s < s we have,⌊
kp[µnp]s +

[µnp]s
s

⌋
= kp[µnp]s

Finally,

Nµ(e0, e1) = f − upkp[µnp]s = f − up
p− 1

s
[µnp]s = f

(
1− [µnp]s

s

)
and identical argument gives,

Nµ(e2, e3) = f

(
1− [µnq]s

s

)
and thus,

Nµ(e0, e1) +Nµ(e2, e3) = f

(
2− [µnp]s + [µnq]s

s

)
= f

because [µnp]s + [µnq]s = s.

Theorem 12.2. Let X be the variety defined by,

a0x
n0
0 + · · ·+ arx

nr
r = 0

and let n = lcmni. Now define the polynomial,

BX(x) =

[
r∏
i=0

x2n − x2wi

x2wi − 1
−

r∏
i=0

xn(r+1) − xwi(r+1)

xwi(r+1) − 1

]

Suppose that p ≡ 1 mod n then the total degree of X minus the picard number of X is given by,

PC(X) =

n(r+1)∑
i=1

BX(ζin(r+1))

In particular, X is supersingular iff PC(X) = 0.

Proof. When p ≡ 1 mod n then f = 1 so we know that a given product of Gaussian sums applied for
α ∈ An,p is a root of unity if and only if,

r∑
i=0

{µe0

n

}
=
r + 1

2

for each µ ∈ (Z/nZ)×. (WIP)

13 Rationality

Theorem 13.1. The variety X defined by equation

xq + yq + zp + wp = 0

is rational when gcd(p, q) = 1.

Proof. This variety is in the weighted projected space P(p, p, q, q). We want to define a map f from P(p, p, q, q)
to P× P by

(x0 : x1 : x2 : x3) 7→ ((x0 : x1), (x2 : x3)),

and we consider the locus D+(x0x2) ⊂ P(p, p, q, q) and its image D+(x0)×D+(x2) ∼= A× A ⊂ P× P under
f .
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We know that

D+(x0x2) = SpecR where R = k [x0, x1, x2, x3]

[
1

x0x2

]
0

Define the change of variable

x1,0 =
x1

x0
, x3,2 =

x3

x2
, x2,0 =

xp2
xq0
,

we content that D+(x0x2) = Spec(k[x1,0, x3,2, x2,0, x
−1
2,0]), as proved in lemma.

On the other hand, we can write D+(x0)×D+(x2) = Spec(k[s]⊗k k[t]) = A× A by let

s =
x1

x0
, t =

x3

x2
.

Then we can define the ring map
f∗ : k[s]⊗k k[t]→ R

by
s 7→ x1,0, t 7→ x3,2.

Now consider the variety X = V (xq0 + xq1 + xp2 + xp3) = V (I) in the affine patch D+(x0x2). The defining
equation of X after change of variable can be written as

f = 1 + xq1,0 + x2,0 + xp3,2x2,0 = x2,0(1 + xp3,2) + (1 + xq1,0)

Thus it is clear that

k[x1,0, x3,2, x2,0, x
−1
2,0]/(x2,0(1 + xp3,2) + (1 + xq1,0)) ∼= Frac(R/I)

Notice that f∗ : k[s] ⊗k k[t] → Frac(R/I) is surjective because we can write x2,0 and x−1
2,0 as a rational

function in term of x1,0 and x3,2. Furthermore, it is easy to see that f∗ is injective. Thus, f∗ is a bijective
rational map. For the inverse map of f∗, we map

x1,0 7→ s, x3,2 7→ t.

We thus show that X is birationally equivalent to P× P.

Lemma 13.2. Let R = k [x0, x1, x2, x3] be a weighted ring with weight (p, p, q, q) and gcd(p, q) = 1. Then

R+ = k [x0, x1, x2, x3]

[
1

x0x2

]
0

∼= k[x1,0, x3,2, x2,0, x
−1
2,0],

where

x1,0 =
x1

x0
, x3,2 =

x3

x2
, x2,0 =

xp2
xq0
.

Proof. We proceed by showing that if

m =
xa00 xa11 xa22 xa33

xb00 x
b2
2

for ai, bj > 0 with i = 0, 1, 2, 3 and j = 0, 1, and m has degree 0, then m can be written as a product of
x1,0, x3,2, x2,0, or x0,2.

If a0 > b0 and a2 > b2, then it is impossible for m to have degree 0.
If a0 > b0 and a2 < b2, then let b2 − a2 = c2 and a0 − b0 = c0. For m to have degree 0, we need

pc0 + pa1 + qa3 = qc2.

