
Online E-companion to:
“An Integrated Decomposition and Approximate Dynamic Programming

Approach for On-demand Ride Pooling”

Xian Yu and Siqian Shen∗

Abstract

Through smartphone apps, drivers and passengers can dynamically enter and
leave ride-hailing platforms. As a result, ride-pooling is challenging due to com-
plex system dynamics and different objectives of multiple stakeholders. In this pa-
per, we study ride-pooling with no more than two passenger groups who can share
rides in the same vehicle. We dynamically match available drivers to randomly ar-
riving passengers and also decide pick-up and drop-off routes. The goal is to mini-
mize a weighted sum of passengers’ waiting time and trip delay time. A spatial-and-
temporal decomposition heuristic is applied and each subproblem is solved using
Approximate Dynamic Programming (ADP), for which we show properties of the
approximated value function at each stage. Our model is benchmarked with the one
that optimizes vehicle dispatch without ride-pooling and the one that matches current
drivers and passengers without demand forecasting. Using test instances generated
based on the New York City taxi data during one peak hour, we conduct computa-
tional studies and sensitivity analysis to show (i) empirical convergence of ADP, (ii)
benefit of ride-pooling, and (iii) value of future supply-demand information.

This online companion provides proofs of some results omitted from the main body
of the paper. We also report some additional computational results. The numbered ref-
erences and citations correspond to those in the main paper, and all new expressions,
results, figures and tables are numbered contiguously following those in the main paper.

Proof of Theorem 1

Theorem 1 Let � be the generalized component-wise inequality over all dimensions of the state
space. The optimal value function is monotone based on (19) and (20).

Proof: Suppose that Rt ≤ R′
t, Dt = D′

t. According to Proposition 3.1 in Jiang and Powell
(2015), to show Vt(St) ≤ Vt(S

′
t), we only need to verify

∗Xian Yu and Siqian Shen are with Department of Industrial and Operations Engineering at the Univer-
sity of Michigan in Ann Arbor, USA. yuxian@umich.edu, siqian@umich.edu

1



(1) For every St, S
′
t with St � S ′

t, xt ∈ D and Wt+1, the state transition function f (i.e.,
the composition of SM,W and SM,x) satisfies

f(St,xt,Wt+1) � f(S ′
t,xt,Wt+1).

(2) For every t < T , St, S
′
t with St � S ′

t, xt ∈ D,

Ct(St,xt) ≤ Ct(S
′
t,xt), CT (ST ) ≤ CT (S

′
T ).

(3) For each t < T , Rt and Wt+1 are independent.
First of all, (3) is true due to our assumption on Wt+1. Because Rta ≤ R′

ta, state S ′
t has

R′
ta−Rta more drivers than state St. To have xt (defined for state St) also be feasible under

state S ′
t (i.e., it should satisfy the equality constraints (5)), we extend decision variable xt

to x̃t = (x̃tad)a∈At,d∈D for state S ′
t as follows: for every a ∈ At,

x̃tad =


xtab, if d = b ∈ Bt
xtad +R′

ta −Rta, if d = ∅
0, otherwise,

which means that x̃t is the same as xt for the number of drivers within Rta and the ex-
tended decision is to hold the extra R′

ta−Rta drivers (i.e., to assign no passenger to them).
We let

St+1 = f(St,xt,Wt+1) = (Rt+1, Dt+1)

S ′
t+1 = f(S ′

t, x̃t,Wt+1) = (R′
t+1, D

′
t+1).

Since only the values of Wt+1 determine Dt+1, we have Dt+1 = D′
t+1.

According to (8),

Rx
ta′ =

∑
a∈At

∑
d∈D

δa′(a,xt)xtad, ∀a′ ∈ At,x

Rx
ta′

′ =
∑
a∈At

∑
d∈D

δa′(a, x̃t)x̃tad, ∀a′ ∈ At,x̃.

Because xtad ≤ x̃tad, we have Rx
ta′ ≤ Rx

ta′
′, and furthermore Rt+1 ≤ R′

t+1 due to the mono-
tonicity of transition function aM,W .

