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Chance-constrained Program

min c>x (1a)

s.t. P{x ∈ F(ξ)} ≥ 1− ε (1b)

x ∈ X ⊆ Rd , (1c)

I x : a d-dimensional decision vector; c ∈ Rd : cost parameter
I ξ: a multivariate random vector. (W.l.o.g., we consider a

finite support Ξ = {ξ1, . . . , ξK}, and each scenario is realized
with equal probability.)

I F(ξ) ⊆ Rd : a region parameterized by ξ. Let Fk = F(ξk).
I X : a deterministic feasible region; either continuous or

discrete.
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Literature Review

Chance-constrained programs have wide applications in energy,
healthcare, transportation problems, but in general nonconvex and
intractable to solve. We present some main literature below.

I Convex approximations: Prékopa (1970), Nemirovski and
Shapiro (2006)

I SAA and MILP-based algorithms: Luedtke and Ahmed
(2008),Pagnoncelli et al. (2009), Luedtke et al. (2010),
Küçükyavuz (2012), Luedtke (2014), Song et al. (2014),
Ahmed et al. (2016)

I Scenario decomposition: Watson et al. (2010), Ahmed
(2013), Carøe and Schultz (1999), Dentcheva and Römisch
(2004), Miller and Ruszczyński (2011), Collado et al. (2012),
Deng et al. (2016)
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Quantile Bounds I

An equiavlent formulation of model (1) is:

CCP : v∗ := min c>x

s.t.
K∑

k=1

I(x /∈ Fk) ≤ K ′

x ∈ X ,

where I(·) is an indicator function and K ′ := bεKc. Using binary
variables to model outcomes of the indicator function in all the
scenarios, we can further reformulate CCP as an MILP with a
knapsack constraint (see Ahmed et al. (2016)) and solve it by
branch-and-cut (see Luedtke (2014))
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Quantile Bounds II

I To satisfy the probabilistic constraint, x must fall in
sufficiently many subregions Fk ’s.

I The optimal objective values of the K scenario subproblems:

ψk := min
{
c>x : x ∈ Fk , x ∈ X

}
, ∀k = 1, . . . ,K . (2)

I Then order them to obtain a permutation σ of the set
{1, . . . ,K} such that ψσ1 ≥ · · · ≥ ψσK .

I Given K ′ = bεKc, the (K ′ + 1)th quantile value, ψσK ′+1
, is a

valid lower bound for CCP, due to that x will fall in at least
one Fk with k ∈ {σ1, . . . , σK ′+1}.
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Scenario Grouping I

We partition {1, . . . ,K}, into N disjoint subsets G1, . . . ,GN , and
obtain a relaxation of CCP as:

SGM : vSGM := min c>x

s.t.
N∑

n=1

I

x /∈
⋂
k∈Gn

Fk

 ≤ K ′

x ∈ X .

I SGM is not a relaxation, if {G1, . . . ,GN} does not form a
partition of scenarios {1, . . . ,K}.
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Scenario Grouping II

We consider the quantile bound of SGM as:

vQ
SGM := max

{
ρ :

N∑
n=1

I (ρ ≤ φn) ≥ K ′ + 1

}
, where we solve

(3)

φn := min

{
c>x : x ∈

⋂
k∈Gn

Fk , x ∈ X

}
, n = 1, . . . ,N. (4)

I We call Model (4) group subproblems.

I The grouping-based quantile bound vQ
SGM is a valid lower bound for

CCP (i.e., vQ
SGM ≤ vSGM ≤ v∗).

I Related work: Escudero et al. (2013), Crainic et al. (2014), Ryan et
al. (2016) (all for expectation-based stochastic programs)
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Notation and Parameter

Recall the following parameter:
o K : the number of scenarios, N: the number of groups
o K ′ = bεKc where ε is the risk tolerance level in Model (1).

Decision variables:
o ykn ∈ {0, 1}, k = 1, . . . ,K , n = 1, . . . ,N: whether scenario k

is assigned to group Gn, such that ykn = 1 if yes, and = 0 o.w.

