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The Minimum Cost Flow Problem

G = (N ,A), where N : node set, and A: arc set.

S ⊂ N : supply node set; T ⊂ N : demand node set.

Si/Di : the absolute value of supply/demand at node i

Cij : unit flow cost; Uij : arc capacity.

A Minimum Cost Flow problem is:

[MCF] : min
∑

(i,j)∈A

Cijxij (1a)

s.t.
∑

j :(i,j)∈A

xij −
∑

j :(j,i)∈A

xji =


Si ∀i ∈ S,
0 ∀i ∈ N \ S \ T ,
−Di ∀i ∈ T ,

(1b)

0 ≤ xij ≤ Uij , ∀(i , j) ∈ A, (1c)
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Literature Review

1 Various Stochastic shortest path: Loui (1983), Eiger et al. (1985),
Fan et al. (2005), Hutson and Shier (2009)

2 MCF under uncertain demand, capacity, and/or traveling cost
(Glockner et al. (2001), Peraki and Servetto (2004), Powell and
Frantzeskakis (1994), Prékopa and Boros (1991))

3 “Last-mile delivery” in humanitarian relief: Balcik et al. (2008),
Salmeron and Apte (2010), Ozdamar et al. (2004)

4 VaR: Miller and Wagner (1965), Prékopa (1970))

5 CVaR: Rockafellar and Uryasev (2000;2002)
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Loss-Constrained MCF and Applications

Goal: minimize the arc flow cost, while under random 0-1 arc failures, the
VaR/CVaR of random path-flow losses is bounded.

Applications: Logistics, telecommunication, humanitarian relief...

We test a class of stochastic kidney exchange problems, in which
we maximize the utility of pairing kidneys subject to constrained risk
of utility losses, under random match failure of paired kidneys.

Assumptions

1 the failure of an arc will cause flow losses on all paths using that arc;

2 for any path carrying positive flows, the failure of one or multiple arcs
on the path will lead to losing the whole amount of flows it carries

3 The total loss of an arc flow solution is the summation of path flows
on all paths that have arc failures.
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Motivating Example

 

𝑥58 = 2 

𝑥78 = 2 𝑥56 = 2 

𝑥23 = 2 𝑥67 = 2 

𝑥45 = 4 𝑥14 = 2 

𝑥34 = 2 

1 8 5 

6 7 

4 

3 2 

𝑥12 = 2 

If destroy arcs (2, 3) and (6, 7):

Solution 1: two units of flow via path “1–2–3–4–5–6–7–8,” and two units via path
“1–4–5–8”; will lose two units.

Solution 2: two units of flow via path “1–2–3–4–5–8,” and the other two via path
“1–4–5–6–7–8”; will lose four units.

Constrained “maximum” flow losses ⇒ being robust
Constrained “minimum” flow losses ⇒ being opportunistic
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Notation

We formulate an LP model to compute possible flow losses.

Let Yij =

{
1 if arc (i , j) ∈ A fails,

0 otherwise.

Recall that the original network is G(N ,A)

Given an MCF solution x̂ , build a residual graph G(x̂):

I Disconnect all arcs (i , j) having Yij = 1 in graph G(N ,A).

I Add a fixed demand of x̂ij at node i (where Yij = 1 for some j).

I Add a demand variable ρj at node j (where Yij = 1 for some j).

I Add a variable λs representing accumulated losses at each supply node
s ∈ S
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An Example of Constructing G(x̂)

Given Yij = Ykl = 1:

 

            

(a) Original graph and solution x̂

 

𝜌𝑗  

𝑠 𝑡 𝑗 𝑘 𝑙 𝑖 

𝑥�𝑖𝑗 𝑥�𝑘𝑙  

𝜌𝑙 

𝜆𝑠 

(b) The corresponding G(x̂)
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An Example of Constructing G(x̂)

Given Yij = Ykl = 1:

 

            

(c) Original graph and solution x̂

 

𝜌𝑗  

𝑠 𝑡 𝑗 𝑘 𝑙 𝑖 

𝑥�𝑖𝑗 𝑥�𝑘𝑙  

𝜌𝑙 

𝜆𝑠 

(d) The corresponding G(x̂)
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An LP Model for Computing Flow Losses

