
Models and Algorithms for the
Balance-Constrained Stochastic Bottleneck

Spanning Tree Problem

Jue Wang1 Siqian Shen1 Murat Kurt2

1Department of Industrial and Operations Engineering
University of Michigan

2Department of Industrial and Systems Engineering
University at Buffalo (State University of New York)

The 13th INFORMS Computing Society Conference
January 08, 2013

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 1 / 29

Outline

I Introduction

I Basic and MINLP formulations for the BCSBSTP

I SOS1- and SOS2-based formulations and algorithm

I SAA-based MILP formulation

I Computational results

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 2 / 29

What is the BCSBSTP?

I BCSBSTP: Balance-Constrained Stochastic Bottleneck
Spanning Tree Problem (a stochastic MST problem)

I Each edge weight is characterized by a probability distribution;
all weights are independently distributed.

I Goal: minimize an upper bound imposed on the maximum
edge weight in a spanning tree with certain probability.

I “Balanced-Constrained” implies an additional chance
constraint on the minimum edge weight in a spanning tree.

I SBSTP: A special case of the BCSBSTP without bounding
the minimum edge weight.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 3 / 29

Applications

I Telecommunication, e.g., wireless sensor networks

I Post-disaster relief

I Epidemic spread

I Network reliability

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 4 / 29

Previous work

I Ishii and Nishida (1983) studied the SBSTP with normally
and independently distributed edge weights.

I Ishii and Shiode (1995) continued to discuss variants and
extensions of the SBSTP.

I Kurt (2012) proposed a polynomial-time approximation for
solving the generalized SBSTP and showed that

1. the exact optimal solution can be obtained when edge weights
have the same distribution type,

2. BCSBSTP is in general NP-Complete.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 5 / 29

Notation
• Graph Configuration

G = (V ,E) An undirected connected graph.
T (G) Set of all spanning trees of graph G .
T = (V ,ET) A spanning tree of G .
wj Random edge weight for every edge ej ∈ E .

• Decision Variable

` an upper bound variable on the maximum edge
weight.

• Parameters

κ a given lower bound on the minimum edge weight.
α, β probability levels associated with the upper and lower

bound chance constraints, respectively.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 6 / 29

Notation
• Graph Configuration

G = (V ,E) An undirected connected graph.
T (G) Set of all spanning trees of graph G .
T = (V ,ET) A spanning tree of G .
wj Random edge weight for every edge ej ∈ E .

• Decision Variable

` an upper bound variable on the maximum edge
weight.

• Parameters

κ a given lower bound on the minimum edge weight.
α, β probability levels associated with the upper and lower

bound chance constraints, respectively.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 6 / 29

Notation
• Graph Configuration

G = (V ,E) An undirected connected graph.
T (G) Set of all spanning trees of graph G .
T = (V ,ET) A spanning tree of G .
wj Random edge weight for every edge ej ∈ E .

• Decision Variable

` an upper bound variable on the maximum edge
weight.

• Parameters

κ a given lower bound on the minimum edge weight.
α, β probability levels associated with the upper and lower

bound chance constraints, respectively.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 6 / 29

Basic formulation for the BCSBSTP

Q := min
T∈ T (G)

{
` : Pr

(
max

j :ej∈ ET
wj ≤ `

)
≥ α, Pr

(
min

j :ej∈ ET
wj ≥ κ

)
≥ β

}
, (1)

Because all distributions are independent, we have

Pr

(
max

j : ej∈ ET
wj ≤ `

)
≥ α⇔

∏
j : ej∈ ET

Fj (`) ≥ α⇔
∑

j : ej∈ ET

log Fj (`) ≥ logα, and

Pr

(
min

j : ej∈ ET
wj ≥ κ

)
≥ β ⇔

∏
j : ej∈ ET

[
1− Fj (κ)

]
≥ β ⇔

∑
j : ej∈ ET

log
[
1− Fj (κ)

]
≥ log β,

which transform Problem Q into an equivalent nonlinear problem:

Q′ := min
T∈T (G)

` :
∑

j :ej∈ ET

log Fj (`) ≥ logα,
∑

j :ej∈ ET

log
[
1− Fj (κ)

