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Critical Infrastructure Analysis: Literature Review

» Considered as networks with supply/demand/transshipment
nodes, and service flows.

» Important to applications in energy, transportation,
telecommunication, and many other areas.
> The literature includes

» system survivability under malicious attacks, nature disasters,
or component failures (e.g., Brown et al. 2006, Murray et al.
2007, San Martin 2007).

» network design against deliberate attacks and the research of
network interdiction (see, e.g., Cormican et al. 1998, Wood
1993).

» network vulnerability (e.g., Pinar et al. 2010) and cascading
failures (e.g., Crucitti et al. 2004, Nedic et al. 2006).

» particular use in designing power grids (Faria Jr et al. 2005,
Yao et al. 2007) and operations against blackouts (Alguacil et
al. 2010).
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Our Problems

Combine phases of network design and operational planning, to
minimize the expected costs of arc construction, flow operation,
and service recovery under stochastic arc disruptions.
Motivation:

» The forms of service recovery vary depending on disruption
severity, system interdependency, and service priority.

> For small-scale failures, local repairing can be done
immediately for fully restoring service.

» During large-scale and severe damages, disconnection
operations are used to avoid cascading failures.

Two stochastic model variants:
» Model 1 for repairing small-scale failures in a single network.

» Model 2 for avoiding large-scale cascading failures in multiple
interdependent infrastructures.
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A Single Network: Notation |

Model 1 considers a single network with
» G(N,A°U A): a directed connected graph with node set
N =Ny UN=UN_
» Ny, N—, and N_: sets of supplies, intermediate
transmissions, and demands.

» A° and A: the current existing arcs and potential arcs to be
constructed (A° = 0 in this paper).
Parameters:
> ajj, ¢jj, and dj;: flow capacity, construction cost, and unit flow
cost of arc (i,j), V(i,j) € A.
» h;: unit generation cost of each supply node, Vi € V.
» S;: the maximum capacity of supply node i € N

» D;: consumer’s demand at node i € N_, with
Ziej\@ Si =2 ien Di.
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A Single Network: Notation Il

» @: a finite set of random disruption scenarios.
> lij’ € {0,1}: an effect of a disruptive event on arc (i,J),
V(i,j) € A, q € Q, where [] = 0 if arc (i, j) fails, and 1
otherwise.
> bg-: cost of repairing arc (i,j), V(i,j) € A, g € Q with
MaXgeQ b,(j’- < ¢jj by assumption, V(i,j) € A.
Decision Variables:

» xjj € {0,1}: such that x; = 1 if we construct arc (/,;), and 0
otherwise.

> y; €{0,1}, such that y/ = 1 if arc (i, ) is repaired in
scenario g, and 0 otherwise.

> qu > 0: the amount of flow on arc (/,) in a repaired network,
Vg € Q.
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Formulation of Model 1

where

S e G (S X o ¥ o) u

(ij)eA qeQ \ieN; (ij)EA (i.j)eA

S 3 fi-gl=0 VieN;, qeQ (1b)
jiij)eA j:(,ieA

S - > fl=-D; VieN_, qeQ (1c)
jiij)eA j:(U,ieA

S £l — > fl=0 VieN-, €@ (1d)
Ji(ij)eA J:(,ieA
v <xg(1—10) Y(i,j)€A qg€Q (Le)
1 <aj(ixi+y]) V(i.j)eA qeQ (1f)
0<gl<S VYieNs, q€Q (1g)

xij € {0,1} V(i,j) € A, yg € {0,1}, and ﬁ.J‘.’ >0V(i,j) €A, qe 1h)

» Variables g,-q in (1b) provide flow amount generated from
supply nodes i € N/
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A Decomposition Framework
Decompose Model 1 into two stages with binary variables x at the first
stage, and |Q| independent subproblems at the second stage.
> A relaxed master problem:

1
min: Z CijXij + @an

(’7.] G-A qGQ
s.t. Ly(ng,x) >0 Vge Q
xj €{0,1} V(i,j)€ A, ng>n? VYqeQ.

