Optimization Models for Differentiating Quality of Service Levels in Probabilistic Network Capacity Design Problems

Siqian Shen Zhihao Chen

Department of Industrial and Operations Engineering, University of Michigan October 7th, 2013

Introduction I

- Network design problems (NDPs) are essential for the development of modern societies
- Objective: Minimize flow cost and arc capacity modification cost

Figure: Internet cable network¹

Figure: Road network²

S Shen, Z Chen INFORMS 2013 2/25

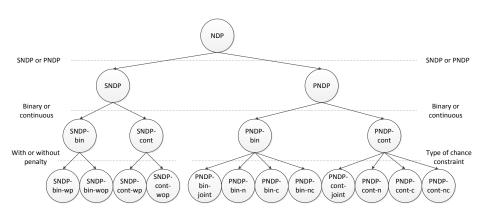
¹Source: http://jamesdudleyonline.com/wp-content/uploads/2011/03/connect-through-the-internet.jpg

²Source: http://static.panoramio.com/photos/large/8248689.jpg

Introduction II

- NPDs under demand uncertainty and with multiple commodities
- Capacity design decisions are made before realization of demands
 - Can be continuous or binary
- Probabilistic NDPs (PNDPs): Flow decisions made before realization of demands
 - Flow decisions are made under probabilistic constraints
 - Probabilistic constraints can be joint, or differentiated by node, commodity, or node and commodity
- \bullet Stochastic NDPs (SNDPs): Flow decisions made after realization of demands
 - Expected flow costs
 - Flow decisions may be penalized for unmet demand for greater flexibility in solution

Introduction III



Notation I

Graph: G(N, A)

Sets:

- W: Set of commodities
- $O_w \subseteq N$: Set of origins of commodity $w \in W$
- $D_w \subseteq N$: Set of destinations of commodity $w \in W$
- Ω : Set of random scenarios where $\Omega = \{1, \dots, |\Omega|\}$

Notation II

Parameters:

- c_{ij} : Cost of allocating one unit of capacity at link $(i,j) \in A$
- q_{ij} : Fixed cost of adding link $(i,j) \in A$ when capacity design variables are binary
- a_{ijw} : Unit cost of flowing commodity $w \in W$ on link $(i,j) \in A$
- u_{ij} : Fixed capacity of link $(i,j) \in A$ when capacity design variables are binary
- v_{iw} : Unit penalty cost of unmet demand of commodity w at destination $i \in D_w$
- o_{iw} : Deterministic supply of commodity w at origin $i \in O_w$
- d_{iw} : Random demand of commodity w at destination $i \in D_w$
- ξ_{iw}^s : Realization of random demand d_{iw} in scenario $s \in \Omega$, $\forall w \in W$ and $i \in D_w$
- p^s : Probability of scenario $s \in \Omega$
- $\epsilon, \epsilon_{iw}, \epsilon_i, \epsilon_w$: Risk parameters associated with different forms of chance constraints

PNDP formulations I

PNDP-cont-joint:

$$\min_{\mathbf{x},\mathbf{y}} \quad \sum_{(i,j)\in A} c_{ij} x_{ij} + \sum_{w\in W} \sum_{(i,j)\in A} a_{ijw} y_{ijw}$$

s.t.
$$\sum_{w \in W} y_{ijw} \le x_{ij} \qquad \forall (i,j) \in A$$
 (1)

$$\sum_{j:(i,j)\in A} y_{ijw} - \sum_{j:(j,i)\in A} y_{jiw} \le o_{iw} \quad \forall i \in O_w, \ w \in W$$
 (2)

$$\sum_{j:(i,j)\in A} y_{ijw} - \sum_{j:(j,i)\in A} y_{jiw} = 0 \qquad \forall i \notin O_w \cup D_w, \ w \in W$$

$$(3)$$

$$\mathbf{x} \ge 0, \ \mathbf{y} \ge 0 \tag{4}$$

$$\mathbb{P}\left(\sum_{j:(j,i)\in A} y_{jiw} - \sum_{j:(i,j)\in A} y_{ijw} \ge d_{iw}, \ \forall i \in D_w, w \in W\right) \ge 1 - \epsilon$$

