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Two Common Problems in Service Operations
P1: Server Allocation
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P2: Appointment Scheduling
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Generic Problem Settings

Common issues: 1) service time uncertainty; 2) unknown
distributions with limited data.

Allocation phase: Given a set of servers and jobs:
» Decisions: Which servers to open and how to allocate jobs.
» Objective: Minimize the total operational cost.

» Constraint: Low overtime probability in each open server.
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Generic Problem Settings

Common issues: 1) service time uncertainty; 2) unknown
distributions with limited data.

Allocation phase: Given a set of servers and jobs:
» Decisions: Which servers to open and how to allocate jobs.
» Objective: Minimize the total operational cost.

» Constraint: Low overtime probability in each open server.

Scheduling phase: Given appointments assigned to a server:
» Decisions: Arrival time of each appointment
» Objective: Minimize the total waiting (+ idleness)

» Constraint: Low overtime probability
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> Stochastic multi-OR allocation: Denton et al. (2010)

» Chance-constrained multi-OR allocation: Shylo et al. (2012)
Scheduling:

> Under random service durations: Weiss (1990), Van den Bosch and
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» Near-optimal scheduling policy: Mittal et al. (2014), Begen and
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> Simulation and queuing theories: Bailey (1952); Brahimi and
Worthington (1991); Ho and Lau (1992); Rohleder and Klassen
(2002); Hassin and Mendel (2008); Zeng et al. (2010)

> Distributionally Robust (DR) appointment scheduling: Mak et al.
(2014) and Kong et al. (2014)
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In this Talk...

Under random service time, we consider
» Problem 1: Multiple Server Allocation;

» Problem 2: Single Server Appointment Scheduling

We study their Distributionally Robust (DR) variants, and employ

» Moment ambiguity sets of the unknown distribution

We reformulate the DR models as

» Allocation: 0-1 SDP (cross-moment), 0-1 SOCP (exact 1st &
2nd-moment matching), 0-1 SOCP (Gaussian Approximation)

» Scheduling: SDP (cross-moment ambiguity set)

We optimize the 0-1 SDP via a cutting-plane algorithm, and
directly compute the rest in off-the-shelf solvers.
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Notation

v

Set of Servers: | (operating cost 7; and time limit T;)

v

Set of Jobs: J (pjj =1 if job j can be operated on server /)

v

Random service durations: s = [s;, i €/, j € J]T

v

Decision Variable
» z; € {0,1}: whether or not to operate server i, such that

1 operate server |
Zi =
! 0 ow.

» y;j € {0,1}: whether to assign job j to server i, with

1 allocate job j to server i
YiZ=1 0 ow.
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0-1 Chance-Constrained Formulation

Let a; be the risk tolerance of having overtime on server i, Vi € /.
rrz17iyn ZT,‘Z,'

icl
s.t. Yii < pijzi, Viel, jelJ

Z Yij = 1, V_] eJ
i€l(j)
P ZSUyUSTi >1—aq; Viel
Je(i)
vij,zi € {0,1}, Viel, je J.
A variant of chance-constrained binary packing (see, e.g., Song,

Luedtke, and Kiigiikyavuz (2014))
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Moment-based Ambiguity Sets

Consider s; = [s;, j € J]T as random service time of server i. Due to
limited data, we may not know the exact distributions of s;, and thus

cannot accurately evaluate P {ZJ.GJ(,-) siiyi < Ti}. Thus, we consider

> Cross-moment Ambiguity Set (Delage and Ye (2010)):
fs,-EE,- f(si)dsi=1
Div(ko, To.v1,72) = { F(si) : (Elsi] — )" (Z6) *(Elsi] — ub) <
E[(si — no)(si — 10)'] = 72X

> Special Case Ambiguity Set (Exact Mean and Covariance
Matching):

DL, TH) - {f<s,-) s, fla)ds =1, Bls] = g }

E[(si — p0)(si — 10)"] = %o
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DR Chance Constraint

» A DR Allocation Model: Replace

P ZSUyUST’ Zl—Od;,ViEI
Jed(i)

with

f(iSfEDIP’ jezjs,-jy,-jg T,y >1—a;, Viel.

where D is either D}'\/, or Dic.
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Allocation = 0-1 SDP when D = Dj,

To reformulate inff(sl.)e'DP{ZjeJ sijyii < T,-} > 1 — «j, define
Hi i , . .
oy o] duarof (Bls) — 28 (Bls - ) <
» G': dual variables with E[(s; — ud)(si — ph)T] = 728
» r': dual variables with fs,-eE,- f(si)ds; = 1.

