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What is the BCSBSTP?

I BCSBSTP: Balance-Constrained Stochastic Bottleneck
Spanning Tree Problem (a stochastic MST problem)

I Each edge weight is characterized by a probability distribution;
all weights are independently distributed.

I Goal: minimize an upper bound imposed on the maximum
edge weight in a spanning tree with certain probability.

I “Balanced-Constrained” implies an additional chance
constraint on the minimum edge weight in a spanning tree.

I SBSTP: A special case of the BCSBSTP without bounding
the minimum edge weight.
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Applications

I Telecommunication, e.g., wireless sensor networks

I Post-disaster relief

I Epidemic spread

I Network reliability
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Previous work

I Ishii and Nishida (1983) studied the SBSTP with normally
and independently distributed edge weights.

I Ishii and Shiode (1995) continued to discuss variants and
extensions of the SBSTP.

I Kurt (2012) proposed a polynomial-time approximation for
solving the generalized SBSTP and showed that

1. the exact optimal solution can be obtained when edge weights
have the same distribution type,

2. BCSBSTP is in general NP-Complete.
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Notation
• Graph Configuration

G = (V ,E ) An undirected connected graph.
T (G ) Set of all spanning trees of graph G .
T = (V ,ET ) A spanning tree of G .
wj Random edge weight for every edge ej ∈ E .

• Decision Variable

` an upper bound variable on the maximum edge
weight.

• Parameters

κ a given lower bound on the minimum edge weight.
α, β probability levels associated with the upper and lower

bound chance constraints, respectively.
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Basic formulation for the BCSBSTP

Q := min
T∈ T (G)

{
` : Pr

(
max

j :ej∈ ET
wj ≤ `

)
≥ α, Pr

(
min

j :ej∈ ET
wj ≥ κ

)
≥ β

}
, (1)

Because all distributions are independent, we have

Pr

(
max

j : ej∈ ET
wj ≤ `

)
≥ α⇔

∏
j : ej∈ ET

Fj (`) ≥ α⇔
∑

j : ej∈ ET

log Fj (`) ≥ logα, and

Pr

(
min

j : ej∈ ET
wj ≥ κ

)
≥ β ⇔

∏
j : ej∈ ET

[
1− Fj (κ)

]
≥ β ⇔

∑
j : ej∈ ET

log
[
1− Fj (κ)

]
≥ log β,

which transform Problem Q into an equivalent nonlinear problem:

Q′ := min
T∈T (G)

` :
∑

j :ej∈ ET

log Fj (`) ≥ logα,
∑

j :ej∈ ET

log
[
1− Fj (κ)

]
≥ log β

 . (2)
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MINLP formulation for the BCSBSTP

Introduce new decision variables : xj =

{
1 if edge ej ∈ ET ,
0 otherwise.

min: `

s.t.
∑

j :ej∈ E

xj log Fj (`) ≥ logα (3a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (3b)

∑
j :ej∈ E

xj = n − 1 (3c)

∑
j :ej∈ EVs

xj ≤ |Vs| − 1 ∀Vs ⊂ V , Vs 6= ∅ (3d)

xj ∈ {0, 1} ∀ej ∈ E (3e)
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SOS1-based formulation

Special Ordered Sets of type 1
(SOS1): a set of variables, at
most one of which can take a
strictly positive value with all
others being at 0.

Define binary variables

zk =

{

1 if ` = `k ,
0 otherwise.

min:
n∑

k=1

zk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k ) ≥ logα(4a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (4b)

n∑
k=1

zk = 1 (4c)

zk ∈ {0, 1} ∀k = 1, . . . , n. (4d)
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SOS1-based formulation

Compute the upper bound ` and lower bound ` of ` a priori, dissect the whole interval
equally, treat each sample point as parameter.
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SOS1-based formulation

Introduce okj to replace bilinear terms zkxj , ∀k = 1, . . . , n, ej ∈ E ;

Use McCormic Inequalities to linearize okj .

min:
n∑

k=1

zk`k

s.t. (3c)–(3e),(4c),(4d)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k ) ≥ logα (6a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (6b)

okj ≤ zk ∀k = 1, . . . , n, ∀ej ∈ E (6c)

okj ≤ xj ∀k = 1, . . . , n, ∀ej ∈ E (6d)

okj ≥ zk + xj − 1 ∀k = 1, . . . , n, ∀ej ∈ E (6e)

okj ≥ 0 ∀k = 1, . . . , n, ∀ej ∈ E . (6f)
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SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.