> Given a solution x, subproblem SP9(x)-Model 1 is

ng = min: Z hig! + Z buyu Z d,Jqu

ieEN; (iJ)eA (ij)eA

st (1b)(lg).
yj €{0,1}, and £/ >0 V(i,j) e A
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Cutting Plane Generations |

Generate Lq4(74,x) > 0 as LP-based Benders Cuts:

» Relax y9 > 0 in SP9(x)-Model 1, and let /N\?, &Z., and BZ be
optimal dual solutions associated with (1b)—(1d), (1e) and
(1f), respectively.

> Given that SP9(x)-Model 1 has a feasible solution,

w3 (= ]+ el 5 30 Asi- 3 D,

(ij)eA ieNy ieEN—
()

is valid for all g € Q.
» Proof: Weak duality theorem.
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Cutting Plane Generations Il

Combine Benders cuts with Laporte-Louveaux (LL) inequalities to
enforce convergence:

> Given %, denote X! as the set of arcs {(i,j) € A: %; = 1}
and X© as the set of arcs {(i,j) e A: Rij = 0}.

» Suppose that the current X is not optimal.

» Because at least one x variable will change its current value in
next iteration,

Z (1—x;) + Z xj > 1. (3)

(ij)eXt (ij)eXxo

is valid to MP.
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Modifying Model 1 for Power Systems

Apply Model 1 for optimizing design and service restoration in
power transmission networks.

> Let 0; and 0; be voltages at locations i and j, and f;; be the
electricity flow between i and j.

» The Kirchhoff's Voltage Law: 0; — 0; = R;jf;;, where R;; is the
reactance between locations / and j (a DC flow model).

» Add two constraints to SP9(x)-Model 1:

67 9q>R,Jqu+M(IX,J—|—yU—1)V( i,j)e A (4)
0] — 07 < Ryt — M~ (I1xj +y;] — 1) ¥(i,j) € A, (5)

where both M+ and M~ are sufficiently large numbers.
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A Penalty-based Subproblem Relaxation

» Develop valid cuts by allowing unsatisfied demands at nodes / € N_.

» This variant refers to the “load shedding” operation in practice, in
which the goal is to minimize costs of arc construction, repair, and
the penalties incurred by unmet demands.

> u! > 0: unsatisfied demands at nodes i € N_.

> The new Model 1 imposes a penalty p; for each unit of unsatisfied
demand, and formulate R-SP9(x)-Model 1:

min: Z hig! + Z piul + Z i+ Z djif;]

ieENy ieEN_ (ij)eA (ij)eA
st (1b), (1d)-(1g), (4). (5)
fi —ul =-D; Vie N_
J:U,i)eA
ul >0, Vie N_, y] €{0,1}, and £7 >0, V(i,j) € A.
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Valid Inequalities Through Branch-and-Cut |

» Given X, in subproblem g, branch on arc sets AT C A and
A~ C A\ AT, such that y,.j.’ =1,V(i,j) € A", and y,;? =0,
V(i,j) € A~

» To ensure binary yij-’—values for all arcs (i,j) € AT |JA™ after
branching, add

yi =1 v(i,j)e A" (6)
—y] >0 V(i,j)e A" (7)

to subproblems and compute 7.
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Valid Inequalities Through Branch-and-Cut Il

> Denote \Y, & af, B;’ q+, mi q+ ,and &7 as optimal dual

solutions to the corresponding subproblem
> lLet Mt =M~ =M.
» For any A" and A~, where AT C A, A~ C A\ AT,

o> -y ((1—/q)a +aUU6q—|—MI"< +ﬁ;}*))x,j

(ij)eA

YRS - > A, - I\/IZ( )
ieNL ieEN_ (ig)eA

SR Ees o
iJj)E 1,J)EA™

is valid to the relaxed MP of Model 1. (The proof is omitted.)
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Bounding the Big-M in Cut (8)

» Any feasible solutions to (4) and (5) require that
|Rjifj — M™| = |R;ifj + M~| (values of both right-hand sides
when //x;; +y;] — 1 = —1) to be the maximum absolute
difference between ¢ and 67

» Use

M= (N 1) max {Ruan}

(u,v)eA

for all node pairs, because any path between i and j contains
no more than |[N| — 1 arcs, and the maximum voltage

difference on any arc is bounded by maX(uvv)eA{Ruvauv}.
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Model 2: Multiple Interdependent Infrastructures

Model 2 analyzes multiple infrastructures, being interdependent
and possessing risk of cascading failures.

