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Introduction I

@ Network design problems (NDPs) are essential for the development of modern
societies

@ Objective: Minimize flow cost and arc capacity modification cost

Figure : Road network?

Figure : Internet cable network!

1Source: http://jamesdudleyonline.com/wp-content/uploads/2011/03/connect-through-the-internet.jpg
2Source: http://static.panoramio.com/photos/large/8248689.jpg
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Introduction 11

@ NPDs under demand uncertainty and with multiple commodities

Capacity design decisions are made before realization of demands
e Can be continuous or binary

@ Probabilistic NDPs (PNDPs): Flow decisions made before realization of
demands

e Flow decisions are made under probabilistic constraints
e Probabilistic constraints can be joint, or differentiated by node,
commodity, or node and commodity

Stochastic NDPs (SNDPs): Flow decisions made after realization of demands

o FEzxpected flow costs
o Flow decisions may be penalized for unmet demand for greater flexibility
in solution
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Introduction 111

SNDP or PNDP / SNDP or PNDP
Binary or ) Binary or
continuous \ ~ continuous

SNDP- /SNDP (/ 5
\bln \\cont \\bin
With or without > Type of chance

penalty constraint

PNDP-

cont-nc
NG

e o Sgg{
nwp blnwop contwp wop

S Shen, Z Chen INFORMS 2013 4/25



]
Notation I

Graph: G(N, A)
Sets:
@ W: Set of commodities
@ O, C N: Set of origins of commodity w € W
@ D, C N: Set of destinations of commodity w € W
°

Q: Set of random scenarios where Q = {1,...,|Q|}
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N
Notation 1I

Parameters:
@ ¢;;: Cost of allocating one unit of capacity at link (i,j) € A

@ ¢;;: Fixed cost of adding link (4,j) € A when capacity design variables are
binary

aijw: Unit cost of flowing commodity w € W on link (i,5) € A

u;;: Fixed capacity of link (7,j) € A when capacity design variables are binary
Viw: Unit penalty cost of unmet demand of commodity w at destination i € D,,
0iw: Deterministic supply of commodity w at origin i € O,

diw: Random demand of commodity w at destination ¢ € D,

&iw: Realization of random demand d;,, in scenario s € Q, Vw € W and i € D,,

p®: Probability of scenario s €

€, €w, €i, €, Risk parameters associated with different forms of chance
constraints
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N
PNDP formulations I

PNDP-cont-joint:

min E CijTij + E g AijwYijw

x,y

(ij)€A wEW (i,j)eA
s.t. Z Yijw < Tij V(i j) € A (1)
weWw
S v Y. Yiw< 0w Vi€Ow, weW 2)
j:(i,7)€EA J:(4,i) €A
S Ygw— Y. Yiw=0 VigO0,UDy, weW (3)
J:(i,5)€EA J:(4,1)EA
x>0, y>0 (4)

Pl > wiw— D Yijw 2diw, Vi€eDyweW | 21—

J:(4,1)€A J:(i,5)€A
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N
PNDP formulations I1

PNDP-cont-n:

min E CijTij + E E QijwYijw
X,y

(i.4)€A WEW (i,j)€A
st. (1)—(4)
Pl Y gw— > wijw>diw, VweW | 21—«, Vie | Do
J:(j,9) €A j:(i,5)€A weW
PNDP-cont-c:
r)I(l};l Z CijTij + Z Z QijwYijw
(1,5)€EA weW (i,j)€EA
s.t. (1)-(4)

P Z Yjiw — Z Yijw > dium Vic Dy | 21—€w, YweW
j:(j,i)EA j:(i,j)EA
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PNDP formulations 111

PNDP-cont-nc:

min g CijTij + E g QijwYijw
xy

(i,7)€EA weW (i,j)€A
st (2);(3)
Z Yijw < Tij V(i j) € A
weWw
x>0,y>0
P Z Yjiw — Z Yijw 2 diw | 21— €iw, Vi€ Dy,weW
J:(J,i)€EA Ji(i,5)€A
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N
PNDP formulations IV

PNDP-bin-nc:

min Z Qi Bij + Z Z @ijwYijw

By ea weW (i,j)EA

st (2);(3)
> yijw <uiBi;  V(6,j) € A
weWw

Be{0,1)4 y>0

P Z Yjiw — Z Yijw = diw | 21— €, Vi€ Dy, weW

J:(4,1)€A J:(i,5)eA
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N
SNDP formulations I

SNDP-cont-wop:

r)r(lin Z cijmj—l—Zps Z Z Qijwlijw

Y ipea sen weW (i,5)€A
s.t. Z Yijw < Tij V(i,j) € A, s€Q (5)
wew
Z yzgw - Z yjzw < oiw Vi€ Oy, weW, s (6)
j:(i,7)EA ((j,i)EA
J:(i,J)€A J:(4,1) €A
(7
x>0,y°>0 Vs € Q (8)
Z yfjw+ Z y;iw Zgisw ViGDwvaW SGQ
J:(4,J)€A J:(J,i)EA
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N
SNDP formulations I1I

SNDP-cont-wp:

min Z cijxij—i—z;us Z Z aijwyfjw-‘r Z Z Viwliw

x,y
(i,)EA sEQ weW (i,j)€A WEW 1€ Dy,
st (5)-(8)

