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Applications |

Health care operations management:
1. Appointment scheduling in outpatient clinics

» How many doctors? The sequence of appointments for each
doctor? Time scheduled in between the appointments?

2. Surgery planning in operating rooms (ORs)

» Which ORs to open? How to allocate surgeries to ORs? How
to schedule surgeries in their assigned ORs?
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Applications |l

High-cost and volatile test scheduling:
1. Crash test scheduling on prototype vehicles

» How many prototype vehicles to use? How to allocate tests to
vehicles? When to start each test?
2. Planning TAs and office hours

» How many TAs to have? The sequence of office-hour
appointments? Time allocation in between the appointments?
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General Problem Structure

The multi-server appointment scheduling (MAS) problems
» decide how many/which (costly) servers to open
» allocate and schedule appointments on multiple servers

> involve uncertain service durations
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General Problem Structure

The multi-server appointment scheduling (MAS) problems
» decide how many/which (costly) servers to open
» allocate and schedule appointments on multiple servers

> involve uncertain service durations

Challenges:
> Integrated mixed 0-1 planning decisions and larger-scale set of
scenarios
» To coordinate staff and resources, need to specify the arrival
time of each appt. cannot start before the specified time.
» All planning decisions made before realizing the uncertainty
» Recourse problem: evaluating the undesirable consequences:

> e.g., server under-utilization, server overtime, appt. delay...
» complete recourse if minimizing the expected penalty.
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Motivation and Goals

Consider the quality of service (QoS):

» use chance constraints to restrict the risk of having overtime
servers and appt. delay (given their ambiguous penalty costs)
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Motivation and Goals

Consider the quality of service (QoS):

» use chance constraints to restrict the risk of having overtime
servers and appt. delay (given their ambiguous penalty costs)

Goals: study the Chance-Constrained Multi-Server Appointment
Scheduling (CC-MAS) problem to find out:

> Benefit of integrating allocation and scheduling decisions?

> Benefit of the chance constraints vs. minimizing the expected
penalty of server overtime and appt. delay?

» How to compute the non-convex, mixed-integer, stochastic
optimization model?
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Sketched Model of CC-MAS

» Decision 1: opening servers; allocation of jobs to servers

» Decision 2: plan start times of jobs on individual servers

» Objective: minimize the costs of opening servers and
allocating appt. subject to

> each appointment starts on time
» a chance constraint requiring the minimum joint probability of
all servers finishing on time.

Computing the chance constraints:

» apply the Sample Average Approximation (SAA) method
(e.g., Luedtike and Ahmed (2008))

» transform each into a set of big-M constraints with binary
logic variables and a cardinality knapsack constraint that
restricts values of the logic variables.

» apply decomposition for solving the MILP representation.
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Literature Review |

Server allocation:

> Blake and Donald (2002), Ozkarahan (2000), Jebali et al. (2006),
Denton et al. (2010), Shylo et al. (2012)...

Appointment scheduling under service-time uncertainty:

> Denton and Gupta (2003), Mak et al. (2014), Kong et al. (2014),
Jiang and S. (2015)...

Job scheduling:

> Coffiman et al. (1978), Van den Akker et al. (2000), Savelsbergh et
al. (2005), Sarin et al. (2014)...

Chance-Constrained Programming:

> Scenario Approximation: Calafiore and Campi (2005), Nemirovski
and Shapiro (2006)

> Convex relaxation/approximation: Ahmed (2011), Nemirovski and
Shapiro (2007)
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Literature Review Il

> Efficient point: Sen (1992), Dentcheva et al. (2000), Ruszczyriski
(2002)

Decomposition for general chance-constrained programs:

> Luedtke et al. (2010), Kiigiikyavuz (2012): strong valid inequalities
for CC with randomness only in RHS

> Luedtke (2013): strong valid inequality and a branch-and-cut
algorithm based on scenario decomposition

» Tanner and Ntaimo (2010): no recourse. branch-and-cut based on
irreducible infeasible system

> Beraldi and Bruni (2010): specialized branch-and-bound

> Qiu et al. (2014), Song et al. (2014): strengthening big-M
coefficients in the extended formulation

> Watson et al. (2010), Ahmed et al. (2014): dual decomposition
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Parameters of CC-MAS

v

I: a set of appointments.

v

J: a set of servers.
» T;: operating time limit of server j € J.
> c:: cost of operating server j.

> c:: cost of assigning appointment i to server j.

v

[a;, i]: earliest and latest time to start appointment i.

v

Wi;: maximum allowable delay time of appointment /.

v

&;: random service durations of appointment i.