Theorem

Denote L(x ,Y ) as some flow loss. For given x and Y , L(x ,Y ) =
∑

i∈S λi ,
where (f , ρ, λ) satisfy:

[Flow Loss LP]:

∑
j :(i,j)∈A

fij −
∑

j :(j,i)∈A

fji =

{
−λi +

∑
j :(i,j)∈A Yijxij − ρi ∀i ∈ S∑

j :(i,j)∈A Yijxij − ρi , ∀i ∈ N \ S
(2a)

0 ≤ fij ≤ (1− Yji )xji ∀(i , j) ∈ A (2b)

0 ≤ λi ≤ Si ∀i ∈ S (2c)

0 ≤ ρi ≤
∑

j :(j,i)∈A

Yjixji ∀i ∈ N . (2d)

(2a) is the flow balance constraint in the residual network G(x).

It includes withdraw demand variable λi only at each supply node i in
S if it is associated with a failed path.
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An Example: Computing possible L(x ,Y )-values

 

1 8 5 

6 7 

4 

𝑥67 = 2 

𝜌7 

𝜆1 

𝜌3 

3 2 

𝑥23 = 2 

For the previous case of flowing 4 total units from node 1 to node 8, with
arcs (2, 3) and (6, 7) failed, two feasible solutions to the LP correspond to
the two possible path solutions:

1 f 1
87 = f 1

76 = f 1
32 = f 1

41 = f 1
85 = 0, f 1

65 = f 1
54 = f 1

43 = f 1
21 = 2, ρ1

7 = 0, ρ1
3 = 2, λ1

1 = 2;

2 f 2
87 = f 2

76 = f 2
32 = f 2

85 = f 2
43 = 0, f 2

65 = f 2
54 = f 2

41 = f 2
21 = 2, ρ2

7 = 0, ρ2
3 = 0, λ2

1 = 4.
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Flow Losses and Risk Measures

L(x ,Y ) = minf ,λ,ρ{L(x ,Y )|[Flow Loss LP]}: The least amount of
flow losses among all possible path-flow solutions

L(x ,Y ) = maxf ,λ,ρ{L(x ,Y )|[Flow Loss LP]}: The largest amount of
flow losses among all possible path-flow solutions

We solve problems of bounding L(x ,Y ) or L(x ,Y ) by CVaR or VaR:

For (VaR, L(x ,Y )), reformulate the problem as an MIP with logic
binary variables, named SMCF-VaR; apply a cutting-plane algorithm.

For (CVaR, L(x ,Y )), reformulate the problem as an LP, named
SMCF-CVaR

Both (CVaR, L(x ,Y )) and (VaR, L(x ,Y )) are intractable bilevel
non-convex programs; not investigated in this talk
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Constraining the VaR of L(x ,Y )

Replace L(x , ξ) with L(x , ξ), eliminate the minimization, and solve:

SMCF-VaR : min

 ∑
(i,j)∈A

Cijxij : (1b), (1c), P{L(x ,Yξ) ≤ η} ≥ 1− θ

, (3)

Denote the random form of parameter Y by Yξ.

Ω: a set of realizations of Yξ, denoted by Yξs , ∀s ∈ Ω.

η: flow loss threshold, i.e., VaR1−θ of L(x ,Yξ).

θ is a given risk tolerance parameter.
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An MIP Model of SMCF-VaR

SMCF-VaR-D:

min
∑

(i ,j)∈A

Cijxij

s.t. (1b)–(1c)

(2a)–(2d) with inputs Yξs and variables f s , λs , and ρs , ∀s ∈ Ω

L(x ,Yξs ) =
∑
i∈S

λsi ≤ Mzs + η ∀s ∈ Ω (4a)∑
s∈Ω

Probξs z
s ≤ θ (4b)

zs ∈ {0, 1} ∀s ∈ Ω, (4c)

Probξs : the probability of realizing ξs with
∑

s∈Ω Probξs = 1.