Since gcd(p, q) = 1, it must be the case that q|(c0 + a1). Write c0 + a1 = qk for some k ∈ Z. Our equation
now become

pk + a3 = c2
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Thus we can write m as

m =

(
xa10 xc00 x

a1
1 xa33

xa10 xpk2

)(
x3

x2

)a3
= xa11,0x

a3
3,2x

k
0,2

If a0 < b0 and a2 < b2, let c0 = b0 − a0 and c2 = b2 − a2. Then we have the equation

pa1 + qa3 = pc0 + qc2

with a1, a3, c0, c2 > 0.
Since gcd(p, q) = 1, we can write d1p+ d2q = 1, and |d1| < q and |d2| < p. Notice that d1d2 < 0.
Moreover, any other such equation can be written as (d1 + qr)p+ (d2 − pr)q = 1 for r ∈ Z. Without loss

of generality, let d1 > 0 and d2 < 0. Then

(d1 + qr)(d2 − pr) = d1d2 − prd1 + r(1− d1p)− pqr2

= d1d2 + r − 2d1pr − pqr2

If r > 0, the only positive term is r thus we know (d1 + qr)(d2 − pr) < 0.
If r < 0, we have −2d1pr > 0, but 2d1p < pq|r| since |d1| < q. Thus, it is impossible for both of the

coefficient to be positive at the same time. However, a1, a3, c0, c2 > 0. Therefore, it is also impossible for m
in this case to have degree 0.

14 Surfaces of the Form xa + yb + zc + wabc

Lemma 14.1. (From Shioda’s On Fermat Varieties) Let p be a prime, n be an integer not divisible by p,
and f = ordn(p). Suppose that for all µ relatively prime to n:

f−1∑
i=0

{
µpi

n

}
=
f

2

Then there does not exist a primitive character χ modulo n such that χ(−1) = −1 and χ(p) = 1.

Proof. Suppose there does exist such a character. As χ is primitive with χ(−1) = −1,

0 6= L(1, χ) =
iπg(χ)

n2

n∑
k=1

χ̄(k)k

As g(χ) is non-zero we must have:
n∑
k=1

χ̄(k)k 6= 0

Now let G be (Z/abcZ)× and let H be the subgroup of G generated by p. As χ is trivial on H:

n∑
k=1

χ̄(k)k =
∑

µ∈G/H

χ(µ)
∑
k∈µH

k

Now we have that:

f

2
=

f−1∑
i=0

{
µpi

n

}
=
∑
k∈µH

k

n

Thus
n∑
k=1

χ̄(k)k =
nf

2

∑
µ∈G/H

χ(µ)

Note that χ is a nontrivial character on G/H. Thus∑
µ∈G/H

χ(µ) = 0

and so we have a contradiction.

42



Lemma 14.2. Let p, a1, a2, . . . , ar be distinct primes. Suppose f = ordabc(p) and fi = ordai(p). There
exists a primitive character modulo a1a2 · · · ar such that χ(−1) = −1 and χ(p) = 1 if and only if there exist
integers 0 < αi < ai − 1 for each i such that

r∑
i=1

αr
fr
∈ Z

and α1 + α2 + · · ·+ αr is odd.

Proof. Let A = a1a2 · · · ar and χ : (Z/AZ)× → S1 be a character. As:

(Z/AZ)× =

r∏
i=1

(Z/aiZ)×

There exists characters χi : (Z/aiZ)× → S1 such that

χ(j) = χ1(j)χ2(j) · · ·χr(j)

As the ai are prime, there exists generators gi modulo ai for each i such that:

g
ai−1

fi
i ≡ p (mod ai)

Now there exists αi for each i such that:

χ(gi) = exp

(
2παi
ai − 1

)
Using these above definitions, the condition χ(p) = 1 is equivalent to

r∑
i=1

αr
fr
∈ Z

and the condition χ(−1) = −1 translates to α1 + α2 + · · · + αr is odd. Lastly, the condition that χ is
primitive just implies that χ1, χ2, χ3 are not trivial. Thus we lastly need α1 6= a− 1, α2 6= b− 1, α3 6= c− 1,
as desired.

Lemma 14.3. Let a, b, c, p be distinct primes. Suppose f = ordabc(p), f1 = orda(p), f2 = ordb(p), and
f3 = ordc(p) and let 2r, 2s, 2t be the highest power of 2 dividing f1, f2, f3 respectively. Then there exists a
character χ primitive modulo abc such that χ(−1) = −1 and χ(p) = 1 only if one of the following holds

• pf/2 ≡ −1 (mod abc)

• f2 = b− 1, f3 = c− 1, r > s, s = 1, t = 1

• f1 = a− 1, f2 = b− 1, f3 = c− 1, r > s, s = 2, t = 1

Proof. We will do this by casework, using the result of lemma 14.2. To make things easier for ourselves
suppose f ′1, f

′
2, f
′
3 are the largest odd numbers dividing f1, f2, f3 respectively. Let α1, α2, α3 be as in the

statement of lemma 14.2:

Case (r = s = t): This is simply equivalent to wf/2 ≡ −1 (mod p).

