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Critical Infrastructure Analysis: Literature Review

I Considered as networks with supply/demand/transshipment
nodes, and service flows.

I Important to applications in energy, transportation,
telecommunication, and many other areas.

I The literature includes
I system survivability under malicious attacks, nature disasters,

or component failures (e.g., Brown et al. 2006, Murray et al.
2007, San Martin 2007).

I network design against deliberate attacks and the research of
network interdiction (see, e.g., Cormican et al. 1998, Wood
1993).

I network vulnerability (e.g., Pinar et al. 2010) and cascading
failures (e.g., Crucitti et al. 2004, Nedic et al. 2006).

I particular use in designing power grids (Faria Jr et al. 2005,
Yao et al. 2007) and operations against blackouts (Alguacil et
al. 2010).
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Our Problems

Combine phases of network design and operational planning, to
minimize the expected costs of arc construction, flow operation,
and service recovery under stochastic arc disruptions.
Motivation:

I The forms of service recovery vary depending on disruption
severity, system interdependency, and service priority.

I For small-scale failures, local repairing can be done
immediately for fully restoring service.

I During large-scale and severe damages, disconnection
operations are used to avoid cascading failures.

Two stochastic model variants:

I Model 1 for repairing small-scale failures in a single network.

I Model 2 for avoiding large-scale cascading failures in multiple
interdependent infrastructures.
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A Single Network: Notation I

Model 1 considers a single network with

I G (N ,A0 ∪ A): a directed connected graph with node set
N = N+ ∪N= ∪N−

I N+, N=, and N−: sets of supplies, intermediate
transmissions, and demands.

I A0 and A: the current existing arcs and potential arcs to be
constructed (A0 = ∅ in this paper).

Parameters:

I aij , cij , and dij : flow capacity, construction cost, and unit flow
cost of arc (i , j), ∀(i , j) ∈ A.

I hi : unit generation cost of each supply node, ∀i ∈ N+.

I Si : the maximum capacity of supply node i ∈ N+.

I Di : consumer’s demand at node i ∈ N−, with∑
i∈N+

Si ≥
∑

i∈N− Di .
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A Single Network: Notation II

I Q: a finite set of random disruption scenarios.

I I qij ∈ {0, 1}: an effect of a disruptive event on arc (i , j),

∀(i , j) ∈ A, q ∈ Q, where I qij = 0 if arc (i , j) fails, and 1
otherwise.

I bqij : cost of repairing arc (i , j), ∀(i , j) ∈ A, q ∈ Q with

maxq∈Q bqij < cij by assumption, ∀(i , j) ∈ A.

Decision Variables:

I xij ∈ {0, 1}: such that xij = 1 if we construct arc (i , j), and 0
otherwise.

I yqij ∈ {0, 1}, such that yqij = 1 if arc (i , j) is repaired in
scenario q, and 0 otherwise.

I f qij ≥ 0: the amount of flow on arc (i , j) in a repaired network,
∀q ∈ Q.
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Formulation of Model 1

min:
∑

(i,j)∈A
cijxij +

1

|Q|
∑
q∈Q

 ∑
i∈N+

hig
q
i +

∑
(i,j)∈A

bqijy
q
ij +

∑
(i,j)∈A

dij f
q
ij

 (1a)

s.t.
∑

j :(i,j)∈A
f qij −

∑
j :(j,i)∈A

f qji − gq
i = 0 ∀i ∈ N+, q ∈ Q (1b)

∑
j :(i,j)∈A

f qij −
∑

j :(j,i)∈A
f qji = −Di ∀i ∈ N−, q ∈ Q (1c)

∑
j :(i,j)∈A

f qij −
∑

j :(j,i)∈A
f qji = 0 ∀i ∈ N=, q ∈ Q (1d)

yq
ij ≤ xij (1− I qij ) ∀(i , j) ∈ A, q ∈ Q (1e)

f qij ≤ aij (I
q
ij xij + yq

ij ) ∀(i , j) ∈ A, q ∈ Q (1f)

0 ≤ gq
i ≤ Si ∀i ∈ N+, q ∈ Q (1g)

xij ∈ {0, 1} ∀(i , j) ∈ A, yq
ij ∈ {0, 1}, and f qij ≥ 0 ∀(i , j) ∈ A, q ∈ Q.(1h)

where

I Variables gq
i in (1b) provide flow amount generated from

supply nodes i ∈ N+.
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A Decomposition Framework

Decompose Model 1 into two stages with binary variables x at the first
stage, and |Q| independent subproblems at the second stage.

