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Applications I

Health care operations management:

1. Appointment scheduling in outpatient clinics
I How many doctors? The sequence of appointments for each

doctor? Time scheduled in between the appointments?

2. Surgery planning in operating rooms (ORs)
I Which ORs to open? How to allocate surgeries to ORs? How

to schedule surgeries in their assigned ORs?
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Applications II

High-cost and volatile test scheduling:

1. Crash test scheduling on prototype vehicles

I How many prototype vehicles to use? How to allocate tests to
vehicles? When to start each test?

2. Planning TAs and office hours
I How many TAs to have? The sequence of office-hour

appointments? Time allocation in between the appointments?
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General Problem Structure

The multi-server appointment scheduling (MAS) problems

I decide how many/which (costly) servers to open

I allocate and schedule appointments on multiple servers

I involve uncertain service durations

Challenges:

I Integrated mixed 0-1 planning decisions and larger-scale set of
scenarios

I To coordinate staff and resources, need to specify the arrival
time of each appt. cannot start before the specified time.

I All planning decisions made before realizing the uncertainty
I Recourse problem: evaluating the undesirable consequences:

I e.g., server under-utilization, server overtime, appt. delay...
I complete recourse if minimizing the expected penalty.
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Motivation and Goals

Consider the quality of service (QoS):

I use chance constraints to restrict the risk of having overtime
servers and appt. delay (given their ambiguous penalty costs)

Goals: study the Chance-Constrained Multi-Server Appointment
Scheduling (CC-MAS) problem to find out:

I Benefit of integrating allocation and scheduling decisions?

I Benefit of the chance constraints vs. minimizing the expected
penalty of server overtime and appt. delay?

I How to compute the non-convex, mixed-integer, stochastic
optimization model?
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Sketched Model of CC-MAS

I Decision 1: opening servers; allocation of jobs to servers

I Decision 2: plan start times of jobs on individual servers
I Objective: minimize the costs of opening servers and

allocating appt. subject to
I each appointment starts on time
I a chance constraint requiring the minimum joint probability of

all servers finishing on time.

Computing the chance constraints:

I apply the Sample Average Approximation (SAA) method
(e.g., Luedtike and Ahmed (2008))

I transform each into a set of big-M constraints with binary
logic variables and a cardinality knapsack constraint that
restricts values of the logic variables.

I apply decomposition for solving the MILP representation.
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Literature Review I

Server allocation:

I Blake and Donald (2002), Ozkarahan (2000), Jebali et al. (2006),
Denton et al. (2010), Shylo et al. (2012)...

Appointment scheduling under service-time uncertainty:

I Denton and Gupta (2003), Mak et al. (2014), Kong et al. (2014),
Jiang and S. (2015)...

Job scheduling:

I Coffiman et al. (1978), Van den Akker et al. (2000), Savelsbergh et
al. (2005), Sarin et al. (2014)...

Chance-Constrained Programming:

I Scenario Approximation: Calafiore and Campi (2005), Nemirovski
and Shapiro (2006)

I Convex relaxation/approximation: Ahmed (2011), Nemirovski and
Shapiro (2007)
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Literature Review II

I Efficient point: Sen (1992), Dentcheva et al. (2000), Ruszczyński
(2002)

Decomposition for general chance-constrained programs:

I Luedtke et al. (2010), Küçükyavuz (2012): strong valid inequalities
for CC with randomness only in RHS

I Luedtke (2013): strong valid inequality and a branch-and-cut
algorithm based on scenario decomposition

I Tanner and Ntaimo (2010): no recourse. branch-and-cut based on
irreducible infeasible system

I Beraldi and Bruni (2010): specialized branch-and-bound

I Qiu et al. (2014), Song et al. (2014): strengthening big-M
coefficients in the extended formulation

I Watson et al. (2010), Ahmed et al. (2014): dual decomposition
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Parameters of CC-MAS

I I : a set of appointments.

I J: a set of servers.

I Tj : operating time limit of server j ∈ J.

I c1
j : cost of operating server j .

I c2
ij : cost of assigning appointment i to server j .

I [ai , ai ]: earliest and latest time to start appointment i .

I Wi : maximum allowable delay time of appointment i .

