
Node Deletion and Node Disconnection

Disconnecting Networks via Node Deletions
Exact Interdiction Models and Algorithms

Siqian Shen1 J. Cole Smith2 R. Goli2

1IOE, University of Michigan
2ISE, University of Florida

2012 INFORMS Optimization Society Conference, Miami FL

1 / 27

Node Deletion and Node Disconnection

Outline

1 Introduction

2 Exact MIP Interdiction Models
Maximizing the Number of Components (MaxNum)
Minimizing the Largest Component Size (MinMaxC)

3 MIP Bounds and Inequalities
Just Solve the MIP...
Valid Inequalities from Partitions
CPU Time Comparison

4 Summary and Future Research

2 / 27

Node Deletion and Node Disconnection

Introduction

MaxNum and MinMaxC on General Graphs? (B = 1)

Counterexamples:

MaxNum

MinMaxC

3 / 27

Node Deletion and Node Disconnection

Introduction

Motivation and Contributions

The MaxNum and MinMaxC on general graphs: NP-hard.

The MaxNum and MinMaxC on specially structured graphs:
Polynomial-time Dynamic Programming Algorithms (Shen and
Smith (2011))

This study will:

1 Formulate two-stage interdiction MIPs having LP subproblems
2 Take the subproblem duals, and integrate the two stages
3 Linearize the monolithic MIP, and solve it to optimality
4 Reformulate the MIP based on subgraph partitions of G, and

generate valid inequalities by using intermediate
polynomial-time optimal DP solutions from each partition.

4 / 27

Node Deletion and Node Disconnection

Introduction

Motivation and Contributions

The MaxNum and MinMaxC on general graphs: NP-hard.

The MaxNum and MinMaxC on specially structured graphs:
Polynomial-time Dynamic Programming Algorithms (Shen and
Smith (2011))

This study will:

1 Formulate two-stage interdiction MIPs having LP subproblems
2 Take the subproblem duals, and integrate the two stages
3 Linearize the monolithic MIP, and solve it to optimality

4 Reformulate the MIP based on subgraph partitions of G, and
generate valid inequalities by using intermediate
polynomial-time optimal DP solutions from each partition.

4 / 27

Node Deletion and Node Disconnection

Introduction

Motivation and Contributions

The MaxNum and MinMaxC on general graphs: NP-hard.

The MaxNum and MinMaxC on specially structured graphs:
Polynomial-time Dynamic Programming Algorithms (Shen and
Smith (2011))

This study will:

1 Formulate two-stage interdiction MIPs having LP subproblems
2 Take the subproblem duals, and integrate the two stages
3 Linearize the monolithic MIP, and solve it to optimality
4 Reformulate the MIP based on subgraph partitions of G, and

generate valid inequalities by using intermediate
polynomial-time optimal DP solutions from each partition.

4 / 27

Node Deletion and Node Disconnection

Exact MIP Interdiction Models

Master Problem (MaxNum)

max

(
η(x, y)−

1
n

nX
i=1

(1− xi)

)
(1a)

s.t.
X
i∈V

(1− xi) ≤ B (1b)

xi + xj − 1 ≤ yij ∀(i, j) ∈ E (1c)

xi ∈ {0, 1} ∀i ∈ V (1d)

0 ≤ yij ≤ 1 ∀(i, j) ∈ E, (1e)

Undirected graph G(V, E), where V = {1, . . . , n} and E ⊂ V × V
η(x, y): Subproblem objective, e.g., number of components for MaxNum

xi ∈ {0, 1}: xi = 1 if node i is not deleted, and xi = 0 if i is deleted

yij ∈ {0, 1}: yij = 1 if edge (i, j) exists, and yij = 0 otherwise (yij = xixj)

B: Given node deletion budget (positive integer)

5 / 27

Node Deletion and Node Disconnection

Exact MIP Interdiction Models

Maximizing the Number of Components (MaxNum)

MaxNum Subproblem: Solving η(x, y)

Formulate on a directed transformation network eG(N ,A)

Design a dummy node 0 and a unit cost for constructing arc (0, i), ∀i ∈ V
GOAL: To flow |eV| paths from 0 to every active node i ∈ eV
Decision Variables: zi: = 1 if (0, i) is constructed and = 0 otherwise; fijk:
Flow on arc (i, j) with respect to path 0–k

η(x, y) = min
X
i∈N

zi (2a)

s.t.: |eV| paths from node 0 to every active node i (2b)