Procedures:
o solve the ordered objective values φ1, . . . , φN of group

subproblems (4) and maximize φK ′+1 for K ′ = bεKc.
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Optimal Scenario Grouping Model
To obtain the tightest quantile bound vQ

SGM that is equal to φK ′+1:

QGP : max φK ′+1 (5a)

s.t. φn ≤ min{c>x : I(x ∈ Fk) ≥ ykn, ∀k, x ∈ X} ∀n = 1, . . . ,N
(5b)

φn − φn+1 ≥ 0 ∀n = 1, . . . ,N − 1 (5c)

N∑
n=1

ykn = 1 ∀k = 1, . . . ,K (5d)

K∑
k=1

ykn ≤ P ∀n = 1, . . . ,N (5e)

ykn ∈ {0, 1} ∀n = 1, . . . ,N, k = 1, . . . ,K . (5f)

(5c) are to avoid symmetric solutions. We restrict each group size
by an integer parameter P in (5e) with P ≥ K/N. Without this,
i.e., if P = K , the model will allocate scenarios densely into K ′ + 1
groups and make some subproblems hard to solve.
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Special Cases and MILP Reformulation

Consider chance-constrained linear programs with X = Rd
+ and

Fk = {x : Akx ≥ rk} . We can reformulate (5b) as

φn ≤ min
{
c>x : Akx ≥ rk −Mk(1− ykn), ∀k = 1, . . . ,K , x ∈ Rd

+

}
,

(6)

Let λkn ∈ Rmk
+ be the dual of the kth set of constraints in the

minimization problem in (6). The dual problem is:

Dn(y) := max
K∑

k=1

(
rT
k λkn −MT

k λkn(1− ykn)
)

(7a)

s.t.
K∑

k=1

AT
k λkn ≤ c (7b)

λkn ∈ Rmk
+ . (7c)
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Linearize Dual Formulation
Further define wkn ≡ λknykn, ∀k = 1, . . . ,K , n = 1, . . . ,N and use
the McCormick inequalities, we can linearize the dual and derive an
equivalent MILP to replace the right-hand side of (6) in QGP:

max
y,λ,w

K∑
k=1

(
rT
k λkn −MT

k λkn + MT
k wkn

)
(8a)

s.t. (7b)

wkn ≤ λkn, wkn ≤ λknykn, ∀k = 1, . . . ,K (8b)

wkn ≥ λkn − λkn(1− ykn), ∀k = 1, . . . ,K (8c)

λkn,wkn ∈ Rmk
+ , ykn ∈ {0, 1}, ∀k = 1, . . . ,K . (8d)

The overall MILP for optimal scenario grouping is:

max
φ,λ,w,y

{
φK ′+1 : φn ≤

K∑
k=1

(
rT
k λkn −MT

k λkn + MT
k wkn

)
, n = 1, . . . ,N,

(5c)–(5e), (7b), (8b), (8d)

}
.

14/33



Outline

Introduction

Optimization-based Scenario Grouping
Base Model
MILP Reformulation
Branch-and-Cut

Heuristic-based Scenario Grouping

Numerical Studies
Experimental Design
Results of Group-based Bounds
Results of Scenario Decomposition with Grouping

15/33



General Case and Branch-and-Cut

Consider a master problem of QGP as:

max {φK ′+1 : (5c)–(5e), (y , φ) ∈ A, φn ∈ R, ykn ∈ {0, 1}, ∀k , n} .

For any (ŷ , φ̂) (where ŷ could be fractional), consider and define a
group set G ∗n := {k ∈ {1, . . . ,K} : ŷkn > 0} for each n = 1, . . . ,N.

φ∗n = min

c>x : x ∈
⋂

k∈G∗n

Fk , x ∈ X

 .