» First stage: Network design and arc construction (x).

» Second stage: Consider two major responses after arcs are
randomly destroyed:

1. allowing load shedding at demand nodes.

2. isolating failures by disconnecting pairs of interdependent

nodes in different infrastructures.
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Notation of Model 2 |

K: a set of all infrastructures.

v

» N¥: contains sets of supply, transshipment, and demand
nodes, denoted as N5, NX, and N¥ with no common nodes.

» Ak: a set of arcs to be constructed.

v

P(ki, k2): a set of node pairs carrying the interdependency
between infrastructures ki and k», such that pair

(i,j) € P(ki, ko) implies that node j € N'* is dependent on
demand node i € Nt
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Notation of Model 2 Il

Parameters:

> af-j., c,j‘ d,-jf: the capacity, construction cost, and unit flow cost

of arc (i,j) € A*.
> SI-k and Dj‘: the maximum supply and required demand at
nodes i € V¥ and j € Nk,

> hf(: unit generation cost varying at each supply node i € Nf;

> pf‘: a penalty cost incurred for each unit of unsatisfied

demand at node i € Nk.

> s,-’jlkzz fixed cost for disconnecting two interdependent nodes i

and j.
> l;q € {0,1}: the status of arc (i,}) € AX in scenarios g € Q,

where lij.(q = 0 if arc (/,/) fails, and 1 otherwise.
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Notation of Model 2 Il

Decision Variables:

> X§ € {0,1}: such that x,-’j- = 1 if we construct arc (/,J) in
infrastructure k, and 0 otherwise. (No arcs can be
constructed between two nodes from different infrastructures.)

> g,-kq: the amount of flow generated at node i € N¥.

> {“’ > 0: unsatisfied demand realized at node i € Nk,

> 5}7’@ € {0,1}: such that zklk2 = 1 if we disconnect a parent
node i € N from its chlldren node j € N*, and 0 otherwise.
> elike ¢ {0,1}: such that ekik2 — 1 means demand at node

€ija ijq
i € N* is not fully satisfied (i.e., u 9> 0), and thus node
j € N becomes dysfunctional |f it is still connected to i.

> ﬁ-Jl-‘q > 0: an amount of flow on arc (i,j) € A, ¥q € Q.
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SP9(x)-Model 2

s.t.

Shen, U of Michigan

Do\ 2 iyt > Wt D Al

keK \ (i,j)e Ak HI iENK

D SRR B DI LE S SO

ki, ko €K, kiky | (i,j)E€P(k1 k)

flow balance at all nodes in A% of all infrastructure k € K.

Z fijf‘q-|— Z ff‘q§2min ZS;’(, ZDk (1_e//q)

Ji(i.j) €Ak Ji(,i) €Ak ieENk iENK

VieN', k, K € K, K'#k, (I,i)e P(k',k)  (10)
ut? < D (22" + ej®) Vhi, ke € K, ki # ke, (i) € Pk, k{L1)
£ < i} Vk e K, (i,j) € A" (12)
zike et € 10,1}, Vki, ke € K, ki # ko, (i,)) € P(ki, ko)

ijq Uq
g9>0, Vie NS, uf? >0, Vie NE, £9>0, Vk € K, (i,j) €(A9)
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Feasible solutions to Model 2

Solving Model 2 (optimally):

» Combining SP9(x)-Model 2 with the master problem, we
obtain an MIP model for Model 2.

» The MIP model is hard to compute due to scales of sets
P(k1, k2) for all combinations of k; and ko.

Approaches for computing lower and upper bounds of Model 2.