I A relaxed master problem:

min:
∑

(i,j)∈A

cijxij +
1

|Q|
∑
q∈Q

ηq

s.t. Lq(ηq, x) ≥ 0 ∀q ∈ Q

xij ∈ {0, 1} ∀(i , j) ∈ A, ηq ≥ ηq ∀q ∈ Q.

I Given a solution x , subproblem SPq(x)-Model 1 is

ηq = min:
∑
i∈N+

hig
q
i +

∑
(i,j)∈A

bqijy
q
ij +

∑
(i,j)∈A

dij f
q
ij

s.t. (1b)–(1g),

yq
ij ∈ {0, 1}, and f qij ≥ 0 ∀(i , j) ∈ A.
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Cutting Plane Generations I

Generate Lq(ηq, x) ≥ 0 as LP-based Benders Cuts:

I Relax yq ≥ 0 in SPq(x)-Model 1, and let λ̃qi , α̃q
ij , and β̃qij be

optimal dual solutions associated with (1b)–(1d), (1e) and
(1f), respectively.

I Given that SPq(x)-Model 1 has a feasible solution,

ηq ≥ −
∑

(i ,j)∈A

(
(1− I qij )α̃q

ij + aij I
q
ij β̃

q
ij

)
xij−

∑
i∈N+

λ̃qi Si−
∑
i∈N−

λ̃qi Di

(2)
is valid for all q ∈ Q.

I Proof: Weak duality theorem.
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Cutting Plane Generations II

Combine Benders cuts with Laporte-Louveaux (LL) inequalities to
enforce convergence:

I Given x̂ , denote X̂ 1 as the set of arcs {(i , j) ∈ A : x̂ij = 1}
and X̂ 0 as the set of arcs {(i , j) ∈ A : x̂ij = 0}.

I Suppose that the current x̂ is not optimal.

I Because at least one x variable will change its current value in
next iteration, ∑

(i ,j)∈X̂ 1

(1− xij) +
∑

(i ,j)∈X̂ 0

xij ≥ 1. (3)

is valid to MP.
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Modifying Model 1 for Power Systems

Apply Model 1 for optimizing design and service restoration in
power transmission networks.

I Let θi and θj be voltages at locations i and j , and fij be the
electricity flow between i and j .

I The Kirchhoff’s Voltage Law: θi − θj = Rij fij , where Rij is the
reactance between locations i and j (a DC flow model).

I Add two constraints to SPq(x)-Model 1:

θqi − θ
q
j ≥ Rij f

q
ij + M+(I qij xij + yqij − 1) ∀(i , j) ∈ A (4)

θqi − θ
q
j ≤ Rij f

q
ij −M−(I qij xij + yqij − 1) ∀(i , j) ∈ A, (5)

where both M+ and M− are sufficiently large numbers.
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A Penalty-based Subproblem Relaxation

I Develop valid cuts by allowing unsatisfied demands at nodes i ∈ N−.

I This variant refers to the “load shedding” operation in practice, in
which the goal is to minimize costs of arc construction, repair, and
the penalties incurred by unmet demands.

I uqi ≥ 0: unsatisfied demands at nodes i ∈ N−.

I The new Model 1 imposes a penalty pqi for each unit of unsatisfied
demand, and formulate R-SPq(x)-Model 1:

min:
∑
i∈N+

hig
q
i +

∑
i∈N−

pqi u
q
i +

∑
(i,j)∈A

bqijy
q
ij +

∑
(i,j)∈A

dij f
q
ij

s.t. (1b), (1d)–(1g), (4), (5)

−
∑

j :(j,i)∈A

f qji − uqi = −Di ∀i ∈ N−

uqi ≥ 0, ∀i ∈ N−, yq
ij ∈ {0, 1}, and f qij ≥ 0, ∀(i , j) ∈ A.
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Valid Inequalities Through Branch-and-Cut I

I Given x̂ , in subproblem q, branch on arc sets A+ ⊆ A and
A− ⊆ A \ A+, such that yqij = 1, ∀(i , j) ∈ A+, and yqij = 0,

∀(i , j) ∈ A−.