» : a discrete and finite support of the random service time &;.

v

Y=Y, i e I]T is a realization in scenario w € €.
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Decisions in CC-MAS

Binary Variables:
> X;j (open server): for j € J, x; = 1 if server j opens, and 0 o.w.

> yiji (allocation): for j € Jand i € I, yj =1 if appt. i is
allocated to server j, and 0 o.w.

> zy; (sequence): forany i,i" €I, i # i, zp; =1 if appt. i’ is
scheduled ahead of i, and 0 o.w.
Continuous Variables:
» planned arrival time of appointments: s; > 0, Vi € /

> actual start time of appointments: t, Vie [, w € Q
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Formulation of CC-MAS |

min chlxj-—kzzcg-yij (1)

jed iel jed
st (xy.2,5) €Q 2)
P{(x,y,2,5) € QO = 1-e (3)

> Q@ is a fixed region, given by MILP constraints in x, y, z, s.

» Q(&) is a region parameterized by the uncertain vector &.
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Formulation of CC-MAS Il

Mixed 0-1 integer deterministic set:

Q= {(x,y,z,s) € {0,137 x {0, 1111 {0, 13 11xWI=1) o R
dyi=1yj<x Viel jelJ
jed
ity — 1<z +2zp; <1,
1=z >y — yij, 1= zip 2 yij —yy, Vi€l i#i, jed
2;<s5<3 Viel

s> -ML(1—z)+sp Vi el, i#i } (4)
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Formulation of CC-MAS IlI
Yw € Q:
Q(e™) = {(x,y,z7s) 3t e R‘ll such that
t i, Viel
> M (L—z))+tV + €% Yii'el, i#i.
g S T+ My, (L-yy) Vil jed ),

>s
>

In the rest of the talk, we replace the joint chance constraint (3) by

Z ]I{(X7yvzvs) € Q(gw)} > ‘Q| -0

weQ

» I{-} is an indicator function; 6 = |€|Q]].

> It can lead to the extended MIP reformulation or we use it to
evaluate the chance of a given solution (%, ¥, 2, §) satisfying all
constraints in Q(&).
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Outline

Solution Algorithms
Outer Decomposition
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Separate Allocation & Scheduling

1st-stage (allocation):

min {61X+c2y DY v =1,y < x5, (x,y) € An{0, 131x{o, 1}"‘*“'}
jed

where A = {(x,y):
s, z satisfying other constraints in Q and the chance constraint (3).}.
2nd-stage (scheduling): given (&, ), check whether (X, ) € A by finding
a feasible (z, s, t) to constraints in A with y = y.

> If such a solution exists, (%, ¥) is optimal.

» Otherwise, add a cut to the 1lst-stage allocation problem, e.g.,
no-good cuts for binary valued (x,y).
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Separate Allocation & Scheduling

1st-stage (allocation):

min {61X+c2y DY v =1,y < x5, (x,y) € An{0, 131x{o, 1}"‘*“'}
jed

where A = {(x,y):
s, z satisfying other constraints in Q and the chance constraint (3).}.
2nd-stage (scheduling): given (&, ), check whether (X, ) € A by finding
a feasible (z, s, t) to constraints in A with y = y.

> If such a solution exists, (%, ¥) is optimal.

» Otherwise, add a cut to the 1lst-stage allocation problem, e.g.,
no-good cuts for binary valued (x,y).

Problem: Finding a feasible schedule is hard; not much information about
feasibility is known when solving the 1st-stage.
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Our Approaches |

Enhancement 1: Add a proxy of the joint chance constraint to the
1st-stage problem:

ZH{Z&W}/USTJXJVJGJ}Zm—e (5)

weQ iel

Enhancement 2: For a given (&, y), consider
> set J(X) = {j € J: X; = 1} of operating servers;

> sets [j(y) = {i € | : §jy = 1} of appointments allocated on each
server j € J(X).

Define variables:

> up €40,1}, Vie [i(y) and k =1,...,|;(9)], such that uy =1 if
appt. i is scheduled as the k' one, and uj = 0 o.w.