]
≥ log β

 . (2)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 7 / 29

Basic formulation for the BCSBSTP

Q := min
T∈ T (G)

{
` : Pr

(
max

j :ej∈ ET
wj ≤ `

)
≥ α, Pr

(
min

j :ej∈ ET
wj ≥ κ

)
≥ β

}
, (1)

Because all distributions are independent, we have

Pr

(
max

j : ej∈ ET
wj ≤ `

)
≥ α⇔

∏
j : ej∈ ET

Fj (`) ≥ α⇔
∑

j : ej∈ ET

log Fj (`) ≥ logα, and

Pr

(
min

j : ej∈ ET
wj ≥ κ

)
≥ β ⇔

∏
j : ej∈ ET

[
1− Fj (κ)

]
≥ β ⇔

∑
j : ej∈ ET

log
[
1− Fj (κ)

]
≥ log β,

which transform Problem Q into an equivalent nonlinear problem:

Q′ := min
T∈T (G)

` :
∑

j :ej∈ ET

log Fj (`) ≥ logα,
∑

j :ej∈ ET

log
[
1− Fj (κ)

]
≥ log β

 . (2)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 7 / 29

Basic formulation for the BCSBSTP

Q := min
T∈ T (G)

{
` : Pr

(
max

j :ej∈ ET
wj ≤ `

)
≥ α, Pr

(
min

j :ej∈ ET
wj ≥ κ

)
≥ β

}
, (1)

Because all distributions are independent, we have

Pr

(
max

j : ej∈ ET
wj ≤ `

)
≥ α⇔

∏
j : ej∈ ET

Fj (`) ≥ α⇔
∑

j : ej∈ ET

log Fj (`) ≥ logα, and

Pr

(
min

j : ej∈ ET
wj ≥ κ

)
≥ β ⇔

∏
j : ej∈ ET

[
1− Fj (κ)

]
≥ β ⇔

∑
j : ej∈ ET

log
[
1− Fj (κ)

]
≥ log β,

which transform Problem Q into an equivalent nonlinear problem:

Q′ := min
T∈T (G)

` :
∑

j :ej∈ ET

log Fj (`) ≥ logα,
∑

j :ej∈ ET

log
[
1− Fj (κ)

]
≥ log β

 . (2)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 7 / 29

MINLP formulation for the BCSBSTP

Introduce new decision variables : xj =

{
1 if edge ej ∈ ET ,
0 otherwise.

min: `

s.t.
∑

j :ej∈ E

xj log Fj (`) ≥ logα (3a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (3b)

∑
j :ej∈ E

xj = n − 1 (3c)

∑
j :ej∈ EVs

xj ≤ |Vs| − 1 ∀Vs ⊂ V , Vs 6= ∅ (3d)

xj ∈ {0, 1} ∀ej ∈ E (3e)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 8 / 29

SOS1-based formulation

Special Ordered Sets of type 1
(SOS1): a set of variables, at
most one of which can take a
strictly positive value with all
others being at 0.

Define binary variables

zk =

{

1 if ` = `k ,
0 otherwise.

min:
n∑

k=1

zk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k) ≥ logα(4a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (4b)

n∑
k=1

zk = 1 (4c)

zk ∈ {0, 1} ∀k = 1, . . . , n. (4d)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 9 / 29

SOS1-based formulation

Special Ordered Sets of type 1
(SOS1): a set of variables, at
most one of which can take a
strictly positive value with all
others being at 0.

Define binary variables

zk =

{
1

if ` = `k ,

0

otherwise.

min:
n∑

k=1

zk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k) ≥ logα(4a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (4b)

n∑
k=1

zk = 1 (4c)

zk ∈ {0, 1} ∀k = 1, . . . , n. (4d)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 9 / 29

SOS1-based formulation

Special Ordered Sets of type 1
(SOS1): a set of variables, at
most one of which can take a
strictly positive value with all
others being at 0.