Define binary variables

yk =

{
1 if ` ∈ [`k , `k+1],
0 otherwise.

Building on SOS1...

If yk = 1, then
` = ρk`k + ρk+1`k+1,
ρk + ρk+1 = 1, ρk , ρk+1 ≥ 0.

min:
n∑

k=1

ρk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

ρkxj log Fj (`k ) ≥ logα (7a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (7b)

n∑
k=1

ρk = 1 (7c)

n−1∑
k=1

yk = 1 (7d)

ρ1 ≤ y1 (7e)

ρi ≤ yi + yi−1 ∀i = 2, . . . , n − 1(7f)

ρn ≤ yn−1 (7g)

yk ∈ {0, 1} ∀k = 1, . . . , n (7h)

ρk ≥ 0 ∀k = 1, . . . , n. (7i)
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n∑
k=1

ρkxj log Fj (`k ) ≥ logα (7a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (7b)

n∑
k=1

ρk = 1 (7c)

n−1∑
k=1

yk = 1 (7d)

ρ1 ≤ y1 (7e)

ρi ≤ yi + yi−1 ∀i = 2, . . . , n − 1(7f)

ρn ≤ yn−1 (7g)

yk ∈ {0, 1} ∀k = 1, . . . , n (7h)

ρk ≥ 0 ∀k = 1, . . . , n. (7i)
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SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.
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SOS2-based formulation

Similarly, introduce qkj to replace bilinear terms ρkxj , ∀k = 1, . . . , n, ej ∈ E ;
Use McCormic Inequalities to linearize qkj .

min:
n∑

k=1

zk`k

s.t. (3c)–(3e),(7c)–(7i)∑
j :ej∈ E

n∑
k=1

qkj log Fj (`k ) ≥ logα (8a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (8b)

qkj ≤ ρk ∀k = 1, . . . , n, ∀ej ∈ E (8c)

qkj ≤ xj ∀k = 1, . . . , n, ∀ej ∈ E (8d)

qkj ≥ ρk + xj − 1 ∀k = 1, . . . , n, ∀ej ∈ E (8e)

qkj ≥ 0 ∀k = 1, . . . , n, ∀ej ∈ E . (8f)
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Compute the upper and lower bounds

Pr

(
max

j : ej∈ ET
wj ≤ `

)
≥ α⇔

∏
j : ej∈ ET

Fj(`) ≥ α.

Proposition

Let `∗ and T ∗ be the optimal objective value and a corresponding
spanning tree to Problem Q. Then∏

j : ej∈ ET∗

Fj(`
∗) = α, (9)

for any continuous cumulative distribution functions Fj(·) of edge
weights wj , ∀ej ∈ E .

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 14 / 29



Compute the upper and lower bounds

Pr

(
max

j : ej∈ ET
wj ≤ `

)
≥ α⇔

∏
j : ej∈ ET

Fj(`) ≥ α.

Proposition

Let `∗ and T ∗ be the optimal objective value and a corresponding
spanning tree to Problem Q. Then∏

j : ej∈ ET∗

Fj(`
∗) = α, (9)

for any continuous cumulative distribution functions Fj(·) of edge
weights wj , ∀ej ∈ E .

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 14 / 29



Compute the upper and lower bounds

Define F−1
j (·) as the inverse cumulative distribution function of

edge weight wj . For both SOS1- and SOS2-based formulations, let

` = min
j :ej∈ E

{
F−1
j (α1/(|V |−1))

}
, and (10a)

` = max
j :ej∈ E

{
F−1
j (α1/(|V |−1))

}
, (10b)

then

` ≤ `∗ ≤ ` , and∏
j : ej∈ ET∗

Fj(`
∗) = α.
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Algorithm for SOS1- and SOS2-based formulations

1: Setup a connected undirected graph G(V ,E), number of intervals n,
probability level α and β and error tolerance ∆.