Case (r > s > t): If t 6= 1 taking α1 = f ′12r−s, α2 = f ′2(2s−t − 1), α3 = f ′32t−1 gives us a primitive
character satisfying the desired conditions. If t = 1 and s 6= 2, taking α1 = f ′12r−t−1, α2 = f ′22s−t−1, α3 =
f ′3(2t−1) gives us a primitive character satisfying the desired conditions. As there exists no such characters,
these cases are impossible. Hence r > s = 2 > t = 1.
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Now suppose we have r > s = 2 > t = 1. Consider the case α1 = f ′12r−s, α2 = 3f ′2, α3 = 2f ′3. This implies
that f3 = 2f ′3 = c− 1, as otherwise this gives a character and hence a contradiction. Similarly, consider the
case α1 = f ′12r−s+1, α2 = 4f ′2, α3 = f ′3. By the same reasoning, this implies that f2 = 4f ′2 = qb− 1. Lastly,
consider the case α1 = f ′12r, α2 = 2f ′2, α3 = f ′3. Again, this implies that f1 = 2rf ′2 = a− 1. This completes
our analysis of this case.

Case (r = s > t): Taking α1 = f ′1, α2 = f ′2(2s−t − 1), α3 = f ′3(2t − 1) gives us a primitive character
satisfying the desired conditions. Thus we get a contradiction, so this case is impossible.

Case (r > s = t): If t 6= 1, taking α1 = 2r−sf ′1, α2 = f ′2(2s − 2), α3 = f ′3 gives us a primitive character
satisfying the desired conditions. Hence t = 1.

Now suppose we have r > s = t = 1. Consider the case α1 = f ′12r−1, α2 = f ′2, α3 = 2f ′3. This implies
that f3 = 2f ′3 = c− 1, as otherwise this gives a character and hence a contradiction. Similarly, consider the
case α1 = f ′12r−1, α2 = 2f ′2, α3 = f ′3. By the same reasoning, f2 = 2f ′2 = b− 1.

We have now exhausted all possible cases and have shown that the only possible choices are those in the
theorem statement.

Lemma 14.4. (Coyne) Let R be a positive integer and let a1, a2, . . . , ak be positive integers all dividing R.

Then the number of solutions (b1, . . . , bk) ∈
∏k
i=1 Z/aiZ to

k∑
i=1

Rbi
ai
≡ 0 (mod R)

is equal to

gcd(a1, a2, . . . , ak)
∏k
i=1 ai

R

Proof. Consider the homomorphism:

φ :

k∏
i=1

Z/aiZ→ Z/RZ

given by

φ(b1, . . . , bk) =

k∑
i=1

Rbi
ai

(mod R)

The size of the kernel of this map is precisely the quantity we are looking for. Now consider im φ. This will
be the elements of Z/RZ with nonzero image in Z/ gcd(a1, a2, . . . , ak)Z. Thus:

|im φ| = R

gcd(a1, a2, . . . , ak)

Lastly, by the first isomorphism theorem,

| kerφ| =
|
∏k
i=1 Z/aiZ|
|imφ|

=
gcd(a1, a2, . . . , ak)

∏k
i=1 ai

R

Lemma 14.5. Let a, b, c, p be distinct primes. Suppose f = ordabc(p), f1 = orda(p), f2 = ordb(p), and
f3 = ordc(p) and let 2r, 2s, 2t be the highest power of 2 dividing f1, f2, f3 respectively. Lastly, let f ′1, f

′
2, f
′
3 be

the largest odd integers dividing f1, f2, f3 respectively. If r ≥ s ≥ t ≥ 1 and pf/2 6≡ −1 (mod abc), there does
not exist a character χ primitive modulo a, b, c such that χ(−1) = −1 and χ(p) = 1 if and only if f ′1, f

′
2, f
′
3

are pairwise coprime and one the following two conditions holds:

1. f2 = b− 1, f3 = c− 1, r > s, s = 1, t = 1
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2. f1 = a− 1, f2 = b− 1, f3 = c− 1, r > s, s = 2, t = 1

Proof. By lemma 14.3, all that is left to show is that if one of the two cases holds then f ′1, f
′
2, f
′
3 being

pairwise coprime is a necessary and sufficient condition on the existence of a character. By lemma 14.2, such
a character exists if and only if we can find α1, α2, α3 such that:

S :=
α1

2rf ′1
+

α2

2sf ′2
+

α3

2tf ′3
∈ Z

and α+α2 +α3 ∈ Z. In the first of our two conditions, the only possible values of α1, α2, α3 modulo 2r, 2s, 2t

such that the sum of the αi is odd and the denominator of S is odd are α1 ≡ 2r−1 (mod 2r) and exactly one
of α2, α3 is odd. Thus, as the choice of α1, α2, α3 modulo f ′1, f

′
2, f
′
3 will determine if S is an integer, there

does not exist such a primitive character if and only if the only choices of α2, α3 have f ′2|α2 and f ′3|α3.
Similarly, in the second of our two conditions, the only possible values have one of α1, α2, α3 modulo

2r, 2s, 2t that do give rise to a character has one of the αs 0 in the respective modulus. Furthermore, there
exists at least one choice of modular remainders for which each of them is 0 and no others are. Thus there
does not exist such a primitive character if and only the only choices of α1, α2, α3 are divisible by f ′1, f

′
2, f
′
3

respectively.
In both cases, this comes down to determining whether there are solutions to:

T (γ1, γ2, γ3) :=
γ1

f ′1
+
γ2

f ′2
+
γ3

f ′3
∈ Z

with fi - γi as we can pick α1, α2, α3 modulo f ′1, f
′
2, f
′
3 respectively such that γ1 = 2iα1, γ2 = 2jα2, γ3 = 2kα3

for any i, j, k.
Let R = lcm (f ′1f

′
2f
′
3) and wi. Any choice of γi with T ∈ Z will have f ′2|α2, f

′
3|α3 if and only if f ′1|α1.