Define binary variables

zk =

{
1 if ` = `k ,
0 otherwise.

min:
n∑

k=1

zk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k) ≥ logα(4a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (4b)

n∑
k=1

zk = 1 (4c)

zk ∈ {0, 1} ∀k = 1, . . . , n. (4d)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 9 / 29

SOS1-based formulation

Special Ordered Sets of type 1
(SOS1): a set of variables, at
most one of which can take a
strictly positive value with all
others being at 0.

Define binary variables

zk =

{
1 if ` = `k ,
0 otherwise.

min:
n∑

k=1

zk`k

s.t. (3c)–(3e)∑
j :ej∈ E

xj log Fj (`) ≥ logα (4a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (4b)

n∑
k=1

zk = 1 (4c)

zk ∈ {0, 1} ∀k = 1, . . . , n. (4d)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 9 / 29

SOS1-based formulation

Special Ordered Sets of type 1
(SOS1): a set of variables, at
most one of which can take a
strictly positive value with all
others being at 0.

Define binary variables

zk =

{
1 if ` = `k ,
0 otherwise.

min:
n∑

k=1

zk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k) ≥ logα(4a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (4b)

n∑
k=1

zk = 1 (4c)

zk ∈ {0, 1} ∀k = 1, . . . , n. (4d)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 9 / 29

SOS1-based formulation

Compute the upper bound ` and lower bound ` of ` a priori, dissect the whole interval
equally, treat each sample point as parameter.

min:
n∑

k=1

zk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k) ≥ logα

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β

n∑
k=1

zk = 1

zk ∈ {0, 1} ∀k = 1, . . . , n.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 10 / 29

SOS1-based formulation

Compute the upper bound ` and lower bound ` of ` a priori, dissect the whole interval
equally, treat each sample point as parameter.

min:
n∑

k=1

zk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k) ≥ logα

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β

n∑
k=1

zk = 1

zk ∈ {0, 1} ∀k = 1, . . . , n.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 10 / 29

SOS1-based formulation

Compute the upper bound ` and lower bound ` of ` a priori, dissect the whole interval
equally, treat each sample point as parameter.

min:
n∑

k=1

zk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k) ≥ logα

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β

n∑
k=1

zk = 1

zk ∈ {0, 1} ∀k = 1, . . . , n.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 10 / 29

SOS1-based formulation

Compute the upper bound ` and lower bound ` of ` a priori, dissect the whole interval
equally, treat each sample point as parameter.

min:
n∑

k=1

zk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k) ≥ logα

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β

n∑
k=1

zk = 1

zk ∈ {0, 1} ∀k = 1, . . . , n.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 10 / 29

SOS1-based formulation

Compute the upper bound ` and lower bound ` of ` a priori, dissect the whole interval
equally, treat each sample point as parameter.

min:
n∑

k=1

zk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k) ≥ logα

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β

n∑
k=1

zk = 1

zk ∈ {0, 1} ∀k = 1, . . . , n.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 10 / 29

SOS1-based formulation

Introduce okj to replace bilinear terms zkxj , ∀k = 1, . . . , n, ej ∈ E ;

Use McCormic Inequalities to linearize okj .

min:
n∑

k=1

zk`k

s.t. (3c)–(3e),(4c),(4d)∑
j :ej∈ E

n∑
k=1

zkxj log Fj (`k) ≥ logα (6a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (6b)

okj ≤ zk ∀k = 1, . . . , n, ∀ej ∈ E (6c)

okj ≤ xj ∀k = 1, . . . , n, ∀ej ∈ E (6d)

okj ≥ zk + xj − 1 ∀k = 1, . . . , n, ∀ej ∈ E (6e)

okj ≥ 0 ∀k = 1, . . . , n, ∀ej ∈ E . (6f)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 11 / 29

SOS1-based formulation

Introduce okj to replace bilinear terms zkxj , ∀k = 1, . . . , n, ej ∈ E ;

Use McCormic Inequalities to linearize okj .