I ξi : random service durations of appointment i .

I Ω: a discrete and finite support of the random service time ξi .

I ξω = [ξωi , i ∈ I ]T is a realization in scenario ω ∈ Ω.
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Decisions in CC-MAS

Binary Variables:

I xj (open server): for j ∈ J, xj = 1 if server j opens, and 0 o.w.

I yij (allocation): for j ∈ J and i ∈ I , yij = 1 if appt. i is
allocated to server j , and 0 o.w.

I zi ′i (sequence): for any i , i ′ ∈ I , i 6= i ′, zi ′i = 1 if appt. i ′ is
scheduled ahead of i , and 0 o.w.

Continuous Variables:

I planned arrival time of appointments: si ≥ 0, ∀i ∈ I

I actual start time of appointments: twi , ∀i ∈ I , w ∈ Ω

Deng and S. (Michigan) Decomposition for CC-MAS 11/34



Formulation of CC-MAS I

min
∑
j∈J

c1
j xj +

∑
i∈I

∑
j∈J

c2
ijyij (1)

s.t. (x , y , z , s) ∈ Q (2)

P
{

(x , y , z , s) ∈ Q(ξ)
}
≥ 1− ε. (3)

I Q is a fixed region, given by MILP constraints in x , y , z , s.

I Q(ξ) is a region parameterized by the uncertain vector ξ.

Deng and S. (Michigan) Decomposition for CC-MAS 12/34



Formulation of CC-MAS II

Mixed 0-1 integer deterministic set:

Q =
{

(x , y , z , s) ∈ {0, 1}|J| × {0, 1}|I |×|J| × {0, 1}|I |×(|I |−1) × R|I |+ :∑
j∈J

yij = 1, yij ≤ xj ∀i ∈ I , j ∈ J

yij + yi ′j − 1 ≤ zii ′ + zi ′i ≤ 1,

1− zii ′ ≥ yij − yi ′j , 1− zii ′ ≥ yi ′j − yij , ∀i , i ′ ∈ I , i 6= i ′, j ∈ J

ai ≤ si ≤ ai ∀i ∈ I

si ≥ −M1
i ′i (1− zi ′i ) + si ′ ∀i , i ′ ∈ I , i 6= i ′

}
. (4)

Deng and S. (Michigan) Decomposition for CC-MAS 13/34



Formulation of CC-MAS III
∀w ∈ Ω:

Q(ξw ) =
{

(x , y , z , s) : ∃tw ∈ R|I |+ such that

twi ≥ si , ∀i ∈ I .

twi ≥ −M2
i ′iw (1− zi ′i ) + twi ′ + ξwi ′ ∀i , i ′ ∈ I , i 6= i ′.

twi + ξwi ≤ Tj +M3
ijw (1− yij) ∀i ∈ I , j ∈ J

}
,

In the rest of the talk, we replace the joint chance constraint (3) by∑
w∈Ω

I {(x , y , z , s) ∈ Q(ξw )} ≥ |Ω| − θ

I I{·} is an indicator function; θ = bε|Ω|c.
I It can lead to the extended MIP reformulation; or we use it to

evaluate the chance of a given solution (x̂ , ŷ , ẑ , ŝ) satisfying all
constraints in Q(ξ).
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Separate Allocation & Scheduling

1st-stage (allocation):

min
{
c1x+c2y :

∑
j∈J

yij = 1, yij ≤ xj , (x , y) ∈ A∩{0, 1}|J|×{0, 1}|I |×|J|
}

where A =
{

(x , y) :

∃s, z satisfying other constraints in Q and the chance constraint (3).
}
.

2nd-stage (scheduling): given (x̂ , ŷ), check whether (x̂ , ŷ) ∈ A by finding
a feasible (z , s, t) to constraints in A with y = ŷ .

I If such a solution exists, (x̂ , ŷ) is optimal.

I Otherwise, add a cut to the 1st-stage allocation problem, e.g.,
no-good cuts for binary valued (x , y).