−f0ik + zi ≥ 0 ∀i, k ∈ N (2c)

−fijk ≥ −yij ∀(i, j) ∈ A, k ∈ N (2d)

zi ∈ {0, 1}, fijk ≥ 0. (2e)

6 / 27

Node Deletion and Node Disconnection

Exact MIP Interdiction Models

Maximizing the Number of Components (MaxNum)

MaxNum Subproblem: Solving η(x, y)

A transformed directed graph and a feasible solution illustration:

6 / 27

Node Deletion and Node Disconnection

Exact MIP Interdiction Models

Maximizing the Number of Components (MaxNum)

Solving MaxNum

Good News:)

Fix (x, y) at binary values, and a subproblem LP gives the convex hull
in terms of variables z.

Solution Scheme:

Replace η(x, y) in the master problem by the subproblem LP dual

Linearize bilinear terms of “x × duals" and “y × duals" by using
McCormick inequalities (since both x and y are binary-valued).

Monolithically solve MaxNum in a “max{max} = max" framework

7 / 27

Node Deletion and Node Disconnection

Exact MIP Interdiction Models

Minimizing the Largest Component Size (MinMaxC)

MinMaxC

The master problem is similar to MaxNum except an obj modification:

min

(
η′(x, y) +

1
n

nX
i=1

(1− xi) : (1b)–(1e)

)
, (2)

where η′(x, y) represents the largest component size for a given (x, y).

Subproblem Notation:

σik ∈ {0, 1}: = 1 if nodes i and k belong to the same component

σkk = 1, ∀k ∈ N

λ = η′(x, y) represents the largest component size

8 / 27

Node Deletion and Node Disconnection

Exact MIP Interdiction Models

Minimizing the Largest Component Size (MinMaxC)

MinMaxC: A Monolithic Model

min

(
λ+

1
n

nX
i=1

(1− xi)

)
(3a)

s.t. (1b)–(1e), and σkk = 1 ∀k ∈ N

λ ≥
X
i∈N

σik ∀k ∈ N (3b)

σjk − σik ≥ yij − 1 ∀(i, j) ∈ A, k ∈ N (3c)

σik ∈ {0, 1} ∀i, k ∈ N . (3d)

(3b) enforces λ to be the largest component size

(3c) pushes σjk = 1 if σik = 1 and yij = 1. That is, nodes j and k are in the same
component, if nodes i and k are in the same component and j is connected to i

(3) yields the convex hull even with (3d) being linear.

9 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

How efficient the Monolithic MIP models are?

Experimental Tests:

CPLEX 11.0 & C++; a Dell PowerEdge 2600 UNIX machine
with two 3.2 GHz processors; a one-hour time limit
Five 20-node (having 40 - 60 arcs) and five 30-node (having
100-200 arcs) graph instances with varied B-values

Result Observations:

CPU time: 10s-100s for most 20-node instances; 100s-800s for
30-node instances
CPU time ↑ as B ↑ at the begining, and then CPU time ↓ as B
continue to ↑ above a threshold of approximately 0.25|V|

10 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

On the other hand...

Given a tree T(V,E), a DP algorithm can solve:
O(n3)⇒MaxNum on trees

O(n3 log n)⇒MinMaxC on trees

Extend the results to k-hole-graph for some k:
O(n3+k)⇒MaxNum

O(n3+k log n)⇒MinMaxC

11 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

DP Algorithms for Specially-Structured Graphs

For an undirected tree T(V,E),

r: root node

Ti: subtree rooted at node i (T = Tr)

Key Concept:

Open set Oi: All nodes in the same component to which subroot i
belongs, and oi = |Oi|

If i is deleted, then Oi is empty and oi = 0

Incumbent Initial Step:

There exists an optimal solution to all MaxNum and MinMaxC instances on
tree graphs in which NO leaf node is deleted.

12 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

DP Algorithms for Specially-Structured Graphs

For an undirected tree T(V,E),

r: root node

Ti: subtree rooted at node i (T = Tr)

Key Concept:

Open set Oi: All nodes in the same component to which subroot i
belongs, and oi = |Oi|

If i is deleted, then Oi is empty and oi = 0

Incumbent Initial Step:

There exists an optimal solution to all MaxNum and MinMaxC instances on
tree graphs in which NO leaf node is deleted.