> ry > 0 and v, > 0 representing the appointed start time and the
actual start time of the k™" appt. respectively, Vk = 1,...,[[(9)|.
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Our Approaches Il
The 2nd-stage feasible set A is equivalent to:

L@

Z upg =1 Vieli(y)
Z au,k<rk Z djUjk Vk:].,,|/]()7)|

i€h(9) )
ho- 20 WK =2, [5(9)
W n k=L L) Y e
WA+ Y e Yh=2,.., ()], YweQ
i€l(y)
'VI‘A/;(Y)\ + Z M Uiy < Tj, Yw € Q
i€l(y)

ujx € {O,l},Vi S /J()?), e >0, % >0,k= 1,,‘/1()7)‘

This reformulation does not contain the big-M?!, -M? and -M3
coefficients.
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Outline

Solution Algorithms

1st Stage: Chance-Constrained Server-Allocation
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Strengthened Big-M Coefficients

To optimize the enhanced 1st-stage allocation problem with the
added joint chance constraint (5), we work with the extended
reformulation.

Strengthen the big-M coefficients using two approaches:

» Qiu et al. (2014): iteratively repeat plugging the
latest-attained coefficients into an LP model to compute
improved values.

» Song et al. (2014): sort scenario-based optimal objectives
(much easier to compute) to derive valid coefficient
thresholds.
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Other Approaches for Optimizing the 1st Stage

1. Branch-and-Cut (Luedtke (2013)): Strengthen the big-M valid
inequalities in Song et al. (2014) by lifting, and integrate into a
branch-and-cut algorithm.
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Other Approaches for Optimizing the 1st Stage

1. Branch-and-Cut (Luedtke (2013)): Strengthen the big-M valid
inequalities in Song et al. (2014) by lifting, and integrate into a
branch-and-cut algorithm.

2. Decomposition-based bounding: consider scenario-based
subproblems:

v(w,S) =min{c'x+ %y : (x,y) EDs\S} YweQ (6)

where S is a set of (x,y) vertices violating the joint chance
constraint (5). For a fixed S, we compute v(w,S), Yw € Q to
update valid upper bound B (any v(w,S) yielding feasible

(x(w), y(w))) and lower bound B (= v(og4+1,S) as the 6+ 1
largest value). We append evaluated solutions to the set S and add
no-good cuts for excluding the corresponding (x, y).
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Other Approaches for Optimizing the 1st Stage

1. Branch-and-Cut (Luedtke (2013)): Strengthen the big-M valid
inequalities in Song et al. (2014) by lifting, and integrate into a
branch-and-cut algorithm.

2. Decomposition-based bounding: consider scenario-based
subproblems:

v(w,S) =min{c'x+ %y : (x,y) EDs\S} YweQ (6)

where S is a set of (x,y) vertices violating the joint chance
constraint (5). For a fixed S, we compute v(w,S), Yw € Q to
update valid upper bound B (any v(w,S) yielding feasible

(x(w), y(w))) and lower bound B (= v(og4+1,S) as the 6+ 1
largest value). We append evaluated solutions to the set S and add
no-good cuts for excluding the corresponding (x, y).

3. Dual/scenario decomposition: make copies of x and y in all
scenarios and enforce them taking the same values by using
nonanticipativity constraints. Take the Lagrangian dual and
optimize.
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2nd Stage: Chance-Constrained Appointment Scheduling

Given (%, 7) from the 1st stage, we verify whether exists feasible appt.
arrivals to satisfy the server-overtime chance constraint.

>

>

It is an MIP with a joint chance constraint.

We can still apply the previous approaches used for solving the
enhanced lst-stage problem.

All constraints are “server decomposable” except the joint chance
constraint of server overtime.

We use branch-and-cut and add cuts based on “scenario covers”
(i.e., “cover inequalities” by identifying scenarios that cannot be all
violated.)

We identify the scenario covers based on irreducibly infeasible
subsystem (11S) of an LP relaxation model.

The idea was also implemented by Tanner and Ntaimo (2010) and
Codato and Fischetti (2006) in different contexts.
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Model Variants of CC-MAS

We consider the following model variants and most computational
methods can be generalized:

> Replace the joint chance constraint (3) by multiple chance
constraints each for one server:

S T(xy29) € QE)} > 19 - g9l

The 2nd-stage problem becomes server-wise decomposable.

Deng and S. (Michigan) Decomposition for CC-MAS 25/34



Model Variants of CC-MAS

We consider the following model variants and most computational
methods can be generalized:

> Replace the joint chance constraint (3) by multiple chance
constraints each for one server:

S T(xy29) € QE)} > 19 - g9l

The 2nd-stage problem becomes server-wise decomposable.

> Hard constraints on appointment waiting: t —s; < W;, for all
iel, weQ.
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Model Variants of CC-MAS

We consider the following model variants and most computational
methods can be generalized:

> Replace the joint chance constraint (3) by multiple chance
constraints each for one server:

S T(xy29) € QE)} > 19 - g9l

The 2nd-stage problem becomes server-wise decomposable.

