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What is the BCSBSTP?

» BCSBSTP: Balance-Constrained Stochastic Bottleneck
Spanning Tree Problem (a stochastic MST problem)

» Each edge weight is characterized by a probability distribution;
all weights are independently distributed.

» Goal: minimize an upper bound imposed on the maximum
edge weight in a spanning tree with certain probability.

» “Balanced-Constrained” implies an additional chance
constraint on the minimum edge weight in a spanning tree.

» SBSTP: A special case of the BCSBSTP without bounding
the minimum edge weight.
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Applications

v

Telecommunication, e.g., wireless sensor networks

v

Post-disaster relief

v

Epidemic spread

v

Network reliability
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Previous work

» Ishii and Nishida (1983) studied the SBSTP with normally
and independently distributed edge weights.

> Ishii and Shiode (1995) continued to discuss variants and
extensions of the SBSTP.

» Kurt (2012) proposed a polynomial-time approximation for
solving the generalized SBSTP and showed that
1. the exact optimal solution can be obtained when edge weights
have the same distribution type,
2. BCSBSTP is in general NP-Complete.
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Notation
e Graph Configuration

G=(V,E) An undirected connected graph.

T(G) Set of all spanning trees of graph G.
T =(V,Et) A spanning tree of G.
w; Random edge weight for every edge e; € E.
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e Graph Configuration

G=(V,E) An undirected connected graph.

T(G) Set of all spanning trees of graph G.
T =(V,Er) A spanning tree of G.
w; Random edge weight for every edge e; € E.

e Decision Variable

14 an upper bound variable on the maximum edge
weight.
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K a given lower bound on the minimum edge weight.
a, B probability levels associated with the upper and lower
bound chance constraints, respectively.
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Basic formulation for the BCSBSTP

Te T(G) j:g€ ET j:e€ Et

Q= minG {Z:Pr( max WJ-SZ)Za, Pr( min M/jZFi)Zﬁ}, (1)
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Basic formulation for the BCSBSTP

Q:= min {E:Pr( max ngé)Za,Pr( min MGZR)ZB}, (1)
Te T(G) jig€ ET jig€ ET

Because all distributions are independent, we have

Pr( max Wj§2>2a® H Fi(f) > a < Z log Fj(£) > log o, and

Jrec Er j:e€ Er j: g€ Er
Pr(l‘ min_ wjzn) >pe J] D-F®]>8e D log[l-Fi(k)] >logs,
J o€ Er j: g€ Er j: € Er
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Basic formulation for the BCSBSTP

Q:= min {Z:Pr( max ngé)Za,Pr( min WjZn)ZB}, (1)
Te T(G) jig€ ET jig€ ET

Because all distributions are independent, we have

Pr max w; </{|>as Fi(4) > as log F;(£) > loga, and
(J 17)7 H 5(6) > Z g Fj(¢) > log

o€ BT j:e€ Er j: g€ Er
Pr(lv min_ wjzm) >pe J] D-F®]>8e D log[l-Fi(k)] >logs,
J o€ Er j: g€ Er j: € Er

which transform Problem @ into an equivalent nonlinear problem:

Q = min){e; > logFj(f) > loga, Iog[l—l:j(n)]>|og,8}. (2)

TeT(G . .
€7l Jjig€ ET Jjie€ ET
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MINLP formulation for the BCSBSTP

Introduce new decision variables : x; = {

Wang, Shen, Kurt

s.t.

1 if edge ¢ € ET,
0  otherwise.

14
Z xj log Fj(£) > log «
jig € E
> xjlog [1— Fj(x)] > logf3
Jjig€E
D %=n-1
j:eje E

o<Vl -1 YTV, Ve #£0D
jig€ Ey
Xje{o,l} VejEE

Models and Algorithms for the BCSBSTP
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(3b)

(3d)
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SOS1-based formulation

Special Ordered Sets of type 1
(SOS1): a set of variables, at
most one of which can take a
strictly positive value with all
others being at 0.
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Define binary variables

1 n
zk:{o sz:]_ (4¢)
k=1

ze €{0,1} Vk=1,...,n. (4d)
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SOS1-based formulation

n
min: E zi by
k=1

Special Ordered Sets of type 1
(SOS1): a set of variables, at
most one of which can take a
strictly positive value with all
others being at 0.