Problem: Finding a feasible schedule is hard; not much information about
feasibility is known when solving the 1st-stage.
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Our Approaches I

Enhancement 1: Add a proxy of the joint chance constraint to the
1st-stage problem:

∑
w∈Ω

I

{∑
i∈I

ξwi yij ≤ Tjxj ∀j ∈ J

}
≥ |Ω| − θ (5)

Enhancement 2: For a given (x̂ , ŷ), consider

I set J(x̂) = {j ∈ J : x̂j = 1} of operating servers;

I sets Ij(ŷ) = {i ∈ I : ŷij = 1} of appointments allocated on each
server j ∈ J(x̂).

Define variables:

I uik ∈ {0, 1}, ∀i ∈ Ij(ŷ) and k = 1, . . . , |Ij(ŷ)|, such that uik = 1 if
appt. i is scheduled as the k th one, and uik = 0 o.w.

I rk ≥ 0 and γk ≥ 0 representing the appointed start time and the
actual start time of the k th appt. respectively, ∀k = 1, . . . , |Ij(ŷ)|.
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Our Approaches II
The 2nd-stage feasible set A is equivalent to:

|Ij (ŷ)|∑
k=1

uik = 1 ∀i ∈ Ij(ŷ)∑
i∈Ij (ŷ)

aiuik ≤ rk ≤
∑

i∈Ij (ŷ)

aiuik ∀k = 1, . . . , |Ij(ŷ)|

rk − rk−1 ≥ 0 ∀k = 2, . . . , |Ij(ŷ)|
γwk ≥ rk ∀k = 1, . . . , |Ij(ŷ)|, ∀w ∈ Ω

γwk ≥ γwk−1 +
∑

i∈Ij (ŷ)

ξwi uik−1 ∀k = 2, . . . , |Ij(ŷ)|, ∀w ∈ Ω

γw|Ij (ŷ)| +
∑

i∈Ij (ŷ)

ξwi ui|Ij (ŷ)| ≤ Tj , ∀w ∈ Ω

uik ∈ {0, 1},∀i ∈ Ij(ŷ), rk ≥ 0, γk ≥ 0, k = 1, . . . , |Ij(ŷ)|.

This reformulation does not contain the big-M1, -M2 and -M3

coefficients.
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Strengthened Big-M Coefficients

To optimize the enhanced 1st-stage allocation problem with the
added joint chance constraint (5), we work with the extended
reformulation.
Strengthen the big-M coefficients using two approaches:

I Qiu et al. (2014): iteratively repeat plugging the
latest-attained coefficients into an LP model to compute
improved values.

I Song et al. (2014): sort scenario-based optimal objectives
(much easier to compute) to derive valid coefficient
thresholds.
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Other Approaches for Optimizing the 1st Stage

1. Branch-and-Cut (Luedtke (2013)): Strengthen the big-M valid
inequalities in Song et al. (2014) by lifting, and integrate into a
branch-and-cut algorithm.

2. Decomposition-based bounding: consider scenario-based
subproblems:

v(w ,S) = min
{
c1x + c2y : (x , y) ∈ Dw \ S

}
∀w ∈ Ω (6)

where S is a set of (x , y) vertices violating the joint chance
constraint (5). For a fixed S, we compute v(w ,S), ∀w ∈ Ω to
update valid upper bound B (any v(w ,S) yielding feasible
(x(w), y(w))) and lower bound B (= v(σθ+1,S) as the θ + 1
largest value). We append evaluated solutions to the set S and add
no-good cuts for excluding the corresponding (x , y).

3. Dual/scenario decomposition: make copies of x and y in all
scenarios and enforce them taking the same values by using
nonanticipativity constraints. Take the Lagrangian dual and
optimize.
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2nd Stage: Chance-Constrained Appointment Scheduling

Given (x̂ , ŷ) from the 1st stage, we verify whether exists feasible appt.
arrivals to satisfy the server-overtime chance constraint.

I It is an MIP with a joint chance constraint.

I We can still apply the previous approaches used for solving the
enhanced 1st-stage problem.

I All constraints are “server decomposable” except the joint chance
constraint of server overtime.

I We use branch-and-cut and add cuts based on “scenario covers”
(i.e., “cover inequalities” by identifying scenarios that cannot be all
violated.)

I We identify the scenario covers based on irreducibly infeasible
subsystem (IIS) of an LP relaxation model.

