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SM1. Relaxation of a-rectangularity. In this section, we investigate a vari-
ant of DR-POMDP where we relax the rectangularity condition of the ambiguity set
in the actions. So far, we have only considered the setting where the ambiguity set
is rectangular in terms of the states in & and the actions in A. This is known as
(s, a)-rectangular set in the literature of [3], who defined the term in the context of
robust MDP. Ref. [3] also considered s-rectangular set in robust POMDP, which is
only rectangular in terms of the states S. This setting has randomized policy as the
optimal policy. We take a similar approach and formulate the Bellman equation:
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where ¢, is the probability for selecting action a. We define the ambiguity set to be
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where @, € R? is a vector of auxiliary variables, and
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Here, F, € ka(\A|><\S|><|Z|)’ G, € ka|A\’ H, e kaL, cs € Rk, B, € RZX(\A|><|S|><|Z|)’
C, e R E, e R, and d, € R”.
The value function is also convex in the form (4.10), since for ¢ < T,
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where J,, € RISIXUAIXISIXIZD) {5 a matrix of zeros and ones that maps ps to Pass.
For an exact algorithm, we solve the inner minimization problem for all ¢ € A(A),
Q.. € Conv(A**Y), Vz € Z, a € A. The optimal objective is used for constructing
the set Af, at each time step ¢.

SM2. General Ambiguity Set. In this section, we provide a general form of
the ambiguity set where the mean values are on an affine manifold, and the supports
are conic representable. For all a € A and s € S, we define a non-empty ambiguity
set
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where 1,5 € R” is a vector of auxiliary variables, and a support with a non-empty

relative interior
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Here, F,, € IRIC><(|S\><|Z\)7 Gas € kal’ H,, € kaL’ Cus € Rk, B,s € REX(\S|><|Z|),
Cus € RV B, € R*E and d,, € RY. The symbol <. represents a generalized
inequality with respect to a proper cone K,;. We denote the marginal distribution
by s = H(pas ras) [las, and also extend the definition to the ambiguity set so that
Dos = H(pas,ms) Dys = UﬂaseDas H(pas,ms) flas- The auxiliary variables u,s are used
for “lifting” techniques, enabling the representation of nonlinear constraints to linear
ones.

SM3. Proofs of Theorems 4.3 and 4.4.
First, we provide a detailed proof for Theorem 4.3 below.

Proof. We show the result by induction. When ¢t = T, VT(b) = 0 satisfies (4.10).
For t < T, the inner problem Q'(b,a) described in (4.7) becomes
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for all a € A. Here I(-) is an indicator function, such that if event - is true, it returns
value 1 and 0 otherwise. Associating the dual variables p,s and w,s; with constraints
(SM3.1b) and (SM3.1c), respectively, we formulate the dual of (SM3.1) as
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Constraints (SM3.2b) are further equivalent to the following inequality with a mini-
mization problem on the right-hand side (RHS).
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Substituting (4.10) for V**! and (4.1) for f(b,a,pa, z), we obtain
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s.t. (SM3.3b)—(SM3.3e).

Since the objective of the maximization problem is linear in terms of a,,,Vz € Z, the
optimal objective value does not change by taking the convex hull of A**!, denoted
as Conv (A**1). Bringing the maximization to the front, we have
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The expression in the bracket is convex (linear) in (pg, @t,) for fixed ay., z € Z, and
concave (affine) in a,,, z € Z given fixed values of (p,, @,). Moreover, (SM3.3b)—(SM3.3¢)
and Conv (A*T!) are convex sets. The minimax theorem (see, e.g., [2], [1]) ensures
that the problem is equivalent to
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We take the dual of the inner minimization by associating dual variables k.., k2.,
Oas With constraints (SM3.3b)—(SM3.3d), respectively. We thus have the following
equivalence:
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Due to (SM3.3), we substitute ) _swas in the objective function (SM3.2a) with
(SM3.7). As a result, the value function (4.5) is equivalent to
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and after taking the dual of the most inner maximization problem, we have
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Defining set A! as

{ (E(a, a0, Yz € Z,5), SES)T Ya € A, }’

Yo, € Conv (AtH) ,Vz€Z

it follows that the above value function in (SM3.9) is of the form (4.10). Furthermore,
by induction, this is true for all t. This completes the proof. 0

The proof of Theorem 4.4 is given as follows.

Proof. Consider two arbitrary value functions V7 and V5. Given belief state b, let

a: = arg max mir} E(pa,ra,)NlLa [Z bs (Tas + B Z ]-Tszas‘/; (f(bvavpavz))>‘| y

a€A  pa€Da seES z€Z

for i = 1,2, and for all actions a € A, denote
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for i = 1, 2. First, suppose that £V;(b) > LV2(b). Then,
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The inequality follows that we replace the nature’s optimal decision 'uZIJ for V1 by
/L:;Ig, and replace the DM’s optimal solution a3 for V4 by a7. Then, by changing the
difference between V; and V5 to the absolute value of the difference, we have

(SMBAL) < BBy, i, {Z be 31T Lepay, x [V (£(b,al,par ) = Vo (f(b,ai,z,pa;))”

s€S z€EZ

<5E(pu* ra) s S >l J:Pats %up |v1(b)—v2(b)\
SES z2€Z A(S

=B sup |Vi(b) —Va(b)].
b’ eA(S)

The second inequality follows that we take the supremum for all belief states b’ €
A(S), and the last equality is because E(”GI e H (Y sesbs Snes 1T Iepars] = 1.

The same result holds for the case where LV;(b) < LV2(b). Thus, for any belief
state value b, it follows that

|LVi(b) — LV(b)| < B sup [Vi(b') — Va(b')],
b EA(S)

and therefore,

sup |LVi(b) — LVa(b)| < B sup |Vi(b) — Va(b)],

beA(S) b EA(S)
yielding that £ is a contraction under 0 < 8 < 1. This completes the proof. a0
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