» Heuristic 1: generates an upper bound by disconnecting all
infrastructure interdependencies a priori and then minimizing
demand loss penalties in each infrastructure.

» Heuristic 2: aims to minimize disconnections, but will result in
higher potential demand losses.

» A lower bound: by optimizing K individual infrastructure
design and recovery problems.
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An Example
Infrastructures K1, K2, and K3, in which Si, Si, D' represent two
suppliers and one consumer in each infrastructure for i = 1,2, 3.

» The interdependency sets are indicated by dash lines.
» Disconnection costs of (D!, S52), (D?,S}), and (D3, S3) are 1,
10, and 100.

» Assume zero flow cost, zero generation cost, and $1 penalty
cost for each unit of demand losses.

K1 K2
St=4 §}=5
D'=-5 o D?=-5
si=5 ~— S3=3
Jdo e
*
N P
N s
N
N st=5,7
¥ =
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Demonstrations of Heuristics 1 and 2 |

Heuristic 1 for solving the Example:

1. Delete all interdependent arcs (D*, S2), (D?,S3), and
(D3, 1), and the disconnection cost is 1 + 10 + 100 = 111.

2. By solving a minimum-cost flow problem in each
infrastructure, we only lost two units of demand at node D?,
yielding a penalty cost as 2.

3. Demands D! and D3 are fully satisfied, we cancel the
disconnections (D1, S3) and (D3, S3), and the total cost of
Heuristic 1 is 111 +2 —1 — 100 = 12.
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Demonstrations of Heuristics 1 and 2 I

Heuristic 2 for solving the Example:

1. N* #0 for all k = K1, K2, K3.

2. Select K2 as an initial k¥ as it is the cheapest to delete
(DY, S3).

3. By minimizing demand loss penalties in K2, we obtain a
solution having 2 units of unsatisfied demand at D?. Given an
existing interdependency (D?, S3), the loss at D? sets S3
dysfunctional.

4. Because NK3 = (), choose kI = K3. However, as 513 becomes
dysfunctional, we again lost 2 units of demand at D3, which
disables S3.

5. This further leads to one unit of demand loss at D!, and the
total costis 1 +2+2+1=6.
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An Approach to Find an Objective Lower Bound

A lower bound can be found by solving a LP relaxation of Model 2.

Alternatively, we compute a lower bound by optimizing K
individual infrastructure design and recovery problems.

1. Set z = 0 for all node pairs, and minimize the total demand
loss within each individual infrastructure k € K.

2. That is, we ignore system interdependency, and only optimize
demand losses by assuming that all nodes are functional.
3. The result has two cases:

» If the solution conflicts with z = 0, it yields a lower bound of
the real optimal objective cost.

» Otherwise, i.e., the current solution is also feasible for z = 0,
we attain optimum.
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Computations and Results

Model 1 is tested on an IEEE 118-bus system.

» Compare the effectiveness of Benders cuts (2) and cuts (8)
(referred to as “BAC cuts”) for solving Model 1.

» Test a hybrid method by incorporating Benders and BAC cuts.
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Computations and Results

Model 1 is tested on an IEEE 118-bus system.
» Compare the effectiveness of Benders cuts (2) and cuts (8)
(referred to as “BAC cuts”) for solving Model 1.
» Test a hybrid method by incorporating Benders and BAC cuts.
For Model 2, test two- and three-infrastructure systems.
> Preserve the 118-bus system, representing a major power grid,

whose demand losses might affect node functions in other
smaller-scale systems (20- or 50-node networks).

» Compare MIP-Model-2, Heuristic 1, Heuristic 2, and
lower-bound approaches.

> Use MIP-Model-2 to solve instances having three
infrastructures, and the topology of their interdependencies
varies as Tree, Chain, and Cycle.
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Computations and Results

Model 1 is tested on an IEEE 118-bus system.

» Compare the effectiveness of Benders cuts (2) and cuts (8)
(referred to as “BAC cuts”) for solving Model 1.

» Test a hybrid method by incorporating Benders and BAC cuts.
For Model 2, test two- and three-infrastructure systems.