If φ∗n < φ̂n, following integer L-shaped method, we add a cut

φn ≤ (U − φ∗n)

 ∑
k:ŷkn=0

ykn − 1

+ U (9)

where U = max{c>x : x ∈ X} (an upper bound).
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Anchored Grouping

I Solve scenario subproblems in (2) to obtain ψ1, . . . , ψK , and
sort their objective values such that ψk1 ≥ · · · ≥ ψkK .

I Clearly, ψkK ′+1
is a valid quantile bound for CCP.

I We construct N (N ≥ K/P and N ≥ K ′ + 1) non-empty
groups such that scenario kn is in Gn for n = 1, . . . ,N.

I Then distribute the remaining scenarios into different groups
and meanwhile make sure that all the group sizes do not
exceed P.

I Following this, the resulting SGM has a quantile bound that is
at least ψkK ′+1

. (Proved in Proposition 2 in our paper.)

Next, we group scenarios based on their similarity or dissimilarity.
let v1, . . . , vK be the vectors characterizing features of scenarios
1, . . . ,K , and measure the distance between two scenarios by
d(k, k ′) := ‖vk − vk

′‖.
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Greedy Scenario-grouping Approach

We evenly distribute K scenarios across N groups, as a result of
which the sizes of the maximal and the minimal groups differ at
most by 1.

I Randomly pick an ungrouped scenario to start a group.
I Then repeatedly include a scenario closest to the center of the

incumbent group until we reach the size limit of that group.
I The center of any group G ⊆ {1, . . . ,K}, denoted v , is

defined as the arithmetic mean of the characterizing vectors of
the contained scenarios, i.e.,

v = (1/|G |)
∑
k∈G

vk .

This way we derive N groups with similar sizes and scenarios. As
an alternative, we also employ the K -means clustering (Lloyd,
1982) in machine learning to group similar scenarios.
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Grouping Dissimilar Scenarios

If dissimilar scenarios are grouped together, each group subproblem
may become harder to solve, but can potentially produce tighter
quantile bounds since the solution of each subproblem needs to
satisfy constraints across dissimilar scenarios.

I First group similar scenarios to form Ω groups as G ′1, . . . ,G
′
Ω.

I Then collect one scenario from each group
G ′ω (ω ∈ {1, . . . ,Ω}) to form a new group Gn, which then
consists of Ω “dissimilar scenarios”, each from a different
group obtained from the previous similar scenario grouping.

I Repeat the above process until all the scenarios are grouped.
I To make this method comparable, we fix the total number of

groups at N.
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Experimental Setup and Test Instances I

We test instances of the following two problems on the Stochastic
Integer Programming Test Problem Library (SIPLIB):

I Problem (i) chance-constrained portfolio optimization:
contains only linear variables and constraints, and its optimal
grouping model QGP can be solved directly as an MILP.

min c>x

s.t. P
{

(a(ξ))>x ≥ r
}
≥ 1− ε

x ∈ X =
{
x ∈ Rd

+ : eTx = 1
}
,

d = 20 assets and the number of scenarios K = 200;
ak ∼ U(0.8, 1.5); r = 1.1; c ∼ U(1, 100); ε = 0.075.
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Experimental Setup and Test Instances II

I Problem (ii) chance-constrained multi-dimensional 0-1
knapsack: contains binary packing variables, and we need to
implement branch-and-cut for optimal grouping.

I Test two sets of instances mk-20-10 and mk-39-5 (mk-n-m
have n items and m knapsack constraints.)

I scenario size K ∈ {100, 500, 1000}; five replications for each
instance

I risk parameter ε = 0.1, 0.2.