PNDP formulations II

PNDP-cont-n:

$$\min_{\mathbf{x},\mathbf{y}} \quad \sum_{(i,j)\in A} c_{ij} x_{ij} + \sum_{w\in W} \sum_{(i,j)\in A} a_{ijw} y_{ijw}$$

s.t. (1)-(4)

$$\mathbb{P}\left(\sum_{j:(j,i)\in A}y_{jiw}-\sum_{j:(i,j)\in A}y_{ijw}\geq d_{iw},\ \forall w\in W\right)\geq 1-\epsilon_i,\quad \forall i\in\bigcup_{w\in W}D_w$$

PNDP-cont-c:

$$\min_{\mathbf{x},\mathbf{y}} \quad \sum_{(i,j)\in A} c_{ij} x_{ij} + \sum_{w\in W} \sum_{(i,j)\in A} a_{ijw} y_{ijw}
\text{s.t.} \quad (1)-(4)$$

$$\mathbb{P}\left(\sum_{j:(j,i)\in A} y_{jiw} - \sum_{j:(i,j)\in A} y_{ijw} \ge d_{iw}, \ \forall i \in D_w\right) \ge 1 - \epsilon_w, \quad \forall w \in W$$

PNDP formulations III

PNDP-cont-nc:

$$\begin{aligned} & \underset{\mathbf{x}, \mathbf{y}}{\min} & \sum_{(i,j) \in A} c_{ij} x_{ij} + \sum_{w \in W} \sum_{(i,j) \in A} a_{ijw} y_{ijw} \\ & \text{s.t.} & (2); (3) \\ & \sum_{w \in W} y_{ijw} \leq x_{ij} & \forall (i,j) \in A \\ & \mathbf{x} \geq 0, \ \mathbf{y} \geq 0 \\ & \mathbb{P} \left(\sum_{j: (j,i) \in A} y_{jiw} - \sum_{j: (i,j) \in A} y_{ijw} \geq d_{iw} \right) \geq 1 - \epsilon_{iw}, \quad \forall i \in D_w, w \in W \end{aligned}$$

PNDP formulations IV

PNDP-bin-nc:

$$\begin{aligned} & \underset{\boldsymbol{\beta}, \mathbf{y}}{\min} & \sum_{(i,j) \in A} q_{ij} \beta_{ij} + \sum_{w \in W} \sum_{(i,j) \in A} a_{ijw} y_{ijw} \\ & \text{s.t.} & (2); (3) \\ & \sum_{w \in W} y_{ijw} \leq u_{ij} \beta_{ij} & \forall (i,j) \in A \\ & \beta \in \{0,1\}^{|A|}, \ \mathbf{y} \geq 0 \\ & \mathbb{P}\left(\sum_{j: (j,i) \in A} y_{jiw} - \sum_{j: (i,j) \in A} y_{ijw} \geq d_{iw}\right) \geq 1 - \epsilon_{iw}, \quad \forall i \in D_w, w \in W \end{aligned}$$

SNDP formulations I

SNDP-cont-wop:

$$\min_{\mathbf{x}, \mathbf{y}} \quad \sum_{(i,j)\in A} c_{ij} x_{ij} + \sum_{s\in\Omega} p^s \left(\sum_{w\in W} \sum_{(i,j)\in A} a_{ijw} y^s_{ijw} \right) \\
\text{s.t.} \quad \sum_{w\in W} y^s_{ijw} \le x_{ij} \qquad \qquad \forall (i,j) \in A, \ s \in \Omega \qquad (5) \\
\sum_{j:(i,j)\in A} y^s_{ijw} - \sum_{j:(j,i)\in A} y^s_{jiw} \le o_{iw} \qquad \qquad \forall i \in O_w, \ w \in W, \ s \in \Omega \qquad (6) \\
\sum_{j:(i,j)\in A} y^s_{ijw} - \sum_{j:(j,i)\in A} y^s_{jiw} = 0 \qquad \qquad \forall i \notin O_w \cup D_w, \ w \in W, \ s \in \Omega \qquad (7) \\
\mathbf{x} \ge 0, \ \mathbf{y}^s \ge 0 \qquad \qquad \forall s \in \Omega \qquad (8) \\
- \sum_{j:(i,j)\in A} y^s_{ijw} + \sum_{j:(j,i)\in A} y^s_{jiw} \ge \xi^s_{iw} \qquad \forall i \in D_w, w \in W, \ s \in \Omega$$