> Preserve the 118-bus system, representing a major power grid,
whose demand losses might affect node functions in other
smaller-scale systems (20- or 50-node networks).

» Compare MIP-Model-2, Heuristic 1, Heuristic 2, and
lower-bound approaches.

> Use MIP-Model-2 to solve instances having three
infrastructures, and the topology of their interdependencies
varies as Tree, Chain, and Cycle.

All models and algorithms use default CPLEX 12.3 with C++.
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Computing Model 1: Result Analyses

The hybrid approach randomly decides to either generate a Benders or a
BAC cut, following Bernoulli trails. Time limit = 600 seconds.

Inetance Benders (in $1000) BAC (in $1000) Fiybrid (in $1000)

LB UB  Gap (%) LB UB  Gap (%) LB UB  Gap (%)
Ins-2-(-2)  31.915 37.456 17.361 | 12.855 38.026  195.816 | 30.693 37.404 21.867
Ins-2-(-1)  30.184 37.451 24.076 | 4.278 38.195 792.875 | 30.337 37.359 23.146
Ins-2-(0) 29.078 37.521 29.039 | 13.001 38.291  194.518 | 29.708 37.468 26.124
Ins-2-(+1) 27.341 37.930 38.731 | 22.173  38.263 72.563 | 27.267 37.860 38.850
Ins-2-(+2) 26.207 38.064 45.242 | 30.850 37.952 23.023 | 28.856 38.033 31.801
Ins-3-(-2)  39.861 41.556 4.254 7.027 42369 502.968 | 40.344 41.612 3.144
Ins-3-(-1)  40.080 41.567 3.710 | 8.469 42419 400.896 | 40.025 41.660 4.085
Ins-3-(0) 38.550 41.660 8.068 | 22.294 42.645 91.282 | 38.2883 42.178 10.160
Ins-3-(+1) 35.720 42.461 18.870 | 39.163 42.453 8.399 | 39.367 42.453 7.838
Ins-3-(+2) 38.572 42.554 10.324 | 41.220 44.262 7.379 | 41.146 44.224 7.481

» Decomposition becomes more effective as the arc construction cost
and the arc repair cost increase as compared to the generation cost
and the flow cost.

» Benders and BAC cuts are unstable, while the hybrid cut is stable
under various parameter settings.
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Computing Model 2: Setup and Parameter Design

For every two-infrastructure system,

> the 118-bus system is attached with either a 20-node or a
50-node system each having two different network layouts
(i.e., “20-1," "“20-2,” “50-1," and “50-2").

> Any demand losses in the 118-bus system might dysfunction
some nodes in the attached system.

For every three-infrastructure system,

» Attach combinations of (20-1, 20-2), (20-1, 50-1), and (50-1,

50-2) to the 118-bus system.

> Vary the topology of system interdependency as Chain, Tree,
and Cycle.
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Computing Model 2: Result Analyses |

Optimizing two-infrastructure systems via different approaches:

Instance

CPU seconds

Cost (in $1000)

MIP-Model-2  Heuristic 1 ~ Heuristic 2 LB ‘ MIP-Model-2  Heuristic 1 ~ Heuristic 2 LB
20-1-Ins1 5.086 2215 1.295 0.999 1048.800  100.663%  101.101% 99.953%
20-1-Ins2 4.774 1.732 1.217 0.858 1059.361 100.657% 101.102%  99.984%
20-1-Ins3 4.664 1.841 1.248 0.952 1044.174 100.666% 101.170%  99.977%
20-1-Ins4 4.477 1.966 1.138 0.952 1058.106 100.656% 101.093%  98.661%
20-2-Ins1 3.823 1.934 5741 0.952 998.260  100.713%  100.259%  99.964%
20-2-Ins2 3.338 1.716 3.089 0.983 987.793  100.724%  100.240% 99.973%
20-2-Ins3 3.276 1.920 1.550 0.936 1010.901  100.708%  100.248%  99.978%
20-2-Ins4 5.959 2.434 6.427 1.029 1032.633  100.683%  100.264% 99.970%
50-1-Ins1 6.740 3.401 2917 7.566 1062.289 100.726% 100.289%  99.974%
50-1-Ins2 6.692 3.541 2.949 7.597 1068.586  100.727%  100.152%  99.979%
50-1-Ins3 7.067 3.682 3.058 7.815 1072.775  100.723%  100.133% 99.978%
50-1-Ins4 6.677 3.681 2.949 7.784 1078.481  100.716%  100.190%  99.982%
50-2-Ins1 4.743 2.286 3.916 7.162 1052.067  100.695%  100.319%  99.982%
50-2-Ins2 4.508 2.792 4.087 7.742 1060.748 100.688% 100.317%  99.952%
50-2-Ins3 4.602 2917 3.666 7.161 1053.092  100.692%  100.291%  99.979%
50-2-Ins4 4.680 2.761 3.276 7.086 1089.856  100.668%  100.361% 99.735%
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Computing Model 2: Result Analyses Il

