
  

  

Abstract—This paper presents a practical extension to 
extremum seeking control systems which guarantees 
asymptotic convergence through a Lyapunov-based switching 
scheme. In contrast, traditional extremum seeking methods 
enter a limit cycle around the optimal set-point, once identified. 
The proposed approach converges to the optimal set-point by 
exponentially decaying the sinusoidal perturbation signal once 
the system enters a neighborhood around the extremum. To 
analyze the performance characteristics of this method, we 
apply this algorithm to the maximum power point tracking 
(MPPT) problem in photovoltaic systems. Simulation results 
indicate that our approach is self-optimizing in the presence of 
varying environmental conditions and produces higher energy 
conversion efficiencies than traditional MPPT methods under 
typical operating scenarios. 

I. INTRODUCTION 

XTREMUM seeking (ES) deals with the problem of 
regulating a system to an unknown optimal set-point. 

Since we assume the cost function that maps input to 
performance output is unknown, a periodic perturbation 
signal is typically used to probe the space. However, once 
the closed-loop system has identified the optimal set-point, 
most methods enter a limit cycle around this point as 
opposed to converging to it exactly. Hence, one of the main 
challenges with ES is guaranteeing asymptotic convergence 
to the optimal set-point – not in the average sense, but the 
exact sense. This paper investigates a novel Lyapunov-based 
switched extremum seeking (Lyap-ES) approach that 
guarantees asymptotic convergence to the optimal set-point. 
The proposed concept is demonstrated on a well-studied yet 
important problem: maximum power point tracking (MPPT) 
in photovoltaic (PV) systems. 

Prior to the nonlinear and adaptive control theory 
developments in the 1970’s and 1980’s, extremum seeking 
was proposed as a method for identifying the minimum or 
maximum of an equilibrium map. Since then, researchers 
have extended extremum seeking to the general class of 
nonlinear dynamical plants (see e.g. [1], [2]) and applied the 
algorithm to a wide variety of applications (e.g. air flow 
control in fuel cells [3], wind turbine energy capture [4], 
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ABS control, and bioreactors [5]). During this period there 
have been several innovations that have improved the 
practicability of ES by increasing convergence speed and 
eliminating limit cycles. For example, Krstić suggests the 
addition of dynamic compensators within the ES feedback 
loop to improve convergence speed [6]. Tan et al. analyze 
various periodic perturbation signals to improve 
convergence speed [7]. Adetola and Guay, who hypothesize 
a dynamic plant with no direct measurement of the objective 
function, guarantee asymptotic convergence using a 
sufficient richness condition on the reference set-point [8], 
thus eliminating limit cycles.  

This study focuses on asymptotic convergence for the 
case of a static nonlinear map which is unknown a priori. As 
such, this paper extends the aforementioned research and 
adds the following two new contributions to the ES control 
and MPPT bodies of literature. First, we introduce a 
switching method for ensuring asymptotic convergence to 
the optimal operating point in extremum seeking control 
systems, based on Lyapunov stability theory. Secondly, we 
demonstrate this algorithm in simulation for MPPT problems 
in PV systems – which itself introduces a novel and control 
theoretic alternative to traditional MPPT methods. 

This paper is organized as follows: Section II describes 
the extremum seeking control design and our novel 
Lyapunov-based switching strategy. Section III discusses a 
case study of the proposed ES method on MPPT for PV 
systems. Finally, Section IV presents the main conclusions. 

II. EXTREMUM SEEKING CONTROL 

This paper investigates a simple yet widely studied 
extremum seeking (ES) scheme [1], [5] for static nonlinear 
maps, shown in Fig. 1, with extensions that guarantee 
asymptotic convergence.  Before embarking on a detailed 
discussion of this method, we give an intuitive explanation 
of how extremum seeking works, which can also be found in 
[1] and [5], but is presented here for completeness. Next we 
discuss the ES feedback loop design. Finally, we extend the 
proof presented in [1] to allow the excitation signal to decay 
exponentially when the system enters a ball around the 
extremum, using a Lyapunov function. If the optimum value 
shifts, the Lyapunov function will automatically sense the 
disturbance and re-enable the sinusoidal perturbation to 
converge to the new optimal value. 

A. An Intuitive Explanation 

The control scheme applies a periodic perturbation 
a0sin(ωt) to the control signal ̂u , whose signal estimates the 
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optimal control input u*.  This control input passes through 
the unknown static nonlinearity f( û + a0sin(ωt)), which may 
be a static approximation of a dynamic plant, to produce a 
periodic output signal y. The high-pass filter s/(s+ωh) then 
eliminates the DC component of y, and will be in or out of 
phase with the perturbation signal a0sin(ωt) if û  is less than 
or greater than u*, respectively. This property is important 
because