J:(i,j)€EA 7:(4,)EA
t° >0 Vs € Q

@ SNDPs can be solved as a two-stage problem using Benders’ decomposition
@ SNDP-cont-wp is typically used to formulate cost-based NDPs

@ A benchmark against which we compare our PNDP-cont reformulations
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Big-M reformulation of chance constraints I

Approach:

@ Add binary variable z° that takes value 1 if the chance constraint is violated
by demand realization £° and 0 otherwise

@ The sum of probabilities of the realizations that violate the chance constraint
must not exceed the tolerance level
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Big-M reformulation of chance constraints II

Example: PNDP-cont-nc

Pl S wiiw— Y. Yijw >diw| >1—€w, Vi€ DyweW
J:(4,i)EA J:(4,5)€A

Create a new variable zj,, such that

s LA 325 Gea Yivw = 2j.6,5)ea Yisw < &iw

Ziw = . s VSGQ,?:GDM,U)EW
{0 i 225G eaYite = 256, 5)ea Yisw = &
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Big-M reformulation of chance constraints III

Chance constraint is equivalent to the following set of MIP constraints:

= D Whet Y Vi —&w +Miwzl, 20 Vs€ Qi€ Dy, weW  (9)

J:(1,5)€A J:(3,1) €A
P° 2w < €iw Vi € Dy, w € W (10)
seQ
Ziw € {0, 1} Vi € Dy, w € W (11)

where M is an arbitrarily large number.
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e
Polynomial-time algorithm for PNDP-cont-nc I

@ An alternative method that does not require the use of binary variables

@ Takes advantage of single-line chance constraints

o If
Z Yjiw — Z Yijw > gfw

j:(j,i)eEA j:(i,4)€EA

for some realization &;,,, then

Z Yjiw — Z Yijw > gzw

j:(j,i)eEA j:(i,4)€EA

for any realization satisfying ff;, < Efw-
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Polynomial-time algorithm for PNDP-cont-nc II
ALGOL1:
for all w € W,i € Dy,

(i) Sort &7, in ascending order and relabel the scenarios based on this order
(ii) Identify s" € {1, ..., |Qw|} such that

1250w Q|
k k

E P> €iw > E p

k=s k=s’

(iii) Replace the (¢, w)'™" chance constraint with

Z Yjiw — Z Yijw > o (12)
j:(j,i)EA j:(i,7)EA

end for

Solve PNDP-cont-nc as

r)[cl};l Z CijTij + Z Z AijwlYijw - subject to (1)*(4); (12) Yw € W,i € Dy,

(i.d)€A WEW (i,j)€A
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e
Polynomial-time algorithm for PNDP-cont-nc III

@ Similar approaches can be used to develop polynomial-time algorithms for
special cases of PNDP-cont-n/c

@ PNDP-cont-n with each node having demand for no more than 1 type of
commodity = single-line chance constraint

@ PNDP-cont-c with each commodity having no more than 1 demand node =
single-line chance constraint
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Results for randomly generated networks I

@ Compare computational times and optimal objective values for

o PNDP-cont-joint
e PNDP-cont-nc with homogenous (“-ho”) risk parameters

e PNDP-cont-nc with heterogenous (“-he”) risk parameters
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Results for randomly generated networks II
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Figure : Percentage comparison of CPU time taken by ALGO1 and the MIP
approach for PNDP-cont-nc instances (100% is the largest CPU time)
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Results for randomly generated networks I11

Summary of observations:

@ Optimal objective values decrease as € increases

@ PNDP-cont-nc is less sensitive to changes in ¢ than PNDP-cont-joint
@ ALGOL1 is much more efficient than the MIP approach
°

For MIP models, CPU time increases dramatically as € is increased and as |Q)|
is increased

@ For ALGO1, CPU time increases is mostly unaffected by changes in € and ||,
and the homogeneity of risk parameters
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Results for real life network 1|
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Figure : Sioux Falls road network
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Results for real life network 11

@ High inflow instance
@ Higher mean demands for nodes closer to node 10 (center node)
@ Compare sensitivity of optimal objective values to € and v

e PNDP-cont-joint
o PNDP-cont-nc
e SNDP-cont-wp
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Results for real life network I11

10N~ ——————0x 100%
95% 95%
90% 90% PNDP-joint
— — — PNDP-nc
) " SNDP-wp
85% 85%
0 0.05 0.1 0.15 20 25 30 35 40

Figure : Percentage comparison of optimal objective values for PNDP-joint,
PNDP-nc and SNDP-cont-wp
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Results for real life network IV

Summary of observations:

@ Optimal values of PNDP-joint and PNDP-nc have a fairly linear relationship
with e

@ Optimal values of SNDP-cont-wp are concave w.r.t. v (dominant term changes
from real cost to penalty cost)

o Without first experimenting with several values of v, a suitable value for
v may not be known

e PNDP models mitigate ambiguity in solution reliability
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Conclusions and future research

Conclusions:
@ Developed MIP formulations for PNDP models

@ Developed polynomial-time algorithms for PNDP-cont-nc and special cases of
PNDP-cont-n/c models that are far more efficient than MIP formulations

@ Benchmarked PNDP models against SNDP to find that PNDP models are far
less sensitive to small changes in parameters

Future research:

@ Risk parameters as variables, to seek and optimal combination of risk versus
cost

@ Special network topologies that may provide more effective algorithms
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Thank youl
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