Thus T ∈ Z if and only if the number of solutions to:

Rγ1

f ′1
+
Rγ1

f ′1
+
Rγ1

f ′1
≡ 0 (mod R)

is 1. By lemma 14.4, this occurs if and only if:

f1f2f3 gcd(f1, f2, f3) = lcm (f1, f2, f3)

Which occurs if and only if f1, f2, f3 are pairwise coprime, as desired.

Theorem 14.6. Let a, b, c, p be distinct primes. Suppose that the order of p modulo each of a, b, c is even.
Then he projective variety V defined by

wabc + xa + yb + zc = 0

over Fp is supersingular if and only if for all µ relatively prime to abc,{
µpi

abc

}
=
f

2

Proof. By (Insert Citation), V is supersingular if and only if for all a - β1, b - β2, c - β3, abc - β4 such that

β1

a
+
β2

b
+
β3

c
+

β4

abc
∈ Z

we have:
f∑
i=0

[{
µβ1p

i

a

}
+

{
µβ2p

i

b

}
+

{
µβ3p

i

c

}
+

{
µβ4p

i

abc

}]
= 2f

As p has even order modulo each of a, b, c there exists a power of it which is -1 modulo each of a, b, c. As
such we can pair up to get

f∑
i=0

{
µβ1p

i

a

}
=

f∑
i=0

{
µβ2p

i

b

}
=

f∑
i=0

{
µβ3p

i

c

}
=
f

2
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Hence the above condition is equivalent to: {
µβ4p

i

abc

}
=
f

2

As µβ4 ranges over the same set as just µ, this is equivalent to for all µ relatively prime to abc:{
µpi

abc

}
=
f

2

as desired

Theorem 14.7. Let a, b, c, p be distinct primes. Suppose f = ordabc(p), f1 = orda(p), f2 = ordb(p), and
f3 = ordc(p) and let 2r, 2s, 2t be the highest power of 2 dividing f1, f2, f3 respectively. Lastly, let f ′1, f

′
2, f
′
3 be

the largest odd integers dividing f1, f2, f3 respectively. If r ≥ s ≥ t ≥ 1 and the projective variety V defined
by

wabc + xa + yb + zc = 0

over Fp is supersingular and pf/2 6≡ −1 (mod abc) then f ′1, f
′
2, f
′
3 are pairwise coprime and one the following

two holds:

• f2 = b− 1, f3 = c− 1, r > s, s = 1, t = 1

• f1 = a− 1, f2 = b− 1, f3 = c− 1, r > s, s = 2, t = 1

Proof. By theorem 14.6, we have for all µ relatively prime to abc:{
µpi

abc

}
=
f

2

The result of lemma 14.1 then implies that there does not exist a character χ primitive modulo abc such
that χ(p) = 1, χ(−1) = −1. From this, lemma 14.5 gives us the desired result.

Lemma 14.8. Suppose a, b, c, p are primes with f = ordabc(p) and f1 = ordbc(a). Let H be the subgroup of
(Z/aZ)× generated by pf1 . Then for all µ not divisible by a, b, c we have:

∑
h∈(Z/aZ)×/H

f−1∑
i=0

{
µhpi

abc

}
=
f1(a− 1)

2

if and only if for all µ not divisible by b, c we have:

f1−1∑
i=0

{
µpi

bc

}
=

f1−1∑
i=0

{
µupi

bc

}
where u ≡ a−1 (mod bc).

Proof. Note that we have:

∑
h∈H

f−1∑
i=0

{
µhpi

abc

}
=

∑
k∈(Z/aZ)×

f1−1∑
i=0

{
µkpi

abc

}
=

∑
k∈(Z/aZ)

f1−1∑
i=0

{
µkpi

abc

}
−
f1−1∑
i=0

{
µupi

bc

}
(1)

where we view k ∈ (Z/aZ)× as the element x for which:

x ≡ k (mod a)

x ≡ 1 (mod b)

x ≡ 1 (mod c)
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Now as f1 = ordp(bc) for each pair of remainders f (mod b), g (mod c) there exists at most one remainder
modulo e (mod a) such that there exists an i for which pi is equivalent to each of those in the respective
modulus. As such we have:

∑
k∈(Z/aZ)×

f1−1∑
i=0

{
µkpi

abc

}
=

a−1∑
j=0

f1−1∑
i=0

{
µpi + jbc

abc

}

Now for each i let ji be the j for which {
µpi + jbc

abc

}
<

1

a

We then get:

∑
k∈(Z/aZ)×

f1−1∑
i=0

{
µkpi

abc

}
=

a−1∑
j=0

f1−1∑
i=0

{
µpi + j0bc+ jbc

abc

}

=

a−1∑
j=0

[
f1−1∑
i=0

{
µpi + j0bc

abc

}
+
j

a

]

=
(a− 1)f1

2
+

f1−1∑
i=0

a

{
µpi + j0bc

abc

}

Now as
{
µpi+j0bc
abc

}
< 1

a we have

a

{
µpi + j0bc

abc

}
=

{
µapi + j0abc

abc

}
=

{
µpi

bc

}
Thus we get: ∑

k∈(Z/aZ)×

f1−1∑
i=0

{
µkpi

abc

}
=

(a− 1)f1

2
+

f1−1∑
i=0

{
µpi

bc

}
Plugging this back into equation gives:

∑
h∈H

f−1∑
i=0

{
µhpi

abc

}
=

(a− 1)f1

2
+

f1−1∑
i=0

{
µpi

bc

}
−
f1−1∑
i=0

{
µupi

bc

}
Rearranging we get:

f1−1∑
i=0

{
µupi

bc

}
=

f1−1∑
i=0

{
µpi

bc

}
+

(a− 1)f1

2
−
∑
h∈H

f−1∑
i=0

{
µhpi

abc

}
which implies the desired result.

Theorem 14.9. Suppose a, b, c, p are primes with f = ordabc(p). Let f1 = orda(p), f2 = ordb(p), f3 =
ordc(p). Let 2r, 2s, 2t be the highest power of 2 dividing f1, f2, f3 respectively. If r > s = t = 1, f2 = b− 1,
f3 = c− 1, the largest odd divisors of f1, f2, f3 are comprime, and there exists i, j such that pi ≡ b (mod ac)
and pi ≡ (mod ab) then the projective variety V defined by

wabc + xa + yb + zc = 0

over Fp is supersingular.
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Proof. Let u be defined to be the integer satisfying the following equivalences:

u ≡ 1 (mod a)

u ≡ −1 (mod b)

u ≡ 1 (mod c)

Similarly let v be an integer such that

v ≡ 1 (mod a)

v ≡ 1 (mod b)

v ≡ −1 (mod c)

Let H be the subgroup of (Z/abcZ)× generated by p. Let S be a set of coset representatives for H in
(Z/abcZ)× . We claim for all x ∈ S the cosets xH,−xH, uxH, vxH are distinct. Note that as r > s = t > 0
−1, u, v cannot be powers of p. Thus uH, vH,−H are distinct from H. Now note that u2 = v2 = 1.
Furthermore, uv ∈ −H as:

−pf/2 ≡ 1 (mod a)

−pf/2 ≡ −1 (mod b)

−pf/2 ≡ −1 (mod c)

Thus (uH)2 = H, (vH)2 = H, (uH)(vH) = −H. Thus implies H,−H,uH, vH are the distinct cosets of H
and hence xH,−xH, uxH, vxH are distinct. Now define

g(µ) :=

f∑
i=1

{
µpi

abc

}
By theorem 14.6, V is supersingular if and only if:

g(µ) =
f

2

for all µ relatively prime to abc. As g(µ) = g(pµ), we then only need to show equation 14 holds for all µ ∈ S.
We will now show that those equivalences holds. Due to pairing up:

g(µ) + g(−µ) = f

Now as b lies in the subgroup generated by p modulo ac, we have for all µ:

f2−1∑
i=0

{
µpi

ac

}
=

f2−1∑
i=0

{
µbpi

ac

}
Thus by lemma 14.8, for all µ relatively prime to abc,

∑
g∈(Z/bZ)×/G

f−1∑
i=1

{
µgpi

abc

}
=
f2(b− 1)

2

where G is the subgroup of (Z/bZ)× generated by pf4 for f4 = ordac(p) = lcm (f1, f3). As the odd parts
of f1, f2, f3 are coprime, p is a primitive root modulo b, and r > s = 1, we will have gcd(f4, b − 1) =
gcd(f4, f2) = 2. Thus G will be the set of squares modulo b. As s = 1, b ≡ 3 (mod 4) and so −1 is not a
square modulo b. As such, 1, u are the coset representatives of (Z/bZ)×/G. Thus we have:

g(µ) + g(uµ) = f
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As (uvµH) = −µH, plugging in −µ gives:

g(−µ) + g(vµ) = f

As g(−µ) + g(µ) = f , this means g(µ) = g(vµ). Applying the same reasoning to the subgroup generated by
p modulo ab:

g(µ) + g(vµ) = f

which implies for all µ relatively prime to abc we have: g(µ) = f/2. As stated before, this implies V is
supersingular.