12 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

DP Algorithms for Specially-Structured Graphs

For an undirected tree T(V,E),

r: root node

Ti: subtree rooted at node i (T = Tr)

Key Concept:

Open set Oi: All nodes in the same component to which subroot i
belongs, and oi = |Oi|

If i is deleted, then Oi is empty and oi = 0

Incumbent Initial Step:

There exists an optimal solution to all MaxNum and MinMaxC instances on
tree graphs in which NO leaf node is deleted.

12 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

O(n3) DP algorithms for MaxNum

fi(pi, ni): the fewest number of deletions required on subtree Ti, given that

pi: = 0 if subtree root i is deleted, and = 1 otherwise

ni: Number of components created, not including Oi

Note: fl(1, 0) = 0 at every leaf node l ∈ V

 ()

Illustration of () when an open set is

present. Note that here because the

open set itself is not counted in .

 ()

Illustration of () when no open set

is present.

13 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Update fi(pi, ni) given fv(pv, nv), ∀v ∈ Si

When pi = 0 (subtree root i is
deleted):

fi(0, ni) = min
∑
v∈Si

fv(pv, nv) + 1

s.t. ni =
∑
v∈Si

nv +
∑
v∈Si

pv

Every open set Ov becomes a new
component after merging.

When pi = 1 (not deleted):

fi(1, ni) = min
∑
v∈Si

fv(pv, nv)

s.t. ni =
∑
v∈Si

nv

All open sets Ov will merge with
Oi to form a larger-cardinality open
set at i.

Calculate fi(pi, ni) by sequentially merging one subtree at a time

Since ni ≤ n, computing fi is O(n2), for all i ∈ V .

Total complexity: O(n3) for solving MaxNum on trees.

14 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Update fi(pi, ni) given fv(pv, nv), ∀v ∈ Si

When pi = 0 (subtree root i is
deleted):

fi(0, ni) = min
∑
v∈Si

fv(pv, nv) + 1

s.t. ni =
∑
v∈Si

nv +
∑
v∈Si

pv

Every open set Ov becomes a new
component after merging.

When pi = 1 (not deleted):

fi(1, ni) = min
∑
v∈Si

fv(pv, nv)

s.t. ni =
∑
v∈Si

nv

All open sets Ov will merge with
Oi to form a larger-cardinality open
set at i.

Calculate fi(pi, ni) by sequentially merging one subtree at a time

Since ni ≤ n, computing fi is O(n2), for all i ∈ V .

Total complexity: O(n3) for solving MaxNum on trees.

14 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Update fi(pi, ni) given fv(pv, nv), ∀v ∈ Si

When pi = 0 (subtree root i is
deleted):

fi(0, ni) = min
∑
v∈Si

fv(pv, nv) + 1

s.t. ni =
∑
v∈Si

nv +
∑
v∈Si

pv

Every open set Ov becomes a new
component after merging.

When pi = 1 (not deleted):

fi(1, ni) = min
∑
v∈Si

fv(pv, nv)

s.t. ni =
∑
v∈Si

nv

All open sets Ov will merge with
Oi to form a larger-cardinality open
set at i.

Calculate fi(pi, ni) by sequentially merging one subtree at a time

Since ni ≤ n, computing fi is O(n2), for all i ∈ V .

Total complexity: O(n3) for solving MaxNum on trees.

14 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

O(n3 log n) DP algorithms for MinMaxC

fi(oi,mi): the fewest number of deletions on subtree Ti, given

an open set of size oi exists on i

a maximum component size of mi (excluding Oi)

However, since both oi and mi ≤ n, merging requires O(n5) steps

Define fi(oi, τ) instead: the fewest number of deletions on
subtree Ti, given that

no component has a larger size than τ (a fixed target)
it generates an open set of size oi where oi ≤ τ
fl(1, τ) = 0 at every leaf node l ∈ V for any τ ≥ 1.

Employ a binary-search scaling scheme over τ ; update fi(oi, τ)
for all i ∈ V for a given τ

15 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

O(n3 log n) DP algorithms for MinMaxC

fi(oi,mi): the fewest number of deletions on subtree Ti, given

an open set of size oi exists on i

a maximum component size of mi (excluding Oi)

However, since both oi and mi ≤ n, merging requires O(n5) steps
Define fi(oi, τ) instead: the fewest number of deletions on
subtree Ti, given that

no component has a larger size than τ (a fixed target)
it generates an open set of size oi where oi ≤ τ
fl(1, τ) = 0 at every leaf node l ∈ V for any τ ≥ 1.