Define binary variables
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SOS1-based formulation

Special Ordered Sets of type 1
(SOS1): a set of variables, at
most one of which can take a
strictly positive value with all
others being at 0.

Define binary variables

1
Zk:{ 0

if 0 =4y,
otherwise.

Wang, Shen, Kurt

s.t.

Z FAP
k=1
(3¢)—(3e)

Z xj log Fj(£) > log o (4a)
g€ E

Z xj log [1 — FJ(H)] > log 3 (4b)

jig € E

doze=1 (4c)
k=1

ze€{0,1} Vk=1,...,n. (4d)
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s.t.

Z zkék
k=1
(3¢)=(3e)
Z Z zxj log Fj(£) > log a(4a)

Jjig€ E k=1

Z xj log [1 — E,(I@)} > log 3 (4b)

jig € E

dz=1 (4¢)
k=1

ze €{0,1} Vk=1,...,n. (4d)
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SOS1-based formulation

Compute the upper bound ¢ and lower bound £ of £ a priori, dissect the whole interval
equally, treat each sample point as parameter.

n
min: E zi by
k=1

s.t. (3¢)—(3e)

n
Z szxj log Fj(£x) > log a

Jjig€ E k=1 .

> xjlog [1— Fj(x)] > logB

jig€E

zn:zk =1
k=1

zx € {0,1} Vk=1,...,n
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SOS1-based formulation

Introduce oy; to replace bilinear terms z,x;, Yk =1,...,n, ¢ € E;

n
min: E zi by
k=1

s.t. (3¢)—(3e),(4c),(4d)

Z Z zxj log Fj(£x) > log o (6a)
jig€ E k=1

Z xj log [1 - Fj(n)] > log 8 (6b)
jig € E
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SOS1-based formulation

Introduce oy; to replace bilinear terms z,x;, Yk =1,...,n, ¢ € E;
Use McCormic Inequalities to linearize oy;.

n
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SOS1-based formulation

Introduce oy; to replace bilinear terms z,x;, Yk =1,...,n, ¢ € E;

Use McCormic Inequalities to linearize oy;.

min: Z zi by
k=1
s.t. (3¢)—(3e),(4c),(4d)
Z Z oyj log Fj(£x) > log a

i€ E k=1

D~ xjlog [1— Fj(x)] > log 3

jie€ E

oj <zx Yk=1,...,n Vej€ E

oj <x; Vk=1,...,n Ve € E

oj > zk+xi—1 Vk=1,...,nVe € E
oj >0 Vk=1,...,n, Ve € E.
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SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.
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SOS2-based formulation
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Building on SOSL1...

I 12 U3 4 L5
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SOS2-based formulation

Special Ordered Sets of type 2
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consecutive in their ordering.

Define binary variables

_ 1 ifLe [l bl
Yk= 1 0 otherwise.

Building on SOSL1...

n—1
D k=1 (7d)
o k=1
A 123 L3 Ly £
ve €{0,1} Vk=1,....n (7h)
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n—1
ZYk =1
k=1

p<n

pi <Yyityio1

Pn < Yn—1

v €4{0,1} Vk=1,...,n
pk>0 Vk=1,...,n.
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SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.

Define binary variables

_ 1 ifLe [l bl
Yk= 1 0 otherwise.

Building on SOSL1...

I 12 U3 4 L5

If yx =1, then
= pili + pr+1li+1,
Pk + pk+1 =1, pk, pk+1 > 0.