Theorem 14.10. Suppose d, e, g, p are primes with p a primitive root modulo e, g and v2(e−1) > v2(g−1) = 1
and gcd(e− 1, g − 1) = 2. If the projective variety V defined by

wdeg + xd + ye + zg = 0

over Fp is supersingular then there exists i such that pi ≡ d (mod eg).

Proof. As p is a primitive root modulo e, g and gcd(e− 1, g − 1) = 2, p generates a subgroup of order φ(eg)
2

modulo eg. Thus if there does not exist an i for which pi ≡ d (mod eg), d, p must generate (Z/egZ)×. By
theorem 14.6 and lemma 14.8, we must have for each µ relatively prime to ac

φ(eg)
2 −1∑
i=0

{
µpi

eg

}
=

φ(eg)
2 −1∑
i=0

{
µdpi

eg

}
However, as d, p generate (Z/egZ)×, this implies for each µ

φ(eg)
2 −1∑
i=0

{
µpi

eg

}

is constant and thus equal to φ(eg)
2 as summing the sums for µ = 1, µ = −1 gives φ(eg) by cancellation.

However, by lemma 14.1, this implies there cannot exist a character primitive modulo eg with χ(−1) =
−1, χ(p) = 1. However, if we take α1 = e−1

2 , α3 = g−1
2 then:

α1

f1
+
α3

f3
∈ Z

and α1 + α3 is odd. Thus by lemma 14.2, there should exist such a character satisfying those conditions,
which gives us a contradiction. Thus d is in the group generated by p modulo eg.

Corollary 14.10.1. Suppose a, b, c, p are primes with p a primitive root modulo a, b, c, v2(a−1) > v2(b−1) =
2 > v2(a− 1) = 1, and the odd parts of a− 1, b− 1, c− 1 relatively prime. If the projective variety V defined
by

wabc + xa + yb + zc = 0

over Fp is supersingular then there exists i, j, k such that pi ≡ a (mod bc), pj ≡ b (mod ac), pk ≡ c (mod ab).

Proof. The existence of i, j follow from theorem ??. Note that p generates a group of order φ(ab)
4 modulo

ab. By theorem 14.6 and lemma 14.8, we must have for each µ relatively prime to ab

φ(ab)
2 −1∑
i=0

{
µpi

ab

}
=

φ(ab)
2 −1∑
i=0

{
µcpi

ab

}
Now if c, p generate (Z/abZ)×, then

φ(ab)
2 −1∑
i=0

{
µpi

ab

}
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is constant across all µ relatively prime to ab. If c, p don’t generate (Z/abZ)× then they generate a group
N = 〈c, p〉 of index 2 over 〈p〉. As a result, c2 ∈ 〈p〉. Thus there exists an i such that

pi ≡ c2 (mod ab)

Assume the i above is minimal. If i is odd then v2(ordab(c)) = r + 1, which cannot happen as max(v2(a −
1), v2(b− 1)) = r. If r is even, then there exists a u such that u2 = 1 (mod ab) and

pi/2 ≡ uc (mod ab)

u must be ±1 modulo each of a, b. If it is 1 mod b, then it is either equal to pφ(ab)/4 or pφ(ab)/8. Otherwise,
either pφ(ab)/8u = −1 or u = −1. Either way we have −1 ∈ 〈c, p〉. However, this implies

φ(ab)
2 −1∑
i=0

{
µpi

ab

}
=

φ(ab)
2 −1∑
i=0

{
−µpi

ab

}
However, by cancellation the two sides of the above equality sum to φ(ab)/4. Thus in both of our cases we
have:

φ(ab)
2 −1∑
i=0

{
µpi

ab

}
=
φ(ab)

8

However, by lemma 14.1, this implies there cannot exist a character primitive modulo ab with χ(−1) =

−1, χ(p) = 1. However, if we take α1 = a−1
4 , α3 = 3(b−1)

4 then:

α1

f1
+
α3

f3
∈ Z

and α1 + α3 is odd. Thus by lemma 14.2, there should exist such a character satisfying those conditions,
which gives us a contradiction. Thus c is in the group generated by p modulo ab, as desired.

Theorem 14.11. Suppose a, b, c, p are primes with f = ordabc(p). Let f1 = orda(p), f2 = ordb(p), f3 =
ordc(p). Let 2r, 2s, 2t be the highest power of 2 dividing f1, f2, f3 respectively. If r > s = 2 > t = 1,
f1 = a − 1, f2 = b − 1, f3 = c − 1, the largest odd divisors of f1, f2, f3 are coprime, and there exists i, j, k
such that pi ≡ a (mod bc), pj ≡ b (mod ac), and pk ≡ c (mod ab) then the projective variety V defined by

wabc + xa + yb + zc = 0

over Fp is supersingular.