SNDP formulations II

SNDP-cont-wp:

$$\begin{aligned} & \underset{\mathbf{x}, \mathbf{y}}{\min} & & \sum_{(i, j) \in A} c_{ij} x_{ij} + \sum_{s \in \Omega} p^s \left(\sum_{w \in W} \sum_{(i, j) \in A} a_{ijw} y^s_{ijw} + \sum_{w \in W} \sum_{i \in D_w} v_{iw} t^s_{iw} \right) \\ & \text{s.t.} & & (5) - (8) \\ & & - \sum_{j: (i, j) \in A} y^s_{ijw} + \sum_{j: (j, i) \in A} y^s_{jiw} + t^s_{iw} \ge \xi^s_{iw} & \forall i \in D_w, w \in W, \ s \in \Omega \\ & & \mathbf{t}^s \ge 0 & \forall s \in \Omega \end{aligned}$$

- SNDPs can be solved as a two-stage problem using Benders' decomposition
- SNDP-cont-wp is typically used to formulate cost-based NDPs
 - A benchmark against which we compare our PNDP-cont reformulations

S Shen, Z Chen INFORMS 2013 12/25

Big-M reformulation of chance constraints I

Approach:

- Add binary variable z^s that takes value 1 if the chance constraint is violated by demand realization ξ^s and 0 otherwise
- The sum of probabilities of the realizations that violate the chance constraint must not exceed the tolerance level

Big-M reformulation of chance constraints II

Example: PNDP-cont-nc

$$\mathbb{P}\left(\sum_{j:(j,i)\in A} y_{jiw} - \sum_{j:(i,j)\in A} y_{ijw} \ge d_{iw}\right) \ge 1 - \epsilon_{iw}, \quad \forall i \in D_w, w \in W$$

Create a new variable z_{iw}^s such that

$$z_{iw}^{s} = \begin{cases} 1 & \text{if } \sum_{j:(j,i) \in A} y_{jiw} - \sum_{j:(i,j) \in A} y_{ijw} < \xi_{iw}^{s} \\ 0 & \text{if } \sum_{j:(i,i) \in A} y_{jiw} - \sum_{j:(i,j) \in A} y_{ijw} \ge \xi_{iw}^{s} \end{cases}, \quad \forall s \in \Omega, i \in D_{w}, w \in W$$

Big-M reformulation of chance constraints III

Chance constraint is equivalent to the following set of MIP constraints:

$$-\sum_{j:(i,j)\in A} y_{ijw} + \sum_{j:(j,i)\in A} y_{jiw} - \xi_{iw}^{s} + \mathbf{M}_{iw} z_{iw}^{s} \ge 0 \quad \forall s \in \Omega, i \in D_{w}, w \in W$$
 (9)

$$\sum_{s \in \Omega} p^s z_{iw}^s \le \epsilon_{iw} \qquad \forall i \in D_w, w \in W$$
 (10)

$$\mathbf{z}_{iw} \in \{0, 1\}^{|\Omega|} \qquad \forall i \in D_w, w \in W \tag{11}$$

where M is an arbitrarily large number.

Polynomial-time algorithm for PNDP-cont-nc I

- An alternative method that does not require the use of binary variables
- Takes advantage of single-line chance constraints
- If

$$\sum_{j:(j,i)\in A} y_{jiw} - \sum_{j:(i,j)\in A} y_{ijw} \ge \xi_{iw}^s$$

for some realization ξ_{iw}^s , then

$$\sum_{j:(j,i)\in A}y_{jiw} - \sum_{j:(i,j)\in A}y_{ijw} \ge \xi_{iw}^{s'}$$

for any realization satisfying $\xi_{iw}^{s'} < \xi_{iw}^{s}$.