Therefore, St+1 � St+1′ , which shows the monotonicity of transition function f .
On the other hand, because the reward functionCt(St,xt) is determined by (xtab)a∈At,b∈Bt ,

while (xta∅)a∈At does not contribute toCt(St,xt), we haveCt(St,xt) = Ct(S
′
t, x̃t). This com-

pletes the proof.

Proof of Lemma 1

Lemma 1 1. If a 6∈ A0
t ∪ A1

t or a ∈ A0
t ∪ A1

t , (a, b) 6∈ S, ∀b ∈ Bt, then νa = γvna∅.

2. If a ∈ A0
t , then νa ≥ minb:(a,b)∈S {λ1wab − P + γvnab};

2



3. if a ∈ A1
t , then νa ≥ minb:(a,b)∈S {λ1wab + λ2dab − P + γvnab}.

Proof:

1. If a 6∈ A0
t ∪ A1

t , then the constraints imposed on a are (25)–(27). Since M is a large
positive number, constraint (25) is redundant. To maximize the objective, we must
have νa = γvna∅. The case of a ∈ A0

t ∪ A1
t , (a, b) 6∈ S, ∀b ∈ Bt is similar and we omit

the details here.
Alternatively, we can show this fact from another perspective. If a 6∈ A0

t ∪ A1
t or

a ∈ A0
t ∪A1

t , (a, b) 6∈ S, ∀b ∈ Bt, then xta∅ = 1 because driver a is unavailable and we
impose a large penalty on unavailable drivers. Then by complementary slackness,
we have νa = γvna∅.

2. If a ∈ A0
t , then the constraints imposed on a are (22), (24), (26) and (27). Since N is a

large positive number, constraint (24) is redundant, and we have

νa ≤ min
b:(a,b)∈S

{λ1wab − P + γvnab − µb} , ∀a ∈ A0
t .

Because P is a large positive number, (22) implies (26). To maximize the objective,
we have

νa = min
b:(a,b)∈S

{λ1wab − P + γvnab − µb} , ∀a ∈ A0
t .

As µb ≤ 0, we can further derive

νa ≥ min
b:(a,b)∈S

{λ1wab − P + γvnab} .

Specifically, when there are unsatisfied demand, i.e.,
∑

a∈At
xtab < Dtb, ∀b ∈ Bt, by

complementary slackness, µb = 0. In this case,

νa = min
b:(a,b)∈S

{λ1wab − P + γvnab} , ∀a ∈ A0
t .

3. If a ∈ A1
t , the constraints on a are (23), (24), (26) and (27). The rest of the analysis is

similar to the one for a ∈ A0
t and we omit the details. This completes the proof.

Parameter Configuration

We show the empirical performance of ADP on randomly generated instances with dif-
ferent parameter settings. We set the number of stages T = 4, and randomly distribute
ten drivers on a 10 × 10 grid network following a uniform distribution. In every stage,
we randomly generate five potential passenger origin-destination (O-D) pairs. We set
penalty parameter M = 1000, N = 1000, P = 500 and weight λ = (0.2, 0.8).

We first fix γ = 0.9 and vary αn = 0.1, 0.2, 0.3, 1/n to depict the results in Figure 1,
where n is the index of iteration. We observe that larger α-values lead to faster conver-
gence but less stable objective values through iterations. When αn = 1/n, the algorithm
converges fast and maintains stable performance.

3



(a) αn = 0.1 (b) αn = 0.2

(c) αn = 0.4 (d) αn = 1/n

Figure 1: Convergence performance of ADP under different α-values while x-axis repre-
sents the number of iterations and y-axis represents the objective value F0(S0).

Next, we examine the effect of discount factor γ and fix αn = 1/n. We vary γ =
0.3, 0.5, 0.7, 0.9. From Figure 2, we observe that the value of discount factor γ could affect
the optimal objective value. As γ represents the importance of future information when
making decisions, we will fix γ = 0.9 in our later texts.

4



(a) γ = 0.9 (b) γ = 0.7

(c) γ = 0.5 (d) γ = 0.3

Figure 2: Convergence performance under different γ-values while x-axis represents the
number of iterations and y-axis represents the objective value F0(S0).

References

Jiang, D. R. and Powell, W. B. (2015). An approximate dynamic programming algorithm
for monotone value functions. Operations Research, 63(6):1489–1511.

5