Proof. Suppose i is an integer such that i2 ≡ −1 (mod b). Let α1 be defined to be the integer satisfying the
following equivalences:

α1 ≡ 1 (mod a)

α1 ≡ i (mod b)

α1 ≡ 1 (mod c)

Let H = 〈p〉 in G = (Z/abcZ)×. Note that −1, α1 generate the 8 cosets of H. Let Ga be the subgroup of G
with elements ≡ 1 (mod bc) and let Gb, Gc be defined similarly. Let Ha = Ga ∩H and let Hb, Hc be defined
similarly. Observe the following:

• The cosets of Hc in Gc are generated by −α2
1

• The cosets of Hb in Gb are generated by α1

• The cosets of Hc in Gc are generated by −α1
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Let

g(µ) =

f−1∑
i=0

{
µpi

abc

}
As a is in the group generated by p in (Z/bcZ)× we have for all µ relatively prime to bc

f1−1∑
i=0

{
µpi

bc

}
=

f1−1∑
i=0

{
µapi

bc

}
Thus by lemma 14.8, for all µ relatively prime to abc,

∑
g∈Gb/Hb

f−1∑
i=1

{
µgpi

abc

}
=
f1(a− 1)

2

Which by observation 1, is equivalent to:

g(µ) + g(−α2
1µ) = f

By the same reasoning observation (2) becomes:

g(µ) + g(α1µ) + g(α2
1µ) + g(α3

1µ) = 2f

and observation (3) becomes:

g(µ) + g(−α1µ) + g(α2
1µ) + g(−α3

1µ) = 2f

These equations combined with:
g(µ) + g(−µ) = f

gives:

g(µ) =
f

2

By theorem 14.6, V is supersingular.

Conjecture 14.12. Let a, b, c, p be distinct primes. Let f = ordabc(p), f1 = orda(p), f2 = ordb(p), f3 =
ordc(p) and let 2r, 2s, 2t be the largest powers of 2 dividing f1, f2, f3 respectively. If r ≥ s ≥ t, the variety V
defined by the equation:

xa + yb + zc + wabc

is supersingular if and only if pf/2 ≡ −1 (mod abc) or if conditions 1,2 hold and either of 3,4 hold:

1. r > s and f1
2r ,

f2
2s ,

f3
2t are pairwise coprime.

2. f2 = b− 1, f3 = c− 1 and there exists an integer j such that pj ≡ c (mod ab)

3. s = t = 1 and there exists an integer i such that pi ≡ b (mod ac)

4. s = 2, t = 1, f1 = a − 1, and there exists an integer i such that pi ≡ a (mod bc) and there exists an
integer j such that pj ≡ b (mod ac)

15 Surfaces of the Form wa + xa + yab + zab

Let X be the diagonal surface defined by wa + xa + yab + zab over Fp.

Lemma 15.1. Let H1, H2 / G be normal subgroups with quotient maps πi : G → G/Hi and consider the
maps,

ϕi,j : Hi ↪→ G
πj
� G/Hj

Then ϕ1,2 is surjective iff ϕ2,1 is surjective.
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Proof. Consider the commutative diagram with exact rows and columns,

0 0 0

0 H1 ∩H2 H1 K1 0

0 H2 G G/H2 0

0 K2 G/H1 C 0

0 0 0

ϕ1,2
ϕ̄1,2

ϕ2,1
π1

π2

ϕ̄2,1

where Ki = Hi/(H1 ∩H2) and the maps ϕ̄i,j : Ki → G/Hj are induced by the maps ϕi,j and are injective
by the first isomorphism theorem. Exactness and commutativity are obvious except at C which I have yet
to define! By commutativity and surjectivity, imϕ̄i,j = πj(H) / imπj = G/Hj so =ϕ̄i,j is a normal subgroup
and thus cokerϕ̄i,j = (G/Hj)/imϕ̄i,j exists. Take C = cokerϕ̄1,2. Furthermore, the exactness of columns
gives a surjective map G/H1 → C which makes the bottom right square commute. By the nine lemma, the
bottom row is exact proving that C = cokerϕ̄2,1. Finally, by exactness,

ϕ̄1,2 is an isomorphism ⇐⇒ C = 0 ⇐⇒ ϕ̄2,1 is an isomorphism

But ϕi,j is a surjection iff ϕ̄i,j is an isomorphism so ϕ1,2 is surjective iff ϕ2,1 is surjective.

Lemma 15.2. Let p : G→ G′ be surjective and H /G a normal subgroup. Then there exist coset represen-
tatives for G/H with fixed image in G′ if and only if p(H) = G′. Furthermore, we if this holds, we may take
the coset representatives to be trivial in G′.

Proof. A set S ⊂ G contains a full set of coset represenatives for G/H if π(S) = G/H. Therefore, we require
that π(p−1(x)) = G/H for some x ∈ G′. Since we must hit the identity, H ∩ p−1(x) 6= ∅ so there exits
h ∈ H such that p(h) = x. Thus, p−1(x) = h ker p so π(p−1(h)) = π(h)π(ker p) = π(ker p) so we may take
h = e. The conclusion holds if and only if π(ker p) = G/H.