Wang, Shen, Kurt

n—1
ZYk =1
k=1

p<n

pi <Yyityio1

Pn < Yn—1

v €4{0,1} Vk=1,...,n
pk>0 Vk=1,...,n.
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SOS2-based formulation

n
Special Ordered Sets of type 2 min Z,Okfk
(SOS2) an ordered set of =
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.
Define binary variables
_ 1 ifLe [l bl
Yk= 1 0 otherwise. n
Pk = 1 (7C)
Building on SOS1... k=1
n—1
=1 (7d)
. k=1
S m<n (7e)
pi <yit+yi—1 Vi=2,...,n—1(7f)
If yx =1, then pn < Y1 (7g)
‘;i";ﬁk + pk1+1f)k+; -0 v €{0,1} Vk=1,....n (7h)
k k+1 = L, Pk, Pk+1 Z V.
* * k>0 Yk=1,...,n. (7)
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SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.

Define binary variables

_J1
Yk=19 o

Building on SOSL1...

if €€ [Ck, xr1]s
otherwise.

£y Ly {3 ly Ly

If yx =1, then
£ = pili + prs1lit1,
Pkt pr+1 =1, pk, pk+1 > 0.

Wang, Shen, Kurt

min:

s.t.

Models and Algorithms for the BCSBSTP

D bk
k=1
(3c)—(3e)
D> > prxjlog Fi(tk) > loga (7a)

i€ E k=1

Y xlog[L—Fi(r)] > log s (7b)

Jjig € E

n

D> =1 (7¢)
k=1

n—1

D vk=1 (7d)
k=1
p1<n (7e)
pi <yit+yi—1 Vi=2,...,n—1(7f)
pn < Yn—1 (7g)
vie{0,1} Vk=1,....n  (7h)
pk>0 Vk=1,...,n. (71)
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SOS2-based formulation

Similarly, introduce qy; to replace bilinear terms pyx;, Vk =1,...,n, ¢ € E;
Use McCormic Inequalities to linearize qy;.

n
min: szék
k=1

s.t. (3c)—(3e),(7c)—(7i)
n

D> > ajlog Fi(tk) > log (8a)
jig€ E k=1

> xlog [1— Fj(r)] > log (8b)
Jig€ E
g <pxk Yk=1,...,n, Vej€ E (8c)
qkjng szl,...,n,VEjEE (8d)
G > pk+x—1 Yk=1,...,n, Ve € E (8e)
g >0 Vk=1,...,n Ve € E. (8f)
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Compute the upper and lower bounds

Pr( max Wj§€>2a¢> H Fi(0) > a.

ji g€ E .
J T Jj g€ ET
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Compute the upper and lower bounds

P i<l)>as Fi(4) > a.
(gee ) 2o I p02
Jj g€ ET

Proposition
Let £* and T* be the optimal objective value and a corresponding
spanning tree to Problem Q. Then

I Fe)=e (9)

j! eje ET*

for any continuous cumulative distribution functions F;(-) of edge
weights w;, Ve; € E.
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Compute the upper and lower bounds

Define ijl(-) as the inverse cumulative distribution function of
edge weight w;. For both SOS1- and SOS2-based formulations, let

=  mi F=L(at/(IVI-1)
: jiejénE{ i )} . and (10)
! = m F(oY/(IVI=1)
4 j:engE{ i (« )}, (10b)

then
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Algorithm for SOS1- and SOS2-based formulations

: Setup a connected undirected graph G(V, E), number of intervals n,

probability level & and 8 and error tolerance A.

Set the current iteration t : = 0.
Compute £': = min {Fj_l(oel/(‘v"l))} and
Jjig€E
7t . _ —1/ 1/(|V|-1
T e (AT
repeat
Generate an equally distributed sequence {£i,...,£5} in between
interval [£¢, £'].
Compute log Fj(¢;)Ve; € E, k=1,...,n.
Solve SOS1- or SOS2-based formulation and record the current optimal
objective value ¢*".
For SOSL, if £ = €L, set £ : = ¢, | and I = £%, .
For SOS2, if £ €[04, 5, ], set £ . = £f, and 01 = £8, .
Sett:= t+1.