Polynomial-time algorithm for PNDP-cont-nc II

ALGO1:

for all $w \in W, i \in D_w$

- (i) Sort ξ_{iw}^s in ascending order and relabel the scenarios based on this order
- (ii) Identify $s' \in \{1, ..., |\Omega_{iw}|\}$ such that

$$\sum_{k=s}^{|\Omega_{iw}|} p^k > \epsilon_{iw} \ge \sum_{k=s'}^{|\Omega_{iw}|} p^k$$

(iii) Replace the $(i, w)^{\text{th}}$ chance constraint with

$$\sum_{j:(j,i)\in A} y_{jiw} - \sum_{j:(i,j)\in A} y_{ijw} \ge \xi_{iw}^{s'}$$
 (12)

end for

Solve PNDP-cont-nc as

$$\min_{\mathbf{x}, \mathbf{y}} \left\{ \sum_{(i,j) \in A} c_{ij} x_{ij} + \sum_{w \in W} \sum_{(i,j) \in A} a_{ijw} y_{ijw} : \text{ subject to (1)-(4); (12) } \forall w \in W, i \in D_w \right\}$$

Polynomial-time algorithm for PNDP-cont-nc III

- \bullet Similar approaches can be used to develop polynomial-time algorithms for special cases of PNDP-cont-n/c
- PNDP-cont-n with each node having demand for no more than 1 type of commodity ⇒ single-line chance constraint
- \bullet PNDP-cont-c with each commodity having no more than 1 demand node \Rightarrow single-line chance constraint

Results for randomly generated networks I

- Compare computational times and optimal objective values for
 - PNDP-cont-joint
 - PNDP-cont-nc with homogenous ("-ho") risk parameters
 - PNDP-cont-nc with heterogenous ("-he") risk parameters

Results for randomly generated networks II

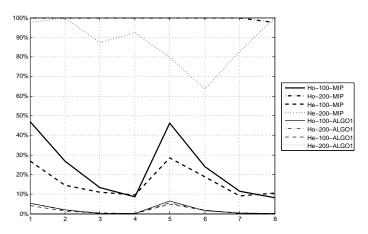


Figure: Percentage comparison of CPU time taken by ALGO1 and the MIP approach for PNDP-cont-nc instances (100% is the largest CPU time)

S Shen, Z Chen INFORMS 2013 20/25

Results for randomly generated networks III

Summary of observations:

- Optimal objective values decrease as ϵ increases
- PNDP-cont-nc is less sensitive to changes in ϵ than PNDP-cont-joint
- ALGO1 is much more efficient than the MIP approach
- For MIP models, CPU time increases dramatically as ϵ is increased and as $|\Omega|$ is increased
- For ALGO1, CPU time increases is mostly unaffected by changes in ϵ and $|\Omega|$, and the homogeneity of risk parameters

Results for real life network I

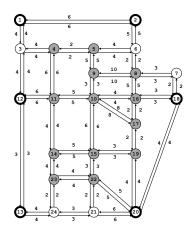


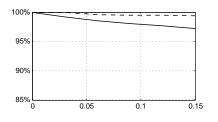
Figure: Sioux Falls road network

S Shen, Z Chen INFORMS 2013 22/25

Results for real life network II

- High inflow instance
- Higher mean demands for nodes closer to node 10 (center node)
- ullet Compare sensitivity of optimal objective values to ϵ and v
 - PNDP-cont-joint
 - PNDP-cont-nc
 - SNDP-cont-wp

Results for real life network III



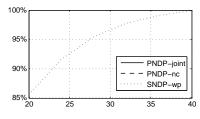


Figure : Percentage comparison of optimal objective values for PNDP-joint, PNDP-nc and SNDP-cont-wp

S Shen, Z Chen INFORMS 2013 24/25

Results for real life network IV

Summary of observations:

- \bullet Optimal values of PNDP-joint and PNDP-nc have a fairly linear relationship with ϵ
- ullet Optimal values of SNDP-cont-wp are concave w.r.t. v (dominant term changes from real cost to penalty cost)
 - Without first experimenting with several values of v, a suitable value for v may not be known
 - PNDP models mitigate ambiguity in solution reliability

Conclusions and future research

Conclusions:

- Developed MIP formulations for PNDP models
- Developed polynomial-time algorithms for PNDP-cont-nc and special cases of PNDP-cont-n/c models that are far more efficient than MIP formulations
- Benchmarked PNDP models against SNDP to find that PNDP models are far less sensitive to small changes in parameters

Future research:

- Risk parameters as variables, to seek and optimal combination of risk versus cost
- Special network topologies that may provide more effective algorithms

Thank you!