Take H1 = H and H2 = ker p in Lemma 15.1 and thus,

imϕ2,1 = π(ker p) = G/H ⇐⇒ imϕ1,2 = π2(H) = G/ ker p

but the map p naturally factors through G/ ker p as,

H G G′

G/ ker p

p

π2 ∼

so p(H) = G′ ⇐⇒ π2(H) = G/ ker p.

Theorem 15.3. Suppose there exists a subgroup H ⊂ (Z/abZ)× such that p ∈ H and −1 /∈ H

H ↪→ (Z/abZ)× → (Z/aZ)×

is surjective. Then X is not supersingular.
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Proof. By Theorem 6.15, if X is supersingular then,

3∑
i=0

f−1∑
j=0

{
µeip

j

ab

}
= 2f

However, there is a projection map X → F 3
a so F 3

a is supersingular and thus, by Shioda, pv ≡ −1 mod a.
However, we know that,

e′0
a

+
e′1
a

+
e′2
ab

+
e′2
ab

=
b(e′0 + e′1) + e′2 + e′3

ab
∈ Z

and thus b | e′2 + e′3. Thus we have,

f−1∑
j=0

{
µe′0p

j

a

}
+

f−1∑
j=0

{
µe′1p

j

a

}
+

f−1∑
j=0

{
µe′2p

j

ab

}
+

f−1∑
j=0

{
µe′3p

j

ab

}
= 2f

however because pv ≡ −1 mod a,

f−1∑
j=0

{
µe′0p

j

a

}
+

f−1∑
j=0

{
µe′1p

j

a

}
= f

so we know that,
f−1∑
j=0

{
µe′2p

j

ab

}
+

f−1∑
j=0

{
µe′3p

j

ab

}
= f

Define the sum,

S(x) =

f−1∑
j=0

{
xpj

ab

}
The above gives the functional equation,

S(x) + S(y) = f

whenever x+ y ≡ 0 mod b. In particular, if x ≡ y mod b then S(x) = S(y).

Let χ : (Z/abZ)× → C× be a Dirichlet character such that χ(H) = 1 and χ(−1) = −1. This is possible
assuming that −1 /∈ H. Let m0 be the conductor of χ with a map ϕ : (Z/abZ)× → (Z/m0Z)× and
H0 = ϕ(H) and character χ0 : (Z/m0Z)× → C× inducing χ. Now define the sum,

S0(x) =
∑

t∈ϕ(〈p〉)

{
xt

m0

}
=

1

| 〈p〉 ∩ kerϕ|
∑
t∈〈p〉

{
(ab/m0)xt

ab

}
=

1

| 〈p〉 ∩ kerϕ|
S

(
ab

m0
x

)
Thus, S0(x) = S0(y) whever m0 | a(x − y) ⇐⇒ x ≡ y mod m̄0 = m0/(m0, a). Next, let G = (Z/m0Z)×

and K = ϕ(〈p〉) and consider,∑
x∈G

χ0(x)
x

m0
=

∑
gH0∈G/H0

∑
h∈H0/K

∑
x∈hgK

χ0(x)
x

m0
=

∑
gH0∈G/H0

χ0(g)
∑

h∈H0/K

∑
x∈ghK

x

m0

=
∑

gH0∈G/H0

χ0(g)
∑

h∈H0/K

S0(gh)

since χ0 is trivial on H0 and thus descends to a nontrivial character on G/H0. By Lemma 15.2, the surjective
map,

H ↪→ (Z/abZ)× → (Z/aZ)×

alows us to choose coset representatives of G/H0 which are all trivial under the map (Z/m0Z)× → (Z/m̄0Z)×.
Therefore, gh ≡ h mod m̄0 and thus,

∑
x∈G

χ0(x)
x

m0
=

∑
gH0∈G/H0

χ0(g)
∑

h∈H0/K

S0(h) =

 ∑
h∈H0/K

S0(h)

 ·
 ∑
gH0∈G/H0

χ0(g)

 = 0
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since χ0 is a nontrivial character on G/H0. This is a contradiction because,∑
gH0∈G/H0

χ0(g) ∼ L(1;χ0) 6= 0

16 Other Families

Theorem 16.1. Let X be the variety defined by,

xa0 + xa1 + xb2 + xab3

where a and b are coprime. Suppose that ordb(p) is even. Then X is supersingular over Fp if and only if
pv ≡ −1 mod ab for some v.

Theorem 16.2. Let X be the variety defined by,

xa0 + · · ·+ xaka−1 + xbka + · · ·+ xbka+kb
+ xabka+kb+1 + · · ·+ xabr

where a and b are coprime and ka, kb ≥ 2. Then X is supersingular over Fp if and only if pv ≡ −1 mod ab
for some v.

17 Conjectures

Lemma 17.1. If,

S(a) =

f−1∑
i=0

{
apj

m

}
=
f

2

for all a coprime to m then there does not exist a primitive character χ modulo m such that χ(−1) = −1
and χ(p) = 1.

Lemma 17.2. If,

S(a) =

f−1∑
i=0

{
apj

m

}
=
f

2

for all a ∈ Z/mZ then pv ≡ −1 mod m for some v ∈ Z.
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