Suntil [V — 7 < A

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP
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An example (using SOS2-based formulation)

Assume that each edge weight in the network follows an exponential

distribution such that w; ~ Exp(}\;), j =1,...,9. The number alongside each
edge in the figure represents the value of J;.
Set n = 6,a = 0.95, and error tolerance A = 0.01.

F7(A\)=—In(1—0.95Y%)/X;; F~1(2)~2.292; F~1(10) ~ 0.458.

Iteration t 01 Uy U3 ls ls le i
0 0.458 0.825 1.192 1.559 1.926 2.292 | 1.077
1 0.825 0.899 0.972 1.045 1.119 1.192 | 1.021
2 0.972 0987 1.001 1.016 1.031 1.045 | 1.019

|1.019 — 1.021| = 0.002 < A =0.01
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An example (using SOS2-based formulation)

Assume that each edge weight in the network follows an exponential
distribution such that w; ~ Exp(}\;), j =1,...,9. The number alongside each
edge in the figure represents the value of );.

Set n =6, = 0.95, and error tolerance A = 0.01.

F~Y()\) = —In(1 —0.95Y5)/\; F~1(2)~2292; F~(10)~ 0.458.

Iteration t 0 0o 03 A ls L6 ot EL
0 0.458  0.825  1.192 1559 1926 2292 | 1.077 | (1,3)(2,5)(3,5) (4 6)(5,6)
1 0.825 0.809 0.972 T.045 1119 1.192 | 1.021 | (1,3)(2,5)(3,5)(4,6)(5,6)
2 0972 0987 1001 1.016 1.031 1.045 | 1.019 | (1,3)(2,5)(3,5)(4,6)(5,6)

[1.019 — 1.021| = 0.002 < A = 0.01
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An SAA-Based Integer Programming Approximation

Parameters

Q
E={w1,...,wg}
& ={wi,...,wg}

Decision Variables
(s VseQ

¢s VseQ

Wang, Shen, Kurt

a finite set of scenarios.

a random vector, characterized by distributions of
w;, Ve € E.

the realization of £ in scenario s € €, where values
w; are generated from distributions of w;, Ve; € E.

(s =1if max w; > £, and 0 otherwise.
Jjig€ ET

¢s =1if min st < kK, and 0 otherwise.
jig€ ET

Models and Algorithms for the BCSBSTP 18 /29



An SAA-Based Integer Programming Approximation

Q:= min Z:Pr( max vtgﬁﬂ)Za,Pr( min WjZ/{)Zﬂ .
Te T(G) Jjig€ ET g€ ET

The two chance constraints are rewritten as

Pr( max Wj§€)2a<:>Pr( max Wj>€)§1—a<:>ZProb5Cs§(l—a), and
Jji g€ ET Jj g€ ET <o

Pr( min qun)ZB@Pr( minE W_,-</£)§B <:>ZProb5¢s§(1—B).
Je€ Er seQ

Jj g€ ET j

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 19 /29



An SAA-Based Integer Programming Approximation

Letting us = max
Jjie€ ET

Er = {¢ € E : xj = 1}, the SAA-based reformulation of Problem Q is

Wang, Shen, Kurt

min:

s.t.

st and vs = min Wf for a spanning tree

Jjie€ ET

‘
(3¢)—=(3e)
> Prob’¢s < (1 - a)

seQ
Us — Wpauls <0 Vs €Q
us > wx; Ve €E, se€Q

> Prob*gs < (1-B)

seQ

Vs + Waax®s >k Vs €Q
vis <wix; Ve €E, s
Gy 95 €{0,1} VseQ,

Models and Algorithms for the BCSBSTP
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(11b)
(11¢)
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(11e)
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wi and vs = min Wf for a spanning tree

(11a)

(11b)
(11¢)
(11d)

(11e)
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Computational Results

> We reports the computational efficacy of solving the SBSTP by using
SOS1, SOS2 and SAA, and solving the BCSBSTP by using SOS1.