Following Jiang and Guan (2015),
» the DR chance constraint is equivalent to SDP constraints.

» the DR server allocation model then becomes a 0-1 SDP.

Thus, we propose a cutting-plane algorithm that decomposes the
0-1 SDP into two stages.
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Master Problem: 0-1 Integer Linear Program

A Master Problem (MP) without enforced DR chance constraints:

min ZT,‘Z,‘

s.t. Yii < pijzi, Viel, jed

Z Yij = 1, Vjed

i€l(j)

C;(y,-) <0,iel

vi,zi €{0,1}, Viel, je J,

where Ci(y;) < 0 include linear cuts from solving server-based
subproblems that evaluate whether y can satisfy the server-based
DR chance constraints.
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Subproblem Dual and Valid Cuts

Given y from MP, we formulate a subproblem for each i € [ as the
equivalent SDP of the DR chance constraint by letting D = D;'V,.

Take the dual of the SDP subproblem (also an SDP):
SUB/(y;)-Dual: max  y'd' + (v py — Ti)u' <0

Qf’dl’ul
_7226 of Qi d’: o
0 1} [(d’)T ui] =0

[0 0 Qi d’
0 _a,.] * [(d")T } =0

[ Q' d (1) |+1)x (| J(7)|+1)
. | es .
st

Consider optimal (d’, ii'). If y.Td" + (v uh — T;)@ > 0, then
generate a valid cut (linear in y;).
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A Cutting-Plane Approach

1. Initial MP without C;i(y;) <0, i € /.
2. lterate the following steps until no cuts are needed:

i. Solve MP and obtain (z,y). If fail, claim infeasible, exit.
ii. Otherwise, for i € [ do
> Solve _SUBi(yf)—DuaI and obtain optimal dual (Q',d', u').
> 1f ((d)" + d'(1uh)")yi — u' T: > 0, generate a cut
()" + ' (no)")yi —u'Ti <0
into cut set Ci(y;) < 0 of MP.

iii. If no cut generated from SUB/(y;)-Dual for Vi € I, then (z,y)
is optimal; exit.
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Allocation = 0-1 SOCP when D = D’C

We replace inff(s,-)EDP{ZjeJ sijyij < T,-} >1— «; by an SOCP
constraint given:
Theorem (Wagner, 2008)

Given the first and second order information sy and ¥}, of the
service duration vector s;, given the ambiguity set D and
probability «;, then an equivalent formulation for

inf ()i Plsyi<T]>1-q;is

i Q; i .
VYT <\ 7= (Ti = (o) i), Vi€ 1.

1

Alternatively, the DR allocation model is a 0-1 SOCP and is
directly optimized by CVX 2.1 + Gurobi solver.
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Appointment Scheduling: Notation

Appt. 1 Appt. 2 Appt.3 Appt.4 T
X1 1 X X3 Xy
L
i
S . S Sz Sa
1
i .
. 1 1 1 H 1
- [ - H
w; =0 w, >0, w; =0, w, =0, w=>0o,
u =0 U >0 u; >0 u, =0
Parameters:

» One server and m appt. arriving in a fixed order
» Service durations: s;
» Unit waiting penalty: h;
Decision variables:
» x;: time interval between appt. j and j + 1.
> w;: waiting time of appt. j
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Scheduling: Chance-Constrained Linear Program

m
min Es.£(s) mmlanthj
j=2

m—1
s.t. P ij—i—wm—i—smgT >1—«
j=1
M/_j_"X_j—lzsj—l‘l'VVj—la v./:27am

xi>0, Vj=1,...,m—-1
wi =0, w; >0, Vj=2,...,m,

» Balance waiting of appointments and server overtime.

» Remain the same complexity if adding idle-time penalty.
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A DR Variant
We employ the cross-moment ambiguity set

. _ {f(s): Jrez: F(s)ds =1, (Els] — 1) " (Z5) " (E[s] - 413) < m }

v El(s — 1§)(s — 113)"] = 2%
» Worst Case Expected Waiting Penalty:

m

min max [Ef ming h;w;

x f(s)eps, | — 7
=

» DR Chance Constraint on Overtime:
m—1

inf P Xi+Wnm+sn<Tp>1—«
f(s)eDs, ;J
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Reformulation: Key ldeas

Following similar procedures in the DR allocation:
» DR Chance Constraint = multiple # of SDP

» Worst Case Expectation = semi-infinite SDP with infinite #
of constraints

» Use the extreme-point representation of the dual of the linear
scheduling constraints (special structure in Mak et al. (2014))