I The idea was also implemented by Tanner and Ntaimo (2010) and
Codato and Fischetti (2006) in different contexts.
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Model Variants of CC-MAS

We consider the following model variants and most computational
methods can be generalized:

I Replace the joint chance constraint (3) by multiple chance
constraints each for one server:∑

w∈Ω
I {(x , y , z , s) ∈ Qj(ξ

w )} ≥ |Ω| − bεj |Ω|c.

The 2nd-stage problem becomes server-wise decomposable.

I Hard constraints on appointment waiting: twi − si ≤Wi , for all
i ∈ I , w ∈ Ω.

I Recourse Cost in the Objective: Define a variables ow
j ∈ R+ as

the overtime of every server j in each scenario w ⇒
c1x + c2y + (1/|Ω|)

∑
w∈Ω

∑
j∈J c

3
j o

w
j , and add constraints

ow
j ≥ twi + ξwi − Tj −M3

ijw (1− yij), ∀i ∈ I , j ∈ J, w ∈ Ω.

I The delay of appointments can be penalized in a similar way.
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Computational Setup
Problem instances: allocating and scheduling surgeries to
operating rooms (ORs) under surgery time uncertainty.

ORs (servers):
I Tj = 4 ∼ 15, j ∈ J; c1

j = 8 ∼ 18, j ∈ J;

c2
ij = 1, ∀i ∈ I , j ∈ J.

Surgeries (appointments):
I durations of the operating time of each surgery type are

randomly sampled based on one-week data, following a
lognormal distribution.

I [ai , ai ]: [0, 6], [6, 12], and [0, 12].
I ε = 0.1

Computer characteristics:
I CPU 3.20 GHz, with 8GB memory; CPLEX 12.5.1.
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Benchmark with Two-Stage Cost-Based Models
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Results of Integrating Allocation and Scheduling

A benchmark process: CCSA → CCS:
Chance-constrained server allocation (CCSA)

I a stochastic bin packing problem where we “pack” surgeries with
random durations into ORs with time limits, subject to a joint
chance constraint of β on-time OR closure rate.

Chance-constrained scheduling (CCS)

I Pass an optimal solution of CCSA to CCS, where we seek feasible
schedules to satisfy the two chance constraints in CC-MAS.

Table: Results of QoS level β′ and cost of “integrating” and “separating”
CC-MAS models.

Model used
β′(%) given β(%): solution cost given β(%):

80 85 90 95 100 80 85 90 95 100
CC-MAS 87.7±1.3 89.3±1.5 91.2±1.3 94.3±1.5 96.9±1.5 38.0±0.1 38.3±0.8 38.3±0.8 41.1±1.4 44.1±1.7

CCSA→CCS 75.5±2.0 79.7±1.6 79.6±1.1 80.1±2.1 85.8±2.8 38.0±0.0 38.0±0.0 38.0±0.1 38.3±0.8 40.4±1.1
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CPU Time Results of Decomposition I

Table: Total solution time and number of branched nodes

Instance |Ω| Direct MP+SP MP∗+SP
total #node total #node #cut total #node #cut

|J| = 5 20 269.8 169356 366.2 23 8 1.3 421 3
|I | = 10 200 - 5333* 4854.3 14320 64 54.6 6503 3

2000 - 29∗ - 879∗ 87∗ - 13199∗ 5∗

Table: Solution time for solving MP∗ and big-M strengthening

Instance |Ω| MP∗+SP MP∗iter+SP MP∗scen+SP
mp (sec) mp (sec) str (sec) str% mp (sec) str (sec) str%

|J| = 5 20 0.4 0.3 1.1 15.4% 0.1 7.9 1.0%
|I | = 10 200 48.7 11.4 20.4 16.0% 1.5 725.4 1.1%

2000 - 15.8 1917.7 16.0% 5.3 5325.0 1.0%
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CPU Time Results of Decomposition II
Table: Comparisons of B&C, scenario-based bounding, dual
decomposition for the enhanced 1st-stage problem (MP∗)