2: Set the current iteration t : = 0.
3: Compute `t : = min

j :ej∈E

{
F−1
j (α1/(|V |−1))

}
and

`t : = max
j :ej∈E

{
F−1
j (α1/(|V |−1))

}
.

4: repeat
5: Generate an equally distributed sequence {`t1, . . . , `tn} in between

interval [`t , `t ].
6: Compute log Fj(`

t
k) ∀ej ∈ E , k = 1, . . . , n.

7: Solve SOS1- or SOS2-based formulation and record the current optimal
objective value `t

∗
.

8: For SOS1, if `t
∗

= `tkt , set `t+1 : = `tkt−1 and `t+1 : = `tkt+1.

For SOS2, if `t
∗
∈ [`tkt , `

t
kt+1], set `t+1 : = `tkt and `t+1 : = `tkt+1.

9: Set t : = t + 1.
10: until |`t−1∗ − `t

∗
| ≤ ∆
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An example (using SOS2-based formulation)
Assume that each edge weight in the network follows an exponential
distribution such that wj ∼ Exp(λj), j = 1, . . . , 9. The number alongside each
edge in the figure represents the value of λj .
Set n = 6, α = 0.95, and error tolerance ∆ = 0.01.

F−1(λj) = − ln(1− 0.951/5)/λj ; F−1(2) ≈ 2.292; F−1(10) ≈ 0.458.

Iteration t `1 `2 `3 `4 `5 `6 `t
∗

0 0.458 0.825 1.192 1.559 1.926 2.292 1.077
1 0.825 0.899 0.972 1.045 1.119 1.192 1.021
2 0.972 0.987 1.001 1.016 1.031 1.045 1.019

|1.019− 1.021| = 0.002 ≤ ∆ = 0.01
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Iteration t `1 `2 `3 `4 `5 `6 `t
∗

E t∗
T

0 0.458 0.825 1.192 1.559 1.926 2.292 1.077 (1, 3) (2, 5) (3, 5) (4, 6) (5, 6)
1 0.825 0.899 0.972 1.045 1.119 1.192 1.021 (1, 3) (2, 5) (3, 5) (4, 6) (5, 6)
2 0.972 0.987 1.001 1.016 1.031 1.045 1.019 (1, 3) (2, 5) (3, 5) (4, 6) (5, 6)

|1.019− 1.021| = 0.002 ≤ ∆ = 0.01
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An SAA-Based Integer Programming Approximation

Parameters

Ω a finite set of scenarios.
ξ = {w1, . . . ,w|E |} a random vector, characterized by distributions of

wj , ∀ej ∈ E .
ξs = {w s

1 , . . . ,w
s
|E |} the realization of ξ in scenario s ∈ Ω, where values

w s
j are generated from distributions of wj , ∀ej ∈ E .

Decision Variables

ζs ∀s ∈ Ω ζs = 1 if max
j :ej∈ ET

w s
j > `, and 0 otherwise.

φs ∀s ∈ Ω φs = 1 if min
j :ej∈ ET

w s
j < κ, and 0 otherwise.
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An SAA-Based Integer Programming Approximation

Q := min
T∈ T (G)

{
` : Pr

(
max

j :ej∈ ET
wj ≤ `

)
≥ α, Pr

(
min

j :ej∈ ET
wj ≥ κ

)
≥ β

}
.

The two chance constraints are rewritten as

Pr

(
max

j : ej∈ ET
wj ≤ `

)
≥ α⇔ Pr

(
max

j : ej∈ ET
wj > `

)
≤ 1− α⇔

∑
s∈Ω

Probsζs ≤ (1− α), and

Pr

(
min

j : ej∈ ET
wj ≥ κ

)
≥ β ⇔ Pr

(
min

j : ej∈ ET
wj < κ

)
≤ β ⇔

∑
s∈Ω

Probsφs ≤ (1− β).
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An SAA-Based Integer Programming Approximation