I To ensure binary yqij -values for all arcs (i , j) ∈ A+
⋃
A− after

branching, add

yqij ≥ 1 ∀(i , j) ∈ A+ (6)

−yqij ≥ 0 ∀(i , j) ∈ A−. (7)

to subproblems and compute ηq.
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Valid Inequalities Through Branch-and-Cut II

I Denote λ̂qi , α̂q
ij , β̂

q
ij , π̂

q+
ij , π̂q−ij , ω̂q+

ij , and ω̂q−
ij as optimal dual

solutions to the corresponding subproblem.

I Let M+ = M− = M.

I For any A+ and A−, where A+ ⊆ A, A− ⊆ A \ A+,

ηq ≥ −
∑

(i ,j)∈A

(
(1− I qij )α̂q

ij + aij I
q
ij β̂

q
ij + MI qij

(
π̂q+ij + π̂q−ij

))
xij

−
∑
i∈N+

λ̂qi Si −
∑
i∈N−

λ̂qi Di −M
∑

(i ,j)∈A

(
π̂q+ij + π̂q−ij

)
+

∑
(i ,j)∈A+

ω̂q+
ij yqij −

∑
(i ,j)∈A−

ω̂q−
ij yqij (8)

is valid to the relaxed MP of Model 1. (The proof is omitted.)
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Bounding the Big-M in Cut (8)

I Any feasible solutions to (4) and (5) require that
|Rij fij −M+| = |Rij fij + M−| (values of both right-hand sides
when I qij xij + yqij − 1 = −1) to be the maximum absolute

difference between θqi and θqj .

I Use
M = (|N | − 1) max

(u,v)∈A

{
Ruvauv

}
for all node pairs, because any path between i and j contains
no more than |N | − 1 arcs, and the maximum voltage

difference on any arc is bounded by max(u,v)∈A

{
Ruvauv

}
.
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Model 2: Multiple Interdependent Infrastructures

Model 2 analyzes multiple infrastructures, being interdependent
and possessing risk of cascading failures.

I First stage: Network design and arc construction (x).

I Second stage: Consider two major responses after arcs are
randomly destroyed:

1. allowing load shedding at demand nodes.

2. isolating failures by disconnecting pairs of interdependent
nodes in different infrastructures.
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Notation of Model 2 I

I K : a set of all infrastructures.

I N k : contains sets of supply, transshipment, and demand
nodes, denoted as N k

+, N k
=, and N k

− with no common nodes.

I Ak : a set of arcs to be constructed.

I P(k1, k2): a set of node pairs carrying the interdependency
between infrastructures k1 and k2, such that pair
(i , j) ∈ P(k1, k2) implies that node j ∈ N k2 is dependent on
demand node i ∈ N k1

− .
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Notation of Model 2 II

Parameters:

I akij , c
k
ij , d

k
ij : the capacity, construction cost, and unit flow cost

of arc (i , j) ∈ Ak .

I Sk
i and Dk

j : the maximum supply and required demand at

nodes i ∈ N k
+ and j ∈ N k

−.

I hki : unit generation cost varying at each supply node i ∈ N k
+.

I pki : a penalty cost incurred for each unit of unsatisfied
demand at node i ∈ N k

−.

I sk1k2ij : fixed cost for disconnecting two interdependent nodes i
and j .

I I kqij ∈ {0, 1}: the status of arc (i , j) ∈ Ak in scenarios q ∈ Q,

where I kqij = 0 if arc (i , j) fails, and 1 otherwise.
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Notation of Model 2 III

Decision Variables:

I xkij ∈ {0, 1}: such that xkij = 1 if we construct arc (i , j) in
infrastructure k, and 0 otherwise. (No arcs can be
constructed between two nodes from different infrastructures.)

I gkq
i : the amount of flow generated at node i ∈ N k

+.

I ukqi ≥ 0: unsatisfied demand realized at node i ∈ N k
−.

I zk1k2ijq ∈ {0, 1}: such that zk1k2ijq = 1 if we disconnect a parent

node i ∈ N k1
− from its children node j ∈ N k2 , and 0 otherwise.

I ek1k2ijq ∈ {0, 1}: such that ek1k2ijq = 1 means demand at node

i ∈ N k1
− is not fully satisfied (i.e., ukqi > 0), and thus node

j ∈ N k2 becomes dysfunctional if it is still connected to i .