Zheng, S. and Shi Loss-Constrained MCF and Application in Kidney Exchange 16/30



An LP Model of SMCF-CVaR

We formulate SMCF-CVaR for given risk parameter θ as

min
∑

(i,j)∈A

Cijxij

s.t. (1b)–(1c)

(2a)–(2d) with inputs Yξs and variables f s , λs , and ρs , ∀s ∈ Ω

α +
∑
s∈Ω

Probξsbξs

θ
≤ η (5a)

∑
i∈S

λs
i ≤ bξs + α ∀s ∈ Ω (5b)

α ≥ 0, bξs ≥ 0 ∀s ∈ Ω (5c)

where α represents the corresponding VaRθ, and is enforced to be
nonnegative. Continuous variable bξs denotes the amount of loss (i.e.,
L(x ,Yξs ) =

∑
i∈S λ

s
i ) larger than VaRθ in scenario s
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Decomposition for SMCF-VaR and SMCF-CVaR

1st Stage: Decide an MCF solution x .

2nd Stage: Check whether the risk constraint is satisfied based on outcomes
of each scenario.

As needed, generate cutting planes by using LP-based dual information.

Additional steps before generating a cut:

Given an MCF solution x̂ , with the knowledge of L(x̂ ,Y s) or a L(x̂ ,Y s), we
can quickly decide whether a cut is needed, rather than directly solve the
[Flow Loss LP].

Derive an algorithm ALG(M) (uses an augmenting path idea) that reroutes
flows in the residual graph G(x̂) and compute the max/min flow losses.

Complexity of the algorithm: O(n2× the complexity of maximum-flow).
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Kidney Exchange Problem

Focus on pairing kidneys given by living donors who may be
incompatible, with their target patients.

The method has recently emerged to enable willing but incompatible
donor-patient pairs to swap donors.

Roth et al. (2004) initially propose to organize kidney exchange on a
large scale, with the formation of the New England Program for
Kidney Exchange (NEPKE).

Idea: each incompatible donor-patient pair seeks to swap their donors
with other pairs to obtain a compatible kidney.
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Encoding Kidney Exchange to an MCF in graph G(N ,A)

A node for each donor-patient pair in N
An arc from one pair i to another pair j if the donor of pair i is
compatible with the patient of pair j .

Assign weight wij with each arc (i , j) in A, representing the utility or
social welfare attained if the transplant from i to j is implemented.

A cycle in this graph represents a possible swap among multiple pairs,
with each pair in the cycle receiving the kidney from the next pair.

A feasible exchange solution is a collection of node-disjoint cycles
since each pair can give at most one kidney.

{c1, c3} and {c4} are both feasible and maximal exchanges.

1 2 3 4

5

C1 C2 C3

C4
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MCF Formulation of Deterministic Kidney Exchange

Seek a set of node-disjoint cycles with the maximum total weights.

Define binary variables x ′ij :

x ′ij =

{
1 arc (i , j) ∈ A is contained in the exchange solution

0 otherwise
.

A network optimization model:

max
∑

(i,j)∈A

wijx
′
ij (6a)

s.t.
∑

j :(i,j)∈A

x ′
ij −

∑
j :(j,i)∈A

x ′
ji = 0 ∀i ∈ N (6b)

∑
j :(i,j)∈A

x ′
ij ≤ 1 ∀i ∈ N (6c)

x ′
ij ∈ {0, 1} ∀(i , j) ∈ A, (6d)
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Risk-Aware Kidney Exchange

A loss-constrained stochastic kidney exchange problem:

Arc failure: previously compatible donors and receivers may be found
incompatible after pairing all the exchanges

Consequences: all pairs in those cycles containing incompatible pairs
are affected since a planned transplant operation is no longer possible

Current studies: keep the size of kidney-exchange cycles small, e.g.,
only allow ≤ 3 pairing arcs in each cycle.

We optimize risk-aware kidney exchange solutions by using
SMCF-VaR and SMCF-CVaR models
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Example Illustration

1 2

3 4

1 2

3 4

Figure: A 4-way exchange cycle with the failure of arc (2, 1) and arc (4, 3),
meaning that the donor of pair 2 (pair 4) cannot give the kidney to the patient of
pair 1 (pair 3), and therefore all exchanges involved in the cycle cannot be
implemented.
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Generalized SMCF-VaR/CVaR Formulation

Consider random 0-1 match failure of arc (i , j), denoted by a
Bernoulli variable Y ′ij such that Y ′ij = 1 if it fails and Y ′ij otherwise, for
all (i , j) ∈ A.