min:
n∑

k=1

zk`k

s.t. (3c)–(3e),(4c),(4d)∑
j :ej∈ E

n∑
k=1

okj log Fj (`k) ≥ logα (6a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (6b)

okj ≤ zk ∀k = 1, . . . , n, ∀ej ∈ E (6c)

okj ≤ xj ∀k = 1, . . . , n, ∀ej ∈ E (6d)

okj ≥ zk + xj − 1 ∀k = 1, . . . , n, ∀ej ∈ E (6e)

okj ≥ 0 ∀k = 1, . . . , n, ∀ej ∈ E . (6f)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 11 / 29

SOS1-based formulation

Introduce okj to replace bilinear terms zkxj , ∀k = 1, . . . , n, ej ∈ E ;
Use McCormic Inequalities to linearize okj .

min:
n∑

k=1

zk`k

s.t. (3c)–(3e),(4c),(4d)∑
j :ej∈ E

n∑
k=1

okj log Fj (`k) ≥ logα (6a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (6b)

okj ≤ zk ∀k = 1, . . . , n, ∀ej ∈ E (6c)

okj ≤ xj ∀k = 1, . . . , n, ∀ej ∈ E (6d)

okj ≥ zk + xj − 1 ∀k = 1, . . . , n, ∀ej ∈ E (6e)

okj ≥ 0 ∀k = 1, . . . , n, ∀ej ∈ E . (6f)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 11 / 29

SOS1-based formulation

Introduce okj to replace bilinear terms zkxj , ∀k = 1, . . . , n, ej ∈ E ;
Use McCormic Inequalities to linearize okj .

min:
n∑

k=1

zk`k

s.t. (3c)–(3e),(4c),(4d)∑
j :ej∈ E

n∑
k=1

okj log Fj (`k) ≥ logα (6a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (6b)

okj ≤ zk ∀k = 1, . . . , n, ∀ej ∈ E (6c)

okj ≤ xj ∀k = 1, . . . , n, ∀ej ∈ E (6d)

okj ≥ zk + xj − 1 ∀k = 1, . . . , n, ∀ej ∈ E (6e)

okj ≥ 0 ∀k = 1, . . . , n, ∀ej ∈ E . (6f)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 11 / 29

SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.

Define binary variables

yk =

{
1 if ` ∈ [`k , `k+1],
0 otherwise.

Building on SOS1...

If yk = 1, then
` = ρk`k + ρk+1`k+1,
ρk + ρk+1 = 1, ρk , ρk+1 ≥ 0.

min:
n∑

k=1

ρk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

ρkxj log Fj (`k) ≥ logα (7a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (7b)

n∑
k=1

ρk = 1 (7c)

n−1∑
k=1

yk = 1 (7d)

ρ1 ≤ y1 (7e)

ρi ≤ yi + yi−1 ∀i = 2, . . . , n − 1(7f)

ρn ≤ yn−1 (7g)

yk ∈ {0, 1} ∀k = 1, . . . , n (7h)

ρk ≥ 0 ∀k = 1, . . . , n. (7i)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 12 / 29

SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.

Define binary variables

yk =

{
1 if ` ∈ [`k , `k+1],
0 otherwise.

Building on SOS1...

If yk = 1, then
` = ρk`k + ρk+1`k+1,
ρk + ρk+1 = 1, ρk , ρk+1 ≥ 0.

min:
n∑

k=1

ρk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

ρkxj log Fj (`k) ≥ logα (7a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (7b)

n∑
k=1

ρk = 1 (7c)

n−1∑
k=1

yk = 1 (7d)

ρ1 ≤ y1 (7e)

ρi ≤ yi + yi−1 ∀i = 2, . . . , n − 1(7f)

ρn ≤ yn−1 (7g)

yk ∈ {0, 1} ∀k = 1, . . . , n (7h)

ρk ≥ 0 ∀k = 1, . . . , n. (7i)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 12 / 29

SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.

Define binary variables

yk =

{
1 if ` ∈ [`k , `k+1],
0 otherwise.

Building on SOS1...