Employ a binary-search scaling scheme over τ ; update fi(oi, τ)
for all i ∈ V for a given τ

15 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

O(n3 log n) DP algorithms for MinMaxC

fi(oi,mi): the fewest number of deletions on subtree Ti, given

an open set of size oi exists on i

a maximum component size of mi (excluding Oi)

However, since both oi and mi ≤ n, merging requires O(n5) steps
Define fi(oi, τ) instead: the fewest number of deletions on
subtree Ti, given that

no component has a larger size than τ (a fixed target)
it generates an open set of size oi where oi ≤ τ
fl(1, τ) = 0 at every leaf node l ∈ V for any τ ≥ 1.

Employ a binary-search scaling scheme over τ ; update fi(oi, τ)
for all i ∈ V for a given τ

15 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Update fi(oi, τ) given fv(ov, τ), ∀v ∈ Si

When oi = 0 (subtree root i is deleted):

fi(0, τ) = min
X
v∈Si

fv(ov, τ) + 1.

The largest component size is
automatically not more than τ .

When oi > 0 (not deleted):

fi (oi, τ) = min
X
v∈Si

fv(ov, τ)

s.t. oi =
X
v∈Si

ov + 1 ≤ τ.

Initial: Upper bound UB = n− B; Lower bound LB = 1; τ = b n−B+1
2 c

Step 1: Solve MinMaxC for a current τ (O(n3) steps)

Step 2: Update τ : If LB < UB, update τ = b(UB + LB)/2c; go to Step 1
(O(log n) iterations)

Total complexity: O(n3 log n) for solving MinMaxC on trees.

16 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Update fi(oi, τ) given fv(ov, τ), ∀v ∈ Si

When oi = 0 (subtree root i is deleted):

fi(0, τ) = min
X
v∈Si

fv(ov, τ) + 1.

The largest component size is
automatically not more than τ .

When oi > 0 (not deleted):

fi (oi, τ) = min
X
v∈Si

fv(ov, τ)

s.t. oi =
X
v∈Si

ov + 1 ≤ τ.

Initial: Upper bound UB = n− B; Lower bound LB = 1; τ = b n−B+1
2 c

Step 1: Solve MinMaxC for a current τ (O(n3) steps)

Step 2: Update τ : If LB < UB, update τ = b(UB + LB)/2c; go to Step 1
(O(log n) iterations)

Total complexity: O(n3 log n) for solving MinMaxC on trees.

16 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Update fi(oi, τ) given fv(ov, τ), ∀v ∈ Si

When oi = 0 (subtree root i is deleted):

fi(0, τ) = min
X
v∈Si

fv(ov, τ) + 1.

The largest component size is
automatically not more than τ .

When oi > 0 (not deleted):

fi (oi, τ) = min
X
v∈Si

fv(ov, τ)

s.t. oi =
X
v∈Si

ov + 1 ≤ τ.

Initial: Upper bound UB = n− B; Lower bound LB = 1; τ = b n−B+1
2 c

Step 1: Solve MinMaxC for a current τ (O(n3) steps)

Step 2: Update τ : If LB < UB, update τ = b(UB + LB)/2c; go to Step 1
(O(log n) iterations)

Total complexity: O(n3 log n) for solving MinMaxC on trees.

16 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

k-hole graphs

A hole of a graph: a set of nodes v1, . . . , vm such that an edge exists
between vi and vj (i < j) if and only if i = j− 1 or i = 1 and j = m.

M1, . . . ,Mk: the k holes in a graph, where nodes {v1, . . . , vq} compose
the union of the nodes in these holes

Transform a k-hole graph into a weighted “hole” tree

17 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

MaxNum and MinMaxC on k-hole-graphs

Case 0 (no node is deleted in any hole)

Every Mj is a hole-node with size |Mj|

Yield a tree structure with weighted hole-nodes

Use the same DP recursions as before, but prohibit deletions of
hole-nodes

Case i (delete node vi and obtain a p-hole-graph such that p < k)

Recursively solve on a resulting p-hole-graph

Γ(k) = the complexity on k-hole-graphs, we have that
Γ(k) = O(n Γ(k − 1))

Base case: 0-hole-graph (i.e., a tree)

Complexities on k-hole-graph: O(n3+k) for MaxNum, and
O(n3+k log n) for MinMaxC.