Instance |Ω| B&C+SP Pbnd+SP Dbnd+SP

total (sec) #sub sub (sec) total (sec) #sub sub (sec) total (sec) #sub sub (sec)

|J| = 5 20 2.5 35 0.06 3.2 146 0.02 1.6 248 0.008
|I | = 10 200 173.2 388 0.44 10.0 568 0.02 13.8 2480 0.007

2000 2494.9 3754 0.66 78.5 2100 0.03 185.2 29500 0.007

|J| = 10 20 6535.8 2672 2.40 115.3 751 0.12 46.8 656 0.07
|I | = 20 200 - - - 410.5 1136 0.16 347.8 2080 0.09

2000 - - - 1332.4 4000 0.13 1053.4 8324 0.10

Table: Solution time on directly computing the 2nd-stage problem (SP)

Instance |Ω| MP∗iter+SP B&C+SP Pbnd+SP Dbnd+SP

sp (sec) sp% sp (sec) sp% sp (sec) sp% sp (sec) sp%

|J| = 5 20 0.3 18.3% 0.4 16.0% 0.8 12.8% 0.1 3.8%
|I | = 10 200 3.4 9.8% 0.2 0.1% 0.2 4.5% 0.1 2.5%

2000 42.0 4.0% 27.7 1.1% 2.4 3.7% 1.6 2.1%

|J| = 10 20 4.1 6.7% 23.0 0.3% 0.1 0.1% 0.9 3.8%
|I | = 20 200 - - - - 2.4 1.3% 13.8 3.5%

2000 - - - - 25.3 1.9% 22.1 2.1%
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CPU Time Results of Decomposition III
Table: IIS-based scenario cover inequalities for solving SP

Instance |Ω| MP∗iter+B&C’ B&C+B&C’ Pbnd+B&C’ Dbnd+B&C’

sp (sec) sp% sp (sec) sp% sp (sec) sp% sp (sec) sp%

|J| = 5 20 3.4 70.3% 0.3 9.9% 0.5 7.9% 4.3 84.0%
|I | = 10 200 13.3 27.9% 3.9 1.7% 3.4 37.2% 2.3 26.0%

2000 39.7 3.6% 21.6 0.8% 11.7 14.5% 9.4 9.9%

|J| = 10 20 27.0 30.5% 27.1 0.3% 12.3 54.3% 2.0 7.3%
|I | = 20 200 - - - - 14.0 6.4% 5.7 1.4%

2000 - - - - 13.2 0.9% 12.1 1.1%

Table: The CC-MAS variant with overtime penalty cost

Instance |Ω| Pbnd+SP Dbnd+SP Pbnd+B&C’ Dbnd+B&C’

mp (sec) sp (sec) mp (sec) sp (sec) mp (sec) sp (sec) mp (sec) sp (sec)

|J| = 5 20 32.4 20.3 29.7 1.5 18.9 34.5 65.5 35.7
|I | = 10 200 50.7 248.6 110.6 449.3 64.3 104.8 47.5 76.3
penal. 2000 361.1 1242.7 249.1 3032.6 130.9 523.8 117.8 700.7

|J| = 10 20 369.8 198.5 248.4 104.8 465.3 127.4 388.1 333.0
|I | = 20 200 842.3 2036.1 502.3 3571.7 535.7 369.6 476.1 629.2
penal. 2000 1567.5 5413.7 1098.4 2499.0 795.4 749.9 731.5 166.9
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CPU Time Results of Decomposition IV

Table: Multiple chance constraints vs. joint chance constraint

Instance |Ω| MP∗iter+SP (MCC) MP∗iter+SP
total #node total #node

|J| = 5 20 0.3 311 1.3 421
|I | = 10 200 31.9 751 54.6 6503

2000 4474.5 9701 - 13199∗
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Conclusions

I Combine multiple server/scenario-based decomposition
methods for solving CC-MAS.

I The work can be generalized to problems with decomposable
structures, e.g., network problems with multiple subgraphs
and correlated network-flow decisions.

I The decomposition framework is also not restricted to
problems with joint chance constraints.

Future research:

I Incorporate other risk measures.

I Apply to prototype vehicle test scheduling (under
collaboration with Ford Motor Company).

I Introduce distribution ambiguity. Consider multiple
uncertainty sources.
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Thank you!

Questions?
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