I f kqij ≥ 0: an amount of flow on arc (i , j) ∈ Ak , ∀q ∈ Q.
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SPq(x)-Model 2

min:
∑
k∈K

 ∑
(i,j)∈Ak

dk
ij f

kq
ij +

∑
i∈N k

+

hk
i g

kq
i +

∑
i∈N k
−

pk
i u

kq
i


+

∑
k1,k2∈K ,k1 6=k2

 ∑
(i,j)∈P(k1,k2)

sk1k2ij zk1k2ijq

 (9)

s.t. flow balance at all nodes in N k of all infrastructure k ∈ K .

∑
j :(i,j)∈Ak

f kqij +
∑

j :(j,i)∈Ak

f kqji ≤ 2 min


∑
i∈N k

+

Sk
i ,

∑
i∈N k
−

Dk
i

 (1− ek
′k

liq )

∀i ∈ N
k
, k, k ′ ∈ K , k ′ 6= k, (l , i) ∈ P(k ′, k) (10)

uk1q
i ≤ Dk1

i (zk1k2ijq + ek1k2ijq ) ∀k1, k2 ∈ K , k1 6= k2, (i , j) ∈ P(k1, k2)(11)

f kqij ≤ akij I
kq
ij xk

ij ∀k ∈ K , (i , j) ∈ Ak (12)

zk1k2ijq , ek1k2ijq ∈ {0, 1}, ∀k1, k2 ∈ K , k1 6= k2, (i , j) ∈ P(k1, k2)

g kq
i ≥ 0, ∀i ∈ N k

+, ukq
i ≥ 0, ∀i ∈ N k

−, f kqij ≥ 0, ∀k ∈ K , (i , j) ∈ Ak .(13)
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Feasible solutions to Model 2

Solving Model 2 (optimally):

I Combining SPq(x)-Model 2 with the master problem, we
obtain an MIP model for Model 2.

I The MIP model is hard to compute due to scales of sets
P(k1, k2) for all combinations of k1 and k2.

Approaches for computing lower and upper bounds of Model 2.

I Heuristic 1: generates an upper bound by disconnecting all
infrastructure interdependencies a priori and then minimizing
demand loss penalties in each infrastructure.

I Heuristic 2: aims to minimize disconnections, but will result in
higher potential demand losses.

I A lower bound: by optimizing K individual infrastructure
design and recovery problems.
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An Example

Infrastructures K1, K2, and K3, in which S i
1, S i

2, D i represent two
suppliers and one consumer in each infrastructure for i = 1, 2, 3.

I The interdependency sets are indicated by dash lines.

I Disconnection costs of (D1, S2
2 ), (D2,S3

1 ), and (D3, S1
2 ) are 1,

10, and 100.

I Assume zero flow cost, zero generation cost, and $1 penalty
cost for each unit of demand losses.
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Demonstrations of Heuristics 1 and 2 I

Heuristic 1 for solving the Example:

1. Delete all interdependent arcs (D1, S2
2 ), (D2,S3

1 ), and
(D3, S1

2 ), and the disconnection cost is 1 + 10 + 100 = 111.

2. By solving a minimum-cost flow problem in each
infrastructure, we only lost two units of demand at node D2,
yielding a penalty cost as 2.

3. Demands D1 and D3 are fully satisfied, we cancel the
disconnections (D1,S2

2 ) and (D3,S1
2 ), and the total cost of

Heuristic 1 is 111 + 2− 1− 100 = 12.

Shen, U of Michigan Optimizing Designs and Operations of Interdependent Infrastructures 23 / 32



Demonstrations of Heuristics 1 and 2 II

Heuristic 2 for solving the Example:

1. N
k 6= ∅ for all k = K1, K2, K3.

2. Select K2 as an initial k0 as it is the cheapest to delete
(D1, S2

2 ).

3. By minimizing demand loss penalties in K2, we obtain a
solution having 2 units of unsatisfied demand at D2. Given an
existing interdependency (D2,S3

1 ), the loss at D2 sets S3
1

dysfunctional.

4. Because N
K3

= ∅, choose k1 = K3. However, as S3
1 becomes

dysfunctional, we again lost 2 units of demand at D3, which
disables S1

2 .

5. This further leads to one unit of demand loss at D1, and the
total cost is 1 + 2 + 2 + 1 = 6.
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An Approach to Find an Objective Lower Bound

A lower bound can be found by solving a LP relaxation of Model 2.