Optimizing three-infrastructure Tree, Chain, and Cycle:

CPU seconds

Cost (in $1000)

Tree MIP-Model-2  Heuristic 1  Heuristic 2 LB ‘ MIP-Model-2  Heuristic 1  Heuristic 2 LB

(20-1, 20-2) 15.772 3.861 0.818 0.840 1050.067  101.229%  102.331% 99.869%
(20-1, 50-1) 11.091 5.156 4.852  1.408 1070.717  101.254%  100.624%  99.936%
(50-1, 50-2) 15.412 7.037 5352 2.075 1130.676  101.229%  100.261% 99.979%
Chain  MIP-Model-2  Heuristic 1  Heuristic 2 LB | MIP-Model-2  Heuristic 1 ~ Heurisitc2 LB
(20-1, 20-2) 4.290 1.956 0.742 1.008 1049.434  100.690%  102.393%  99.930%
(20-1, 50-1) 6.770 3.201 2.345 2535 1070.645  100.716%  100.365% 99.943%
(50-1, 50-2) 10.404 4.519 4.279 1.892 1130.626  100.653%  100.190% 99.983%
Cycle MIP-Model-2  Heuristic 1 Heuristic 2 LB ‘ MIP-Model-2  Heuristic 1~ Heurisitc2 LB
(20-1, 20-2) 5.640 2.175 0.571 0.819 1049.638  100.724%  123.563% 99.910%
(20-1, 50-1) 6.650 3.565 2395 1.698 1070.645  100.573%  100.365% 99.943%
(50-1, 50-2) 11.889 6.004 4523 2331 1130.626  101.051%  100.190% 99.983%
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Computing Model 2: Result Analyses IlI

» CPU time of Heuristics 1, 2, and the LB method are much shorter
than MIP-Model-2.

> Both (20-1, 50-1) and (50-1, 50-2) have the same cost in
MIP-Model-2 for Chain and Cycle, indicating that the 118-bus
system dominates all three systems, and the feedback
interdependency in a Cycle from either 50-1 or 50-2 to the 118-bus
system is negligible in our computations.

» Qverall, we do not observe much solution difference among Tree,
Chain, and Cycle-structured systems.

> Both Heuristic 1 and Heuristic 2 yield slightly worse bounds than
testing two-infrastructure systems, because more interdependency
variables are pre-fixed or relaxed by the heuristic approaches given
more sub-networks.
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Conclusions

> Investigate problems of critical infrastructure design and
recovery optimization under random network arc disruptions.

» Consider both small-scale failures in a single network, and
large-scale cascading failures in multiple interdependent
infrastructures.

» Model 1 (small networks): (i) complicated by Big-M
constraints yielded by the Kirchhoff's Voltage Law for
specifically modeling power transmission networks; (ii) solved
by LP-based Benders cuts and a Branch-and-Cut algorithm.

» Model 2 (multiple infrastructures): we develop an MIP and
heuristic approaches for bounding the optimal objectives.
Future research:
» Risk variants of Model 1 and Model 2.

» Specially-structured topologies of interdependency among
multiple infrastructures.
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