If yk = 1, then
` = ρk`k + ρk+1`k+1,
ρk + ρk+1 = 1, ρk , ρk+1 ≥ 0.

min:
n∑

k=1

ρk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

ρkxj log Fj (`k) ≥ logα (7a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (7b)

n∑
k=1

ρk = 1 (7c)

n−1∑
k=1

yk = 1 (7d)

ρ1 ≤ y1 (7e)

ρi ≤ yi + yi−1 ∀i = 2, . . . , n − 1(7f)

ρn ≤ yn−1 (7g)

yk ∈ {0, 1} ∀k = 1, . . . , n (7h)

ρk ≥ 0 ∀k = 1, . . . , n. (7i)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 12 / 29

SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.

Define binary variables

yk =

{
1 if ` ∈ [`k , `k+1],
0 otherwise.

Building on SOS1...

If yk = 1, then
` = ρk`k + ρk+1`k+1,
ρk + ρk+1 = 1, ρk , ρk+1 ≥ 0.

min:
n∑

k=1

ρk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

ρkxj log Fj (`k) ≥ logα (7a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (7b)

n∑
k=1

ρk = 1 (7c)

n−1∑
k=1

yk = 1 (7d)

ρ1 ≤ y1 (7e)

ρi ≤ yi + yi−1 ∀i = 2, . . . , n − 1(7f)

ρn ≤ yn−1 (7g)

yk ∈ {0, 1} ∀k = 1, . . . , n (7h)

ρk ≥ 0 ∀k = 1, . . . , n. (7i)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 12 / 29

SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.

Define binary variables

yk =

{
1 if ` ∈ [`k , `k+1],
0 otherwise.

Building on SOS1...

If yk = 1, then
` = ρk`k + ρk+1`k+1,
ρk + ρk+1 = 1, ρk , ρk+1 ≥ 0.

min:
n∑

k=1

ρk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

ρkxj log Fj (`k) ≥ logα (7a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (7b)

n∑
k=1

ρk = 1 (7c)

n−1∑
k=1

yk = 1 (7d)

ρ1 ≤ y1 (7e)

ρi ≤ yi + yi−1 ∀i = 2, . . . , n − 1(7f)

ρn ≤ yn−1 (7g)

yk ∈ {0, 1} ∀k = 1, . . . , n (7h)

ρk ≥ 0 ∀k = 1, . . . , n. (7i)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 12 / 29

SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.

Define binary variables

yk =

{
1 if ` ∈ [`k , `k+1],
0 otherwise.

Building on SOS1...

If yk = 1, then
` = ρk`k + ρk+1`k+1,
ρk + ρk+1 = 1, ρk , ρk+1 ≥ 0.

min:
n∑

k=1

ρk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

ρkxj log Fj (`k) ≥ logα (7a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (7b)

n∑
k=1

ρk = 1 (7c)

n−1∑
k=1

yk = 1 (7d)

ρ1 ≤ y1 (7e)

ρi ≤ yi + yi−1 ∀i = 2, . . . , n − 1(7f)

ρn ≤ yn−1 (7g)

yk ∈ {0, 1} ∀k = 1, . . . , n (7h)

ρk ≥ 0 ∀k = 1, . . . , n. (7i)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 12 / 29

SOS2-based formulation

Special Ordered Sets of type 2
(SOS2) an ordered set of
variables, of which at most two
can be non-zero, and if two are
non-zero these must be
consecutive in their ordering.

Define binary variables

yk =

{
1 if ` ∈ [`k , `k+1],
0 otherwise.

Building on SOS1...

If yk = 1, then
` = ρk`k + ρk+1`k+1,
ρk + ρk+1 = 1, ρk , ρk+1 ≥ 0.

min:
n∑

k=1

ρk`k

s.t. (3c)–(3e)∑
j :ej∈ E

n∑
k=1

ρkxj log Fj (`k) ≥ logα (7a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (7b)

n∑
k=1

ρk = 1 (7c)

n−1∑
k=1

yk = 1 (7d)

ρ1 ≤ y1 (7e)

ρi ≤ yi + yi−1 ∀i = 2, . . . , n − 1(7f)

ρn ≤ yn−1 (7g)

yk ∈ {0, 1} ∀k = 1, . . . , n (7h)

ρk ≥ 0 ∀k = 1, . . . , n. (7i)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 12 / 29