Linux workstation with four 3.4 GHz processors and 16 GB
memory; one thread; gap tolerance = 0.01%; C++, CPLEX 12.6;
CPU time limit = 3600 seconds.
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Overall of Procedures and Results

For each instance of Problems (i) and (ii)
I We directly optimize the MILP reformulation of CCP based on the K

scenarios, and report under v∗;

I We solve the quantile bound of CCP and report the results under vQ;

I For Problem (i) we directly optimize the MILP in (9), and for Problem
(ii) we implement branch-and-cut. We obtain the quantile bound vQ

SGM

and report under OG;

I We construct N groups by distributing scenarios to each group in a
round-robin manner, and then compute the quantile bound vQ

SGM and
report under RG (round-robin grouping);

I We construct N groups by applying the anchored grouping method and
by following the heuristics to group similar or dissimilar scenarios. We
then compute vQ

SGM of the corresponding SGM for each heuristic and
report their results under AG (anchored grouping), SG (similar scenario
grouping), KG (K -means clustering grouping), and DG (dissimilar
scenario grouping), respectively.
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Results of Problem (i) Instances

Inst. v∗ vQ
vQ

SGM
OG RG AG SG KG DG

Group Size: N = 100,P = 2

1 40.7 9.31 15.73 9.74 9.40 9.40 8.89 9.82
2 15.36 8.42 9.75 8.52 8.47 8.49 8.28 8.59
3 29.13 20.56 22.80 20.57 20.61 20.57 20.57 20.80
4 36.91 4.37 9.34 4.56 4.51 4.48 4.47 4.66
5 23.91 7.86 11.45 8.55 8.16 7.86 7.89 8.20
6 35.18 9.78 13.32 9.96 9.96 9.85 9.81 10.02
7 41.59 12.06 17.36 12.20 12.25 12.20 12.24 12.66
8 22.52 7.34 10.63 7.47 7.68 7.49 7.53 7.66
9 43.98 13.94 21.67 14.68 14.11 14.06 14.56 15.09

10 33.50-35.73† 10.48 15.25 10.48 10.70 10.61 10.70 10.83
Group Size: N = 20,P = 10

1 40.7 9.31 24.03 9.38 11.81 12.51 12.50 13.15
2 15.36 8.42 11.55 8.83 9.09 9.38 9.18 9.05
3 29.13 20.56 25.56 20.56 21.33 20.93 20.62 21.20
4 36.91 4.37 16.88 5.86 5.88 5.99 6.71 6.55
5 23.91 7.86 17.49 8.59 8.47 8.30 9.31 9.66
6 35.18 9.78 21.86 11.67 12.30 11.44 11.08 11.85
7 41.59 12.06 24.81 14.83 15.17 14.41 15.26 15.78
8 22.52 7.34 15.85 8.20 9.80 8.46 8.45 9.22
9 43.98 13.94 27.79 16.92 17.76 17.47 17.12 17.96

10 33.50-35.73† 10.48 19.27 11.18 13.05 11.85 12.56 12.76
Group Size: N = 10,P = 20

1 40.7 9.31 36.73 11.04 14.84 16.65 17.57 17.60
2 15.36 8.42 13.69 9.15 9.75 10.36 10.17 9.54
3 29.13 20.56 28.65 20.56 22.07 21.30 20.67 21.60
4 36.91 4.37 30.48 7.53 7.67 8.01 10.06 9.21
5 23.91 7.86 22.72 8.63 8.80 8.76 10.99 11.38
6 35.18 9.78 33.88 13.68 15.19 13.30 12.52 14.02
7 41.59 12.06 35.47 18.04 18.80 17.03 19.02 19.66
8 22.52 7.34 21.64 9.01 12.52 9.57 9.47 11.09
9 43.98 13.94 35.63 19.50 22.36 21.70 20.12 21.38

10 33.50-35.73† 10.48 27.37 11.93 15.91 13.23 14.73 15.05
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Average CPU Time for Problem (i)

v∗ vQ Group Size
vQ

SGM
OG RG AG SG KG DG

3103.72 10.44
N = 100,P = 2 36.83 11.69 11.57 12.02 15.92 12.17
N = 20,P = 10 249.27 86.03 59.81 66.46 72.01 107.19
N = 10,P = 20 909.48 182.61 117.73 160.02 131.88 292.41

I Quantile bounds are very fast to obtain.
I The optimal objective value given by the MILP reformulation

is hard to compute.
I The CPU time of obtaining quantile bounds using the optimal

grouping and other heuristic grouping methods drastically
increases as we increse the size of each group (or decrease the
number of groups).