Alternatively, we compute a lower bound by optimizing K
individual infrastructure design and recovery problems.

1. Set z = 0 for all node pairs, and minimize the total demand
loss within each individual infrastructure k ∈ K .

2. That is, we ignore system interdependency, and only optimize
demand losses by assuming that all nodes are functional.

3. The result has two cases:
I If the solution conflicts with z = 0, it yields a lower bound of

the real optimal objective cost.
I Otherwise, i.e., the current solution is also feasible for z = 0,

we attain optimum.
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Computations and Results

Model 1 is tested on an IEEE 118-bus system.

I Compare the effectiveness of Benders cuts (2) and cuts (8)
(referred to as “BAC cuts”) for solving Model 1.

I Test a hybrid method by incorporating Benders and BAC cuts.

For Model 2, test two- and three-infrastructure systems.

I Preserve the 118-bus system, representing a major power grid,
whose demand losses might affect node functions in other
smaller-scale systems (20- or 50-node networks).

I Compare MIP-Model-2, Heuristic 1, Heuristic 2, and
lower-bound approaches.

I Use MIP-Model-2 to solve instances having three
infrastructures, and the topology of their interdependencies
varies as Tree, Chain, and Cycle.

All models and algorithms use default CPLEX 12.3 with C++.
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Computing Model 1: Result Analyses
The hybrid approach randomly decides to either generate a Benders or a
BAC cut, following Bernoulli trails. Time limit = 600 seconds.

Instance
Benders (in $1000) BAC (in $1000) Hybrid (in $1000)
LB UB Gap (%) LB UB Gap (%) LB UB Gap (%)

Ins-2-(-2) 31.915 37.456 17.361 12.855 38.026 195.816 30.693 37.404 21.867
Ins-2-(-1) 30.184 37.451 24.076 4.278 38.195 792.875 30.337 37.359 23.146
Ins-2-(0) 29.078 37.521 29.039 13.001 38.291 194.518 29.708 37.468 26.124
Ins-2-(+1) 27.341 37.930 38.731 22.173 38.263 72.563 27.267 37.860 38.850
Ins-2-(+2) 26.207 38.064 45.242 30.850 37.952 23.023 28.856 38.033 31.801
Ins-3-(-2) 39.861 41.556 4.254 7.027 42.369 502.968 40.344 41.612 3.144
Ins-3-(-1) 40.080 41.567 3.710 8.469 42.419 400.896 40.025 41.660 4.085
Ins-3-(0) 38.550 41.660 8.068 22.294 42.645 91.282 38.288 42.178 10.160
Ins-3-(+1) 35.720 42.461 18.870 39.163 42.453 8.399 39.367 42.453 7.838
Ins-3-(+2) 38.572 42.554 10.324 41.220 44.262 7.379 41.146 44.224 7.481

I Decomposition becomes more effective as the arc construction cost
and the arc repair cost increase as compared to the generation cost
and the flow cost.

I Benders and BAC cuts are unstable, while the hybrid cut is stable
under various parameter settings.
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Computing Model 2: Setup and Parameter Design

For every two-infrastructure system,

I the 118-bus system is attached with either a 20-node or a
50-node system each having two different network layouts
(i.e., “20-1,” “20-2,” “50-1,” and “50-2”).

I Any demand losses in the 118-bus system might dysfunction
some nodes in the attached system.

For every three-infrastructure system,

I Attach combinations of (20-1, 20-2), (20-1, 50-1), and (50-1,
50-2) to the 118-bus system.

I Vary the topology of system interdependency as Chain, Tree,
and Cycle.
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Computing Model 2: Result Analyses I

Optimizing two-infrastructure systems via different approaches:

Instance
CPU seconds Cost (in $1000)

MIP-Model-2 Heuristic 1 Heuristic 2 LB MIP-Model-2 Heuristic 1 Heuristic 2 LB

20-1-Ins1 5.086 2.215 1.295 0.999 1048.800 100.663% 101.101% 99.953%
20-1-Ins2 4.774 1.732 1.217 0.858 1059.361 100.657% 101.102% 99.984%
20-1-Ins3 4.664 1.841 1.248 0.952 1044.174 100.666% 101.170% 99.977%
20-1-Ins4 4.477 1.966 1.138 0.952 1058.106 100.656% 101.093% 98.661%
20-2-Ins1 3.823 1.934 5.741 0.952 998.260 100.713% 100.259% 99.964%
20-2-Ins2 3.338 1.716 3.089 0.983 987.793 100.724% 100.240% 99.973%
20-2-Ins3 3.276 1.920 1.550 0.936 1010.901 100.708% 100.248% 99.978%
20-2-Ins4 5.959 2.434 6.427 1.029 1032.633 100.683% 100.264% 99.970%