SOS2-based formulation

Similarly, introduce qkj to replace bilinear terms ρkxj , ∀k = 1, . . . , n, ej ∈ E ;
Use McCormic Inequalities to linearize qkj .

min:
n∑

k=1

zk`k

s.t. (3c)–(3e),(7c)–(7i)∑
j :ej∈ E

n∑
k=1

qkj log Fj (`k) ≥ logα (8a)

∑
j :ej∈ E

xj log
[
1− Fj (κ)

]
≥ log β (8b)

qkj ≤ ρk ∀k = 1, . . . , n, ∀ej ∈ E (8c)

qkj ≤ xj ∀k = 1, . . . , n, ∀ej ∈ E (8d)

qkj ≥ ρk + xj − 1 ∀k = 1, . . . , n, ∀ej ∈ E (8e)

qkj ≥ 0 ∀k = 1, . . . , n, ∀ej ∈ E . (8f)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 13 / 29

Compute the upper and lower bounds

Pr

(
max

j : ej∈ ET
wj ≤ `

)
≥ α⇔

∏
j : ej∈ ET

Fj(`) ≥ α.

Proposition

Let `∗ and T ∗ be the optimal objective value and a corresponding
spanning tree to Problem Q. Then∏

j : ej∈ ET∗

Fj(`
∗) = α, (9)

for any continuous cumulative distribution functions Fj(·) of edge
weights wj , ∀ej ∈ E .

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 14 / 29

Compute the upper and lower bounds

Pr

(
max

j : ej∈ ET
wj ≤ `

)
≥ α⇔

∏
j : ej∈ ET

Fj(`) ≥ α.

Proposition

Let `∗ and T ∗ be the optimal objective value and a corresponding
spanning tree to Problem Q. Then∏

j : ej∈ ET∗

Fj(`
∗) = α, (9)

for any continuous cumulative distribution functions Fj(·) of edge
weights wj , ∀ej ∈ E .

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 14 / 29

Compute the upper and lower bounds

Define F−1
j (·) as the inverse cumulative distribution function of

edge weight wj . For both SOS1- and SOS2-based formulations, let

` = min
j :ej∈ E

{
F−1
j (α1/(|V |−1))

}
, and (10a)

` = max
j :ej∈ E

{
F−1
j (α1/(|V |−1))

}
, (10b)

then

` ≤ `∗ ≤ ` , and∏
j : ej∈ ET∗

Fj(`
∗) = α.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 15 / 29

Algorithm for SOS1- and SOS2-based formulations

1: Setup a connected undirected graph G(V ,E), number of intervals n,
probability level α and β and error tolerance ∆.

2: Set the current iteration t : = 0.
3: Compute `t : = min

j :ej∈E

{
F−1
j (α1/(|V |−1))

}
and

`t : = max
j :ej∈E

{
F−1
j (α1/(|V |−1))

}
.

4: repeat
5: Generate an equally distributed sequence {`t1, . . . , `tn} in between

interval [`t , `t].
6: Compute log Fj(`

t
k) ∀ej ∈ E , k = 1, . . . , n.

7: Solve SOS1- or SOS2-based formulation and record the current optimal
objective value `t

∗
.

8: For SOS1, if `t
∗

= `tkt , set `t+1 : = `tkt−1 and `t+1 : = `tkt+1.

For SOS2, if `t
∗
∈ [`tkt , `

t
kt+1], set `t+1 : = `tkt and `t+1 : = `tkt+1.

9: Set t : = t + 1.
10: until |`t−1∗ − `t

∗
| ≤ ∆

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 16 / 29

An example (using SOS2-based formulation)
Assume that each edge weight in the network follows an exponential
distribution such that wj ∼ Exp(λj), j = 1, . . . , 9. The number alongside each
edge in the figure represents the value of λj .
Set n = 6, α = 0.95, and error tolerance ∆ = 0.01.

F−1(λj) = − ln(1− 0.951/5)/λj ; F−1(2) ≈ 2.292; F−1(10) ≈ 0.458.