18 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

MaxNum and MinMaxC on k-hole-graphs

Case 0 (no node is deleted in any hole)

Every Mj is a hole-node with size |Mj|

Yield a tree structure with weighted hole-nodes

Use the same DP recursions as before, but prohibit deletions of
hole-nodes

Case i (delete node vi and obtain a p-hole-graph such that p < k)

Recursively solve on a resulting p-hole-graph

Γ(k) = the complexity on k-hole-graphs, we have that
Γ(k) = O(n Γ(k − 1))

Base case: 0-hole-graph (i.e., a tree)

Complexities on k-hole-graph: O(n3+k) for MaxNum, and
O(n3+k log n) for MinMaxC.

18 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

MaxNum and MinMaxC on k-hole-graphs

Case 0 (no node is deleted in any hole)

Every Mj is a hole-node with size |Mj|

Yield a tree structure with weighted hole-nodes

Use the same DP recursions as before, but prohibit deletions of
hole-nodes

Case i (delete node vi and obtain a p-hole-graph such that p < k)

Recursively solve on a resulting p-hole-graph

Γ(k) = the complexity on k-hole-graphs, we have that
Γ(k) = O(n Γ(k − 1))

Base case: 0-hole-graph (i.e., a tree)

Complexities on k-hole-graph: O(n3+k) for MaxNum, and
O(n3+k log n) for MinMaxC.

18 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Incorporate DP Solutions into the MIP Framework

Idea 1: Optimal DP solutions obtained on k-hole subgraphs of G
provide bounds for the real subproblem objectives. However...

Our computational results show:

Bounds are generally not very tight, but tighter on smaller G
instances (i.e., 20-node as opposed to 30- and 40-node graphs)

Idea 2: Employ a graph-partition strategy, solve the DP on each
partition, and generate valid inequalities for MIPs.

19 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Reformulating the MIP

Notation (MaxNum for instance):

Partition graph G into m subgraphs G1, . . . ,Gm

ki: the number of holes in each subgraph Gi, ∀i = 1, . . . ,m

Execute DP on each ki-hole subgraph Gi for a budget B⇒
ηi(Bi): maxnum obtained on Gi for deletion budgets Bi = 0, . . . ,B (variables)

gi(Bi): Piecewise-linear concave envelope function of ηi(Bi) such that ηi(Bi) ≤ gi(Bi)
for all Bi = 0, . . . ,B.

Append the following valid inequalities into the MaxNum MIP:

η −
mX

i=1

ηi ≤ 0 (4a)

ηi − gi(Bi) ≤ 0 ∀i = 1, . . . ,m (4b)

Bi =
X
j∈Vi

(1− xj) ∀i = 1, . . . ,m. (4c)

20 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Reformulating the MIP

Notation (MaxNum for instance):

Partition graph G into m subgraphs G1, . . . ,Gm

ki: the number of holes in each subgraph Gi, ∀i = 1, . . . ,m

Execute DP on each ki-hole subgraph Gi for a budget B⇒
ηi(Bi): maxnum obtained on Gi for deletion budgets Bi = 0, . . . ,B (variables)

gi(Bi): Piecewise-linear concave envelope function of ηi(Bi) such that ηi(Bi) ≤ gi(Bi)
for all Bi = 0, . . . ,B.

Append the following valid inequalities into the MaxNum MIP:

η −
mX

i=1

ηi ≤ 0 (4a)

ηi − gi(Bi) ≤ 0 ∀i = 1, . . . ,m (4b)

Bi =
X
j∈Vi

(1− xj) ∀i = 1, . . . ,m. (4c)

20 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 1: Solving MaxNum
Given a 20-node graph G and B = 10, solving the 1st partition G1 (10-node):

21 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 1: Solving MaxNum
Given a 20-node graph G and B = 10, solving the 2nd partition G2 (10-node):

21 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 1: Solving MaxNum

Inequalities (4a) and (4c) are:

η ≤ η1 + η2, B1 =
X
i∈G1

(1− xi), B2 =
X
i∈G2

(1− xi). (5)

Associated with the three-segment g1(B1), for G1, we generate (4b) as

η1 ≤ 2B1 + 1, η1 ≤ B1 + 4, η1 ≤ 10. (6)

Similarly, corresponding to each segment of g2(B2), for G2, (4b) become

η2 ≤ (4/3)B2 + 1, η2 ≤ B2 + 3, η2 ≤ 10. (7)

21 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 2: Solving MinMaxC
g′i(Bi) is the convex envelop of η′i (Bi), and signs in (4a) and (4b) are flipped.

22 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 2: Solving MinMaxC
g′i(Bi) is the convex envelop of η′i (Bi), and signs in (4a) and (4b) are flipped.