> Hard constraints on appointment waiting: t —s; < W;, for all
iel, weQ.

> Recourse Cost in the Objective: Define a variables o/ € R as
the overtime of every server j in each scenario w =
cix 4’y +(1/1Q0) Xy eq 2jes 60}, and add constraints
o/ > t}”Jrf}"’—TJ-fM?jW(lfy,-j), Viel, jed, we .
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Model Variants of CC-MAS

We consider the following model variants and most computational
methods can be generalized:

> Replace the joint chance constraint (3) by multiple chance
constraints each for one server:

S T(xy29) € QE)} > 19 - g9l

The 2nd-stage problem becomes server-wise decomposable.

> Hard constraints on appointment waiting: t —s; < W;, for all
iel, weQ.

> Recourse Cost in the Objective: Define a variables o/ € R as
the overtime of every server j in each scenario w =
cix 4’y +(1/1Q0) Xy eq 2jes 60}, and add constraints
o/ > t}”Jrf}"’—TJ-fM?jW(lfy,-j), Viel, jed, we .

» The delay of appointments can be penalized in a similar way.
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Computational Setup

Problem instances: allocating and scheduling surgeries to
operating rooms (ORs) under surgery time uncertainty.

® ®_ Children’s Hospital
of Michiganii
1 DIMIC DETROIT MEDICAL CENTER

ORs (servers):

> Tj=4~15jcJ;¢ =8~18, j€ J;

c,?:l, viel, jeJ.
Surgeries (appointments):

» durations of the operating time of each surgery type are
randomly sampled based on one-week data, following a
lognormal distribution.

» [a;,3]: [0, 6], [6, 12], and [0, 12].

» e=0.1

Computer characteristics:

» CPU 3.20 GHz, with 8GB memory; CPLEX 12.5.1.
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Benchmark with Two-Stage Cost-Based Models

1. Cost-Based Model:

cost-based chance-constrained
100 100

. 80
overtime-free% :

{95% confidence interval)

20 7O

&0
6 5 10 15 080 085 080 035 1.00
penalty for overtime

100
60 25
on-time start% 4 |2 o
(mean) - 85
20 |
. a0
L |
oo 1 1 1 1 75
I - 0.80 085 000 005 1.00
penalty for waiting o

2. Separate Modeling: 10%-), overtime-free%.
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Results of Integrating Allocation and Scheduling
A benchmark process: CCSA — CCS:
Chance-constrained server allocation (CCSA)

> a stochastic bin packing problem where we “pack” surgeries with
random durations into ORs with time limits, subject to a joint
chance constraint of 3 on-time OR closure rate.

Chance-constrained scheduling (CCS)

» Pass an optimal solution of CCSA to CCS, where we seek feasible
schedules to satisfy the two chance constraints in CC-MAS.
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Results of Integrating Allocation and Scheduling

A benchmark process: CCSA — CCS:
Chance-constrained server allocation (CCSA)

> a stochastic bin packing problem where we “pack” surgeries with
random durations into ORs with time limits, subject to a joint
chance constraint of 3 on-time OR closure rate.

Chance-constrained scheduling (CCS)

» Pass an optimal solution of CCSA to CCS, where we seek feasible
schedules to satisfy the two chance constraints in CC-MAS.

Table: Results of QoS level 5" and cost of “integrating” and “separating”
CC-MAS models.
B'(%) given 5(%): solution cost given 3(%):
Model used 80 85 90 9% 100 80 85 90 95 100

CC-MAS 87.741.3 89.3+£15 912413 943+15 96.9+15 38.0+0.1 38.3+0.8 383+0.8 41.1+14 441417
CCSA—CCS  75.542.0 79.7+1.6 79.6+1.1 80.1+2.1 85.842.8 38.040.0 38.0+0.0 38.0+0.1 38.3+0.8 40.4+1.1
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CPU Time Results of Decomposition |

Table: Total solution time and number of branched nodes

Instance |9 Direct MP+SP MP*+SP
total  #node total #node #cut total #node #cut
[J] =5 20 269.8 169356 366.2 23 8 13 421 3
[l| =10 200 - 5333 4854.3 14320 64 54.6 6503 3
2000 - 29* - 879*  87* - 13199* 5*