Iteration t `1 `2 `3 `4 `5 `6 `t
∗

0 0.458 0.825 1.192 1.559 1.926 2.292 1.077
1 0.825 0.899 0.972 1.045 1.119 1.192 1.021
2 0.972 0.987 1.001 1.016 1.031 1.045 1.019

|1.019− 1.021| = 0.002 ≤ ∆ = 0.01

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 17 / 29

An example (using SOS2-based formulation)
Assume that each edge weight in the network follows an exponential
distribution such that wj ∼ Exp(λj), j = 1, . . . , 9. The number alongside each
edge in the figure represents the value of λj .
Set n = 6, α = 0.95, and error tolerance ∆ = 0.01.

F−1(λj) = − ln(1− 0.951/5)/λj ; F−1(2) ≈ 2.292; F−1(10) ≈ 0.458.

Iteration t `1 `2 `3 `4 `5 `6 `t
∗

E t∗
T

0 0.458 0.825 1.192 1.559 1.926 2.292 1.077 (1, 3) (2, 5) (3, 5) (4, 6) (5, 6)
1 0.825 0.899 0.972 1.045 1.119 1.192 1.021 (1, 3) (2, 5) (3, 5) (4, 6) (5, 6)
2 0.972 0.987 1.001 1.016 1.031 1.045 1.019 (1, 3) (2, 5) (3, 5) (4, 6) (5, 6)

|1.019− 1.021| = 0.002 ≤ ∆ = 0.01

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 17 / 29

An SAA-Based Integer Programming Approximation

Parameters

Ω a finite set of scenarios.
ξ = {w1, . . . ,w|E |} a random vector, characterized by distributions of

wj , ∀ej ∈ E .
ξs = {w s

1 , . . . ,w
s
|E |} the realization of ξ in scenario s ∈ Ω, where values

w s
j are generated from distributions of wj , ∀ej ∈ E .

Decision Variables

ζs ∀s ∈ Ω ζs = 1 if max
j :ej∈ ET

w s
j > `, and 0 otherwise.

φs ∀s ∈ Ω φs = 1 if min
j :ej∈ ET

w s
j < κ, and 0 otherwise.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 18 / 29

An SAA-Based Integer Programming Approximation

Q := min
T∈ T (G)

{
` : Pr

(
max

j :ej∈ ET
wj ≤ `

)
≥ α, Pr

(
min

j :ej∈ ET
wj ≥ κ

)
≥ β

}
.

The two chance constraints are rewritten as

Pr

(
max

j : ej∈ ET
wj ≤ `

)
≥ α⇔ Pr

(
max

j : ej∈ ET
wj > `

)
≤ 1− α⇔

∑
s∈Ω

Probsζs ≤ (1− α), and

Pr

(
min

j : ej∈ ET
wj ≥ κ

)
≥ β ⇔ Pr

(
min

j : ej∈ ET
wj < κ

)
≤ β ⇔

∑
s∈Ω

Probsφs ≤ (1− β).

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 19 / 29

An SAA-Based Integer Programming Approximation

Letting us = max
j :ej∈ ET

w s
j and vs = min

j :ej∈ ET
w s

j for a spanning tree

ET = {ej ∈ E : xj = 1}, the SAA-based reformulation of Problem Q is

min: `

s.t. (3c)–(3e)∑
s∈Ω

Probsζs ≤ (1− α) (11a)

us − w s
maxζs ≤ ` ∀s ∈ Ω (11b)

us ≥ w s
j xj ∀ej ∈ E , s ∈ Ω (11c)∑

s∈Ω

Probsφs ≤ (1− β) (11d)

vs + w s
maxφs ≥ κ ∀s ∈ Ω (11e)

vs ≤ w s
j xj ∀ej ∈ E , s ∈ Ω (11f)

ζs , φs ∈ {0, 1} ∀s ∈ Ω, (11g)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 20 / 29