Y ′ = [Y ′ij , (i , j) ∈ A]T

L(x ′,Y ′) =
∑

(j,i)∈A
Y ′
jiwji + min

f

∑
(i,j)∈A

wij fij (7a)

s.t.
∑

j :(i,j)∈A

fij −
∑

j :(j,i)∈A

fji =
∑

j :(i,j)∈A
Y ′
ijx

′
ij −

∑
j :(j,i)∈A

Y ′
jix

′
ji , ∀i ∈ N

(7b)

0 ≤ fij ≤ (1− Y ′
ji )x

′
ji , ∀(i , j) ∈ A. (7c)

Theorem

The value of L(x ′,Y ′), given x ′ and Y ′, measures exactly the total utility
losses of affected exchanges due to match failure.
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Generalized SMCF-VaR/CVaR Formulation

Different from general SMCF models, the utility loss L(x ′,Y ′) has a
unique value given fixed x ′ and Y ′ because a feasible exchange only
consists of node-disjoint cycles.

Denote the random failure by Y ′ξ , we formulate and solve

max

 ∑
(i ,j)∈A

wijx
′
ij : (6b)–(6d), P

{
L(x ′,Y ′ξ) ≤ η

}
≥ 1− θ

 . (8)

An SMCF-CVaR model can be established in a similar way.
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Risk Averse Kidney Exchange (RAKE): Experimental
Design

The number of donor-patient pairs: |N | = 50, 100, 200.

Each node having an outgoing degree between 0.04|N | and 0.12|N |
Unit utility wij = 1 for all (i , j) ∈ A.

Follow the literature (Dickerson et al. (2013)) to set the failure
probabilities of each match in A. We sample randomly from a
bimodal distribution with 30% of arcs having a low failure rate in (0,
0.2] while 70% arcs having a high failure rate between [0.8, 1), and
thus the fail percentage is 66% (verified by the literature).

200 scenarios with equal probability 0.5% of realizing each scenario
according to these arc-failure rates.

Zheng, S. and Shi Loss-Constrained MCF and Application in Kidney Exchange 28/30



Computational Procedures and Benchmark

MaxU: solve a deterministic kidney exchange problem that maximizes
the total exchange utility without any arc failure (yielding an optimal
exchange solution x ′MaxU).

Computing the expected utility losses caused by x ′MaxU:

LMax = Eξ
[
L
(
x ′MaxU,Y

′
ξ

)]
=

1

|Ω|
∑
s∈Ω

L
(
x ′MaxU,Y

′
ξs
)
. (9)

MinEL: maximize the total utility of exchanges and meanwhile
minimize the expected losses due to the uncertain compatibility, i.e.,

maxx
∑

s∈Ω wijx
′
ij −

1
|Ω|
∑

s∈Ω L
(
x ′,Y ′ξs

)
.

Denote its optimal objective by LMin.

Set the threshold loss η as the middle point in [LMin, LMax], for both
SMCF-VaR or SMCF-CVaR.
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Average Cycle Length Given by Different Approaches

MaxU MinEL
SMCF-VaR (1− θ) SMCF-CVaR (1− θ)

70% 80% 90% 99% 70% 80% 90% 99%

Avg 10.4 2.7 4.8 3.8 3.2 2.2 4.2 3.6 2.6 2.2
Max 18.2 4.2 6.8 5.0 4.8 2.8 6.4 4.4 4.0 2.4
Min 5.4 2.2 3.2 2.2 2.0 2.0 3.0 2.0 2.0 2.0

MaxU yields the least conservative solutions, reflected by significantly
longer cycles

MinEL is the most conservative and yields relatively small cycles.

Using SMCF-VaR, we balance the total utility yielded by large-cycle
exchanges and potential utility losses due to match failure

For the same 1− θ reliability, SMCF-CVaR tends to result in more
conservative and thus shorter cycles for exchanging kidneys.

Both SMCF-VaR and SMCF-CVaR yield shorter-cycle exchanges as
we increase the reliability 1− θ.
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