22 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 2: Solving MinMaxC

Inequalities (4a) and (4c) are:

η′ ≥ η′1 + η′2, B1 =
X
i∈G1

(1− xi), B2 =
X
i∈G2

(1− xi). (8)

The following two sets of inequalities are generated to describe g′i(Bi), for i = 1, 2:

η′ ≥ −3B1 + 10, η′ ≥ −2B1 + 9,

η′ ≥ −B1 + 6, η′ ≥ −0.5B1 + 4, η′ ≥ 1 (9)

η′ ≥ −1.5B2 + 10, η′ ≥ −B2 + 8, η′ ≥ 1 (10)

22 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

CPU Time Comparison

CPU Times for 20-node Instances Using 2-Partition

Instance Prob.
B = 4 B = 8

Orig. 2-Partition Orig. 2-Partition

20-1
MaxNum 24.62 [34.52] 5.94 [16.85]
MinMaxC 16.56 8.15 1.27 [1.90]

20-2
MaxNum 49.67 43.28 79.48 42.52
MinMaxC 8.17 6.53 16.22 12.53

20-3
MaxNum 51.94 44.24 16.34 [33.84]
MinMaxC 19.55 15.66 13.57 [19.29]

20-4
MaxNum 41.77 [88.48] 36.81 34.13
MinMaxC 30.71 24.06 15.26 7.72

20-5
MaxNum 71.06 54.73 21.55 [34.65]
MinMaxC 33.40 22.19 14.76 14.49

23 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

CPU Time Comparison

CPU Times for 30-node Instances Using 3-Partition

Instance Prob.
B = 4 B = 8

Orig. 3-Partition Orig. 3-Partition

30-1
MaxNum 467.92 384.43 289.14 235.28
MinMaxC 462.93 391.20 166.24 [204.12]

30-2
MaxNum 467.93 452.96 209.58 [218.07]
MinMaxC 331.22 [334.29] 98.64 87.35

30-3
MaxNum 502.85 479.30 725.49 623.58
MinMaxC 217.05 172.45 117.54 [121.11]

30-4
MaxNum 516.72 446.82 202.18 183.71
MinMaxC 345.67 [351.84] 94.25 [96.36]

30-5
MaxNum 432.40 328.66 189.62 171.55
MinMaxC 479.24 443.74 143.82 143.30

24 / 27

Node Deletion and Node Disconnection

MIP Bounds and Inequalities

CPU Time Comparison

40-node Instances Using 2- and 4-Partition

None 40-node instances can be solved within a one-hour time limit.
Thus, we report gaps (%) reported by CPLEX instead

Instance Prob.
B = 4 B = 8

Orig. 2-Partition 4-Partition Orig. 2-Partition 4-Partition

40-1
MaxNum 131.39% 58.12% 131.35% 87.82% 48.07% 87.79%
MinMaxC 27.82% 11.11% 27.85% 62.47% 32.82% [62.49%]

40-2
MaxNum 124.51% 124.51% 110.29% 84.68% 33.78% 74.97%
MinMaxC 26.19% 6.95% 20.42% 58.52% 21.10% [58.68%]

40-3
MaxNum 122.56% 44.99% 112.14% 85.94% 85.92% [88.85%]
MinMaxC 25.92% 25.77% 25.85% 58.17% 57.09% 47.38%

40-4
MaxNum 114.68% 59.95% [128.20%] 95.47% 49.98% 86.80%
MinMaxC 27.93% 27.93% 27.87% 61.52% 47.38% 47.50%

40-5
MaxNum 125.26% 44.99% 120.01% 84.15% 53.76% [100.18%]
MinMaxC 26.25% 26.21% 26.20% 59.17% 44.65% 51.80%

25 / 27

Node Deletion and Node Disconnection

Summary and Future Research

Future Research

Vary partition patterns, and test the computational efficacy of
different valid inequalities

Dynamically update partitions within a branch-and-bound
(B&B) tree

The locally valid inequalities may lead to a quicker termination
and more effective fathoming rules for the B&B algorithm

26 / 27

Node Deletion and Node Disconnection

Summary and Future Research

Thank you

Questions? . . .

27 / 27

	Introduction
	Exact MIP Interdiction Models
	Maximizing the Number of Components (MaxNum)
	Minimizing the Largest Component Size (MinMaxC)

	MIP Bounds and Inequalities
	Just Solve the MIP...
	Valid Inequalities from Partitions
	CPU Time Comparison

	Summary and Future Research