An SAA-Based Integer Programming Approximation

Letting us = max
j :ej∈ ET

w s
j and vs = min

j :ej∈ ET
w s

j for a spanning tree

ET = {ej ∈ E : xj = 1}, the SAA-based reformulation of Problem Q is

min: `

s.t. (3c)–(3e)∑
s∈Ω

Probsζs ≤ (1− α) (11a)

us − w s
maxζs ≤ ` ∀s ∈ Ω (11b)

us ≥ w s
j xj ∀ej ∈ E , s ∈ Ω (11c)∑

s∈Ω

Probsφs ≤ (1− β) (11d)

vs + w s
maxφs ≥ κ ∀s ∈ Ω (11e)

vs ≤ w s
j xj ∀ej ∈ E , s ∈ Ω (11f)

ζs , φs ∈ {0, 1} ∀s ∈ Ω, (11g)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 20 / 29

Computational Results

I We reports the computational efficacy of solving the SBSTP by using
SOS1, SOS2 and SAA, and solving the BCSBSTP by using SOS1.

I For the SBSTP, we test 12 parameter combinations of graphs, i.e.,
{|V |} × {P} = {10, 20, 30} × {10%, 20%, 30%, 50%}, where |V | is the
number of nodes in the graph, and P is the graph density.

I For the BCSBSTP, we test one graph type, i.e., graph with 20 nodes and
density of 50%, and with varied values of κ.

I We set α = β = 0.95 and ∆ = 0.01.

I All models and algorithms use CPLEX 12.2 via ILOG Concert Technology
with C++, and computations are performed on a HP Workstation Z210
Windows 7 machine with Intel(R) Xeon(R) CPU 3.20 GHz, and 8GB
memory.

I For each parameter combination, we solve 10 instances.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 21 / 29

The SBSTP with different distribution types

Tested Distribution Types and Parameters.

Type 1 2 3
Distribution Normal Normal Normal

Setting wj ∼ N (10, 1) wj ∼ N (10, 1.5) wj ∼ N (10, 2)

Type 4 5 6
Distribution Exponential Exponential Exponential

Setting wj ∼ Exp(0.4) wj ∼ Exp(0.5) wj ∼ Exp(0.6)

Type 7 8 9
Distribution Uniform Uniform Uniform

Setting wj ∼ U(0, 10) wj ∼ U(0, 12) wj ∼ U(0, 14)

Type 10 11 12
Distribution Chi-Squared Chi-Squared Chi-Squared

Setting wj ∼ χ2(2) wj ∼ χ2(3) wj ∼ χ2(4)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 22 / 29

Comparisons of SOS1, SOS2, and SAA for the SBSTP

CPU time of solving the SBSTP with various distributions

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 23 / 29

Comparisons of SOS1 and SOS2 for the SBSTP
Type 1 2 3 4 5

Distribution Chi-Squared Exponential Normal1 Normal2 Uniform
Setting wj ∼ χ2(kj) wj ∼ Exp(λj) wj ∼ N (10, (0.35σj)

2) wj ∼ N (1, (0.035σj)
2) wj ∼ U(0, bj)

{|V |,P}={20,50%}, n = 6, Same Distribution, Objective Value

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 24 / 29

Comparisons of SOS1 and SOS2 for the SBSTP

{|V |,P}={20,50%}, n = 6, Same Distribution, CPU Time (seconds)

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 25 / 29

Explanation

Log Cumulative Distribution Function

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 26 / 29

Using SOS1 to solve the BCSBSTP (12Types)

Objective value of solving the BCSBSTP, 12Types, {|V |,P} = {20, 50%}

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 27 / 29

Using SOS1 to solve the BCSBSTP (12Types)

CPU time of solving the BCSBSTP, 12Types, {|V |,P} = {20, 50%}

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 28 / 29

Conclusion & Future Research

Conclusion

I SOS1 is significantly better than the other two approaches in
terms of CPU times (without losing too much solution
accuracy in all instances we tested).

I Probability distribution types influence computational
performances of all three approximations.

I The increase of κ may increase the CPU time of the SOS1
approximation for the BCSBSTP at first but eventually
decrease the solution time.

Future Research
Increasing effectiveness of approximation algorithms; seeking tight
bounds; incorporating cost and restrictions on spanning tree
solutions for special applications; node uncertainty and edge
dependencies.

Wang, Shen, Kurt Models and Algorithms for the BCSBSTP 29 / 29