I The CPU time of optimal grouping is longer than heuristic
grouping.
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Root gap closed after adding bounds for Problem (i)

Inst. vQ N = 100 (P = 2) N = 20 N = 10
OG RG AG SG KG DG OG OG

1 0% 12% 0% 0% 0% 0% 1% 34% 89%
2 3% 9% 3% 3% 3% 2% 3% 25% 74%
3 4% 8% 4% 4% 4% 4% 4% 26% 82%
4 0% 11% 0% 0% 0% 0% 0% 21% 67%
5 0% 9% 1% 1% 0% 0% 1% 36% 88%
6 0% 7% 0% 0% 0% 0% 1% 33% 86%
7 1% 7% 1% 1% 1% 1% 1% 29% 66%
8 0% 8% 0% 0% 0% 0% 0% 31% 85%
9 0% 10% 1% 0% 1% 1% 1% 19% 74%

10 1% 8% 1% 1% 1% 1% 1% 17% 54%

I The bounds are much more stronger for the LP relaxation at
root node if we use larger-sized groups.

I The bounds based on heuristic grouping is not effective at all
for closing the root node gap.
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Bound comparison for Problem (ii) mk-20-10 instances

Inst.
ε K vQ

vQ
SGM

OG OG-20% OG-50% RG AG SG KG DG
Group Size: N = 0.1K , P = 10

mk-20-10 0.1 100 1.6% 0.5% 0.9% 0.5% 1.1% 1.0% 1.0% 0.9% 1.0%
500 1.8% 0.6% 1.3% 0.7% 1.5% 1.4% 1.4% 1.2% 1.4%

1000 2.0% 0.8% 1.7% 0.8% 1.8% 1.8% 1.7% 1.6% 1.8%
0.2 100 2.3% 0.7% 2.1% 0.8% 2.3% 2.3% 2.2% 2.1% 2.3%

500 1.5% 0.3% 1.3% 0.4% 1.5% 1.5% 1.5% 1.4% 1.5%
1000 2.2% 0.6% 1.9% 0.8% 2.2% 2.2% 2.1% 2.0% 2.2%

Group Size: N = 0.05K , P = 20

mk-20-10 0.1 100 1.6% 0.3% 0.8% 0.3% 1.1% 1.1% 1.0% 0.8% 1.0%
500 1.8% 0.4% 1.2% 0.4% 1.4% 1.4% 1.3% 0.9% 1.3%

1000 2.0% 0.5% 1.3% 0.5% 1.7% 1.7% 1.6% 1.3% 1.5%
0.2 100 2.3% 0.3% 1.7% 0.4% 2.1% 2.2% 2.2% 1.8% 2.1%

500 1.5% 0.2% 1.0% 0.3% 1.5% 1.4% 1.5% 1.1% 1.4%
1000 2.2% 0.3% 1.7% 0.3% 2.2% 2.0% 2.0% 1.6% 2.0%

I Different from Problem (i), all the bounds including vQ are very tight.

I Heuristic-based grouping bounds vQ
SGM are slightly tighter than vQ.

I The optimization grouping bound vQ
SGM is still much tighter than the

others, and can be strengthened if we increase P and decrease the
number of groups.
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Average Time for Problem (ii) mk-20-10 Instances with
N = 0.1K

Inst. ε K vQ vQ
SGM

OG RG AG SG KG DG

mk-20-10 0.1 100 24.09 29.67 6.38 6.51 6.64 7.72 6.49
500 143.27 121.77 34.53 34.18 33.49 49.38 33.84

1000 272.99 238.73 63.69 68.15 64.96 100.63 63.05
0.2 100 24.01 29.56 6.77 6.91 7.04 8.80 6.57

500 146.16 211.70 36.28 34.83 36.64 47.16 37.01
1000 277.48 349.51 63.70 65.61 63.06 97.46 64.34

I The heuristic grouping based bounds are easier to obtain.
I The quantile bounds and optimal grouping bounds require

relatively the same computational effort.
I The CPU time of all methods for obtaining the bounds

increases as we increase scenario numbers.
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Incorporating Grouping into Scenario Decomposition

We investigate the effectiveness of scenario grouping in scenario
decomposition for solving chance-constrained 0-1 programs.