> For the SBSTP, we test 12 parameter combinations of graphs, i.e.,
{|V|} x {P} = {10,20, 30} x {10%,20%, 30%,50%}, where |V| is the
number of nodes in the graph, and P is the graph density.

> For the BCSBSTP, we test one graph type, i.e., graph with 20 nodes and
density of 50%, and with varied values of «.

> We set « = 3 =0.95 and A = 0.01.

> All models and algorithms use CPLEX 12.2 via ILOG Concert Technology
with C4++, and computations are performed on a HP Workstation Z210
Windows 7 machine with Intel(R) Xeon(R) CPU 3.20 GHz, and 8GB
memory.

» For each parameter combination, we solve 10 instances.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 21 /29



The SBSTP with different distribution types

Tested Distribution Types and Parameters.

Type 1 2 3
Distribution Normal Normal Normal
Setting | wj ~ N(10,1) | w; ~ N (10,1.5) | w; ~ AN (10,2)
Type 4 5 6
Distribution Exponential Exponential Exponential
Setting | w; ~ Exp(0.4) wj ~ Exp(0.5) | w; ~ Exp(0.6)
Type 7 8 9
Distribution Uniform Uniform Uniform
Setting | w; ~ U(0,10) w; ~ U(0,12) | w; ~ U(0,14)
Type 10 11 12
Distribution Chi-Squared Chi-Squared Chi-Squared
Setting | w; ~ x*(2) wi~x°B) | wi~x*(4)

Wang, Shen, Kurt

Models and Algorithms for the BCSBSTP



Comparisons of SOS1, SOS2, and SAA for the SBSTP
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CPU time of solving the SBSTP with various distributions
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Comparisons of SOS1 and SOS2 for the SBSTP

Type 1 2 3 4 5

Distribution  Chi-Squared ~Exponential Normall Normal2 Uniform

Setting  w; ~x2(k) w;~ Exp(y) wj;~ N(10,(0.350))) w; ~ (L (0.0350))%) w; ~ U(0.5)
16.00

m1l 2 m3 w4

m5
14.00
12.00
10.00
8.00
6.00
4.00
200 H l

Norml1, Norml, Norm10, Norm10, Unif, Unif, Expo, Expo, Chisq,  Chisq,
SOs1 S0s2 SOs1 50s2 SOs1 S0Ss2 SOs1 S0S2 SOs1 S0s2

{]V], P}={20,50%}, n = 6, Same Distribution, Objective Value
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Comparisons of SOS1 and SOS2 for the SBSTP
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{|V], P}={20,50%}, n = 6, Same Distribution, CPU Time (seconds)
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Explanation

Chi-Square

10 15 20

Normal, mean=10

---mean=10,std=1
——mean=10,std=2
----mean=10,std=3
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Exponential
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150 | ——lamda=6
i - lamda=10
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Uniform

Uniform[0,2]
——Uniform[0,6]
--~-Uniform[0,10]

5 10

Log Cumulative Distribution Function

Models and Algorithms for the BCSBSTP

26 / 29



Using SOS1 to solve the BCSBSTP (12Types)

16.00

m k=0 m k=0.2 wk=0.4 mk=1
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6.00 -
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Objective value of solving the BCSBSTP, 12Types, {|V|, P} = {20,50%}
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Using SOS1 to solve the BCSBSTP (12Types)
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CPU time of solving the BCSBSTP, 12Types, {|V|, P} = {20,50%}
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Conclusion & Future Research

Conclusion

» SOS1 is significantly better than the other two approaches in
terms of CPU times (without losing too much solution
accuracy in all instances we tested).

» Probability distribution types influence computational
performances of all three approximations.

» The increase of k may increase the CPU time of the SOS1
approximation for the BCSBSTP at first but eventually
decrease the solution time.

Future Research

Increasing effectiveness of approximation algorithms; seeking tight
bounds; incorporating cost and restrictions on spanning tree
solutions for special applications; node uncertainty and edge
dependencies.
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