Table: Solution time for solving MP* and big-M strengthening

MP*+SP MP3 . +SP MP? ., +SP
Instance [ mp (sec) mp (sec) str (sec)  str% mp (sec) str (sec) str%
=5 20 0.4 0.3 11 154% 01 79 1.0%
[/|=10 200 48.7 114 204 16.0% 15 7254 11%
2000 - 15.8 1917.7 16.0% 53 5325.0 1.0%
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CPU Time Results of Decomposition |l

Table: Comparisons of B&C, scenario-based bounding, dual
decomposition for the enhanced 1st-stage problem (MP*)

Instance 12l B&C+SP Pbnd+SP Dbnd+SP
total (sec) #sub sub (sec) total (sec) #sub sub (sec) total (sec) #sub sub (sec)
[J]=5 20 25 35 0.06 32 146 0.02 16 248 0.008
|/l =10 200 173.2 388 0.44 10.0 568 0.02 13.8 2480 0.007
2000 2494.9 3754 0.66 78.5 2100 0.03 185.2 29500 0.007
[J=10 20 6535.8 2672 2.40 115.3 751 0.12 46.8 656 0.07
|/|=20 200 - - - 4105 1136 0.16 347.8 2080 0.09
2000 - - - 1332.4 4000 0.13 1053.4 8324 0.10

Table: Solution time on directly computing the 2nd-stage problem (SP)

Instance |Q‘ MPj; . +SP B&C+SP Pbnd+SP Dbnd+SP
sp (sec) sp% sp (sec) sp% sp (sec) sp% sp (sec) sp%
[J| =5 20 0.3 18.3% 0.4 16.0% 0.8 12.8% 0.1 3.8%
|/l =10 200 34 9.8% 02 0.1% 02 45% 01 25%
2000 420 4.0% 277 1.1% 24 37% 16 2.1%
|J]=10 20 41 6.7% 23.0 0.3% 0.1 01% 09 3.8%
[/|=20 200 . - - - 24 1.3% 138 3.5%
2000 - - - - 253 1.9% 221 21%
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CPU Time Results of Decomposition IlI

Table: 11S-based scenario cover inequalities for solving SP

nstonce [0 P BT B&C+BAC Pbnd+B&C’ Dbnd+B&C’
sp (sec) sp% sp (sec) sp% sp (sec) sp% sp (sec) sp%
[J|=5 20 3.4 70.3% 03 9.9% 05 7.9% 4.3 84.0%
|/l =10 200 133 27.9% 39 1.7% 34 37.2% 23 26.0%
2000 39.7  3.6% 21.6 0.8% 11.7 145% 9.4  9.9%
[J]=10 20 27.0 30.5% 27.1 0.3% 12.3 54.3% 20 7.3%
|[/|=20 200 - - - - 140 6.4% 57 1.4%
2000 - - - - 132 0.9% 121 1.1%

Table: The CC-MAS variant with overtime penalty cost

Instance || Pbnd+SP Dbnd+SP Pbnd+B&C’ Dbnd+B&C’
mp (sec) sp (sec) mp (sec) sp (sec) mp (sec) sp (sec) mp (sec) sp (sec)
[J=5 20 32.4 20.3 29.7 15 18.9 345 65.5 35.7
|/ =10 200 50.7 248.6 110.6 449.3 64.3 104.8 475 76.3
penal. 2000 361.1 12427 249.1  3032.6 130.9 523.8 117.8 700.7
[J=10 20 369.8 198.5 248.4 104.8 465.3 127.4 388.1 333.0
[/[]=20 200 842.3  2036.1 502.3 35717 535.7 369.6 476.1 629.2
penal. 2000 1567.5  5413.7 1098.4  2499.0 795.4 749.9 731.5 166.9
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CPU Time Results of Decomposition IV

Table: Multiple chance constraints vs. joint chance constraint

MP?ter+SP (MCC) MP?ter+SP
Instance || total  #node total #node
J[=5 20 0.3 311 13 421
=10 200 319 751 546 6503
2000 44745 9701 - 13199*
Deng and S. (Michigan) Decomposition for CC-MAS
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Conclusions

» Combine multiple server/scenario-based decomposition
methods for solving CC-MAS.

» The work can be generalized to problems with decomposable
structures, e.g., network problems with multiple subgraphs
and correlated network-flow decisions.

» The decomposition framework is also not restricted to
problems with joint chance constraints.
Future research:
> Incorporate other risk measures.

» Apply to prototype vehicle test scheduling (under
collaboration with Ford Motor Company).

> Introduce distribution ambiguity. Consider multiple
uncertainty sources.
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Thank you!
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