I u and `: the upper and lower bounds of the optimal objective.
I Specifically, u = cTx based on some best found solution x ,

and ` equals to the quantile bound of SGM, respectively.
I Until we close the gap between u and `, we repeat

I (i) finding a set of scenario groups;
I (ii) optimizing group subproblems to identify temporary

x-solutions and evaluate bounds;
I (iii) eliminating the 0-1 x-solutions that have already been

evaluated via no-good cuts included in the feasible region X in
each group subproblem.
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Scenario Decomposition Results for Problem (ii) instances
with N = 0.1K (P = 10)

Inst. ε K
Non-G KG (ReG) KG (w/o ReG) OG (ReG) OG (w/o ReG)

Time (s) Gap Time (s) Gap Time (s) Gap Time (s) Gap Time (s)
mk-20-10 0.1 100 113.78 0.0% (5) 35.18 0.0% (5) 31.55 0.0% (5) 80.67 0.0% (5) 29.45

500 377.22 0.0% (5) 134.64 0.0% (5) 120.97 0.0% (5) 419.92 0.0% (5) 86.20
1000 1012.73 0.0% (5) 164.26 0.0% (5) 146.01 0.0% (5) 1217.47 0.0% (5) 71.33

0.2 100 174.40 0.0% (5) 64.54 0.0% (5) 58.87 0.0% (5) 121.02 0.0% (5) 57.14
500 367.88 0.0% (5) 173.29 0.0% (5) 158.59 0.0% (5) 325.24 0.0% (5) 91.24

1000 1315.68 0.0% (5) 374.00 0.0% (5) 334.10 0.0% (5) 1361.49 0.0% (5) 257.56

mk-39-5 0.1 100 LIMIT 3.6% (0) LIMIT 1.2% (0) LIMIT 2.1% (0) LIMIT 0.5% (0) 1955.93
500 LIMIT 3.9% (0) LIMIT 1.5% (0) LIMIT 2.3% (0) LIMIT 0.8% (0) 2306.17

1000 LIMIT 4.0% (0) LIMIT 1.9% (0) LIMIT 2.2% (0) LIMIT 0.8% (0) 2697.84
0.2 100 LIMIT 3.4% (0) LIMIT 1.7% (0) LIMIT 2.6% (0) LIMIT 0.5% (0) 2437.42

500 LIMIT 3.2% (0) LIMIT 1.9% (0) LIMIT 2.7% (0) LIMIT 0.7% (0) 2840.36
1000 LIMIT 3.8% (0) LIMIT 1.8% (0) LIMIT 3.4% (0) LIMIT 0.6% (0) 3258.73

I Scenario decomposition with optimal grouping has much
shorter time on average as compared to no grouping.

I Slightly faster for optimizing mk-20-10 instances if we do not
re-group scenarios in each iteration.

I When solving mk-39-5 instances, the re-grouping procedures
can improve the optimality gaps if we cannot optimize the
instances within the time limit.
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Conclusions

We investigate:
I optimization driven scenario grouping for strengthening

quantile bounds of general chance-constrained programs.
I solution methods for optimal grouping: MILP &

branch-and-cut.
I heuristic-based scenario grouping methods
I improvements of bounds & performance of scenario

decomposition

Future research
I developing more efficient cutting-plane methods;
I implementing scenario grouping and decomposition algorithms

in distributed computing frameworks;
I scenario grouping approaches broader classes of risk-averse

stochastic programs.
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