Letting us = max
j :ej∈ ET

w s
j and vs = min

j :ej∈ ET
w s

j for a spanning tree

ET = {ej ∈ E : xj = 1}, the SAA-based reformulation of Problem Q is

min: `

s.t. (3c)–(3e)∑
s∈Ω

Probsζs ≤ (1− α) (11a)

us − w s
maxζs ≤ ` ∀s ∈ Ω (11b)

us ≥ w s
j xj ∀ej ∈ E , s ∈ Ω (11c)∑

s∈Ω

Probsφs ≤ (1− β) (11d)

vs + w s
maxφs ≥ κ ∀s ∈ Ω (11e)

vs ≤ w s
j xj ∀ej ∈ E , s ∈ Ω (11f)

ζs , φs ∈ {0, 1} ∀s ∈ Ω, (11g)
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Computational Results

I We reports the computational efficacy of solving the SBSTP by using
SOS1, SOS2 and SAA, and solving the BCSBSTP by using SOS1.

I For the SBSTP, we test 12 parameter combinations of graphs, i.e.,
{|V |} × {P} = {10, 20, 30} × {10%, 20%, 30%, 50%}, where |V | is the
number of nodes in the graph, and P is the graph density.

I For the BCSBSTP, we test one graph type, i.e., graph with 20 nodes and
density of 50%, and with varied values of κ.

I We set α = β = 0.95 and ∆ = 0.01.

I All models and algorithms use CPLEX 12.2 via ILOG Concert Technology
with C++, and computations are performed on a HP Workstation Z210
Windows 7 machine with Intel(R) Xeon(R) CPU 3.20 GHz, and 8GB
memory.

I For each parameter combination, we solve 10 instances.
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The SBSTP with different distribution types

Tested Distribution Types and Parameters.

Type 1 2 3
Distribution Normal Normal Normal

Setting wj ∼ N (10, 1) wj ∼ N (10, 1.5) wj ∼ N (10, 2)

Type 4 5 6
Distribution Exponential Exponential Exponential

Setting wj ∼ Exp(0.4) wj ∼ Exp(0.5) wj ∼ Exp(0.6)

Type 7 8 9
Distribution Uniform Uniform Uniform

Setting wj ∼ U(0, 10) wj ∼ U(0, 12) wj ∼ U(0, 14)

Type 10 11 12
Distribution Chi-Squared Chi-Squared Chi-Squared

Setting wj ∼ χ2(2) wj ∼ χ2(3) wj ∼ χ2(4)
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Comparisons of SOS1, SOS2, and SAA for the SBSTP

CPU time of solving the SBSTP with various distributions
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Comparisons of SOS1 and SOS2 for the SBSTP
Type 1 2 3 4 5

Distribution Chi-Squared Exponential Normal1 Normal2 Uniform
Setting wj ∼ χ2(kj) wj ∼ Exp(λj) wj ∼ N (10, (0.35σj)

2) wj ∼ N (1, (0.035σj)
2) wj ∼ U(0, bj)

{|V |,P}={20,50%}, n = 6, Same Distribution, Objective Value
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Comparisons of SOS1 and SOS2 for the SBSTP

{|V |,P}={20,50%}, n = 6, Same Distribution, CPU Time (seconds)
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Explanation

Log Cumulative Distribution Function
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Using SOS1 to solve the BCSBSTP (12Types)

Objective value of solving the BCSBSTP, 12Types, {|V |,P} = {20, 50%}
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Using SOS1 to solve the BCSBSTP (12Types)

CPU time of solving the BCSBSTP, 12Types, {|V |,P} = {20, 50%}
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Conclusion & Future Research

Conclusion

I SOS1 is significantly better than the other two approaches in
terms of CPU times (without losing too much solution
accuracy in all instances we tested).

I Probability distribution types influence computational
performances of all three approximations.

I The increase of κ may increase the CPU time of the SOS1
approximation for the BCSBSTP at first but eventually
decrease the solution time.

Future Research
Increasing effectiveness of approximation algorithms; seeking tight
bounds; incorporating cost and restrictions on spanning tree
solutions for special applications; node uncertainty and edge
dependencies.
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