» Reformulate the SDP with semi-infinite constraints as SDP

The overall DR scheduling problem with cross-moment ambiguity
set is an SDP and optimized directly in CVX 2.1 4+ Gurobi.
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Allocation Setup

Gaussian distributed s;; = a benchmark 0-1 SOCP model.
Solver: Matlab-based CVX 2.1 + gurobi solver

Experimental setup:

v

32 jobs, 6 servers

v

Each server: time limit = 8 hrs, operating cost = 1.
4 combinations of
» High mean (20min-30min) or Low mean (10min-15min)
» High variance (CoV = 1) or Low variance (CoV = 0.3)
5 sets of tests:

> eq: 32 jobs with equally mixed types; 8 each.
» 11, 1h, hl, hh: a certain type of jobs dominate. (The first

‘

letter refers to “mean” and the second refers to “variance”).

v

v

v

Training samples follow Gamma distributions

v

Training data size = 20 for each type

Zhang, S., Erdogan INFORMS 2015 24/32



Average CPU Time

We report the CPU seconds for computing each type instance with
different methods by letting a = 0.05 and o = 0.10.

« Approach eq Il hl Ih hh
0.05 Gaussian 162 178 170 159 170.68
0-1 SOCP 2356 6.22 57.10 6.68 1096.92
Cutting-Plane 47.41 29.78 49.76 30.61 233.22

0.10 Gaussian 1.65 1.79 1.78 1.34 2.15
0-1 SOCP 1476 785 872 7.46 18.42
Cutting-Plane 23.96 33.20 45.10 28.44 174.85
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Solution Performance

Table: # of servers opened by each method

o« Gaussian 0-1 SOCP  Cutting-Plane
0.05 2 3 3
0.1 2 2 2

Taking the setting eq:
» Follow “Lognormal” to generate 10,000 data for simulation.

» Fix solutions to the three models in the simulation sample and
evaluate how many scenarios are satisfied.

> Report the results of “training sample” = gamma, and
“simulation sample” (i.e., true distribution) = lognormal.
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Probability of No Overtime in Simulation Sample

%

Gaussian

1.00 1,00 .00

0-150CP

Simulation Reliability

1.00 1.00

Cutting-Plane Gaussian o150CP CuttingPlane

®Server1 WServer2 MServer3

»> Both 0-1 SDP and 0-1 SOCP provide highly reliable DR solutions.

» The opt. solution of the benchmark model based on Gaussian approximation

performs slightly worse on Server #2.
» The performance is not sensitive to distribution change.
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Scheduling Setup

» 10 appointments, 1 server (can be a DR allocation solution)

Server time limit: 8 hours

v

v

Unit waiting penalty with all appointments

Tolerable overtime risk a« = 0.1

v

v

Appointments arrive in the following two orders

» Order 1: 4 hh — 3 hl — 3 11 appointments
» Order 2: 311 — 3 hl — 4 hh appointments
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Solution Pattern
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» A more robust model intend to increase the time interval in between the
first two appointments.

» As more 11 appointments appear at the beginning, we intend to
distribute time intervals more evenly.
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Waiting Time and Overtime 99% Quantiles

Table: 99 % quantiles of waiting and overtime (in min)

Appt.  Waiting (min) eq I hh Ih hl
1 (hh) wy  0.00 0.00 0.00 0.00 0.00
2 (hh) wy, 0.00 0.00 0.00 0.00 0.00
3 (hh) wy 3568 0.00 37.65 0.00 0.00
4 (hh) wg 7419 0.00 7835 1.31 14.89
5 (hl) ws 99.60 0.00 92.18 18.86 30.13
6 (hl) we 30.43 7.03 107.82 31.26 44.08
7 (hl) wy 39.20 15.76 117.83 38.93 50.65
8 (I wg 46.81 2351 120.11 47.98 62.96

9 (I wo 23.34 23.92 12424 47.92 60.03

10 (I wig 23.77 23.65 119.23 4722 58.46
Overtime (min)  0.00 0.00 22.73 0.00 0.00

Recall that the total time = 480 min.
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Conclusions

Conclusions:

» Consider DR server allocation and DR appointment
scheduling models and algorithms.

» Employ diverse moment-based ambiguity sets of distributions
= 0-1 SDP / 0-1 SOCP for allocation and SDP for
scheduling.

» Develop cutting-plane algorithm for 0-1 SDP.

Future Research:
> Investigate other ambiguity sets.
» Study data-driven aspects of different sets.

» Implement in practice.
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