50-1-Ins1 6.740 3.401 2.917 7.566 1062.289 100.726% 100.289% 99.974%
50-1-Ins2 6.692 3.541 2.949 7.597 1068.586 100.727% 100.152% 99.979%
50-1-Ins3 7.067 3.682 3.058 7.815 1072.775 100.723% 100.133% 99.978%
50-1-Ins4 6.677 3.681 2.949 7.784 1078.481 100.716% 100.190% 99.982%
50-2-Ins1 4.743 2.286 3.916 7.162 1052.067 100.695% 100.319% 99.982%
50-2-Ins2 4.508 2.792 4.087 7.742 1060.748 100.688% 100.317% 99.952%
50-2-Ins3 4.602 2.917 3.666 7.161 1053.092 100.692% 100.291% 99.979%
50-2-Ins4 4.680 2.761 3.276 7.086 1089.856 100.668% 100.361% 99.735%
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Computing Model 2: Result Analyses II

Optimizing three-infrastructure Tree, Chain, and Cycle:

CPU seconds Cost (in $1000)

Tree MIP-Model-2 Heuristic 1 Heuristic 2 LB MIP-Model-2 Heuristic 1 Heuristic 2 LB

(20-1, 20-2) 15.772 3.861 0.818 0.840 1050.067 101.229% 102.331% 99.869%
(20-1, 50-1) 11.091 5.156 4.852 1.408 1070.717 101.254% 100.624% 99.936%
(50-1, 50-2) 15.412 7.037 5.352 2.075 1130.676 101.229% 100.261% 99.979%

Chain MIP-Model-2 Heuristic 1 Heuristic 2 LB MIP-Model-2 Heuristic 1 Heurisitc2 LB

(20-1, 20-2) 4.290 1.956 0.742 1.008 1049.434 100.690% 102.393% 99.930%
(20-1, 50-1) 6.770 3.201 2.345 2.535 1070.645 100.716% 100.365% 99.943%
(50-1, 50-2) 10.404 4.519 4.279 1.892 1130.626 100.653% 100.190% 99.983%

Cycle MIP-Model-2 Heuristic 1 Heuristic 2 LB MIP-Model-2 Heuristic 1 Heurisitc2 LB

(20-1, 20-2) 5.640 2.175 0.571 0.819 1049.638 100.724% 123.563% 99.910%
(20-1, 50-1) 6.650 3.565 2.395 1.698 1070.645 100.573% 100.365% 99.943%
(50-1, 50-2) 11.889 6.004 4.523 2.331 1130.626 101.051% 100.190% 99.983%
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Computing Model 2: Result Analyses III

I CPU time of Heuristics 1, 2, and the LB method are much shorter
than MIP-Model-2.

I Both (20-1, 50-1) and (50-1, 50-2) have the same cost in
MIP-Model-2 for Chain and Cycle, indicating that the 118-bus
system dominates all three systems, and the feedback
interdependency in a Cycle from either 50-1 or 50-2 to the 118-bus
system is negligible in our computations.

I Overall, we do not observe much solution difference among Tree,
Chain, and Cycle-structured systems.

I Both Heuristic 1 and Heuristic 2 yield slightly worse bounds than
testing two-infrastructure systems, because more interdependency
variables are pre-fixed or relaxed by the heuristic approaches given
more sub-networks.
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Conclusions

I Investigate problems of critical infrastructure design and
recovery optimization under random network arc disruptions.

I Consider both small-scale failures in a single network, and
large-scale cascading failures in multiple interdependent
infrastructures.

I Model 1 (small networks): (i) complicated by Big-M
constraints yielded by the Kirchhoff’s Voltage Law for
specifically modeling power transmission networks; (ii) solved
by LP-based Benders cuts and a Branch-and-Cut algorithm.

I Model 2 (multiple infrastructures): we develop an MIP and
heuristic approaches for bounding the optimal objectives.

Future research:

I Risk variants of Model 1 and Model 2.

I Specially-structured topologies of interdependency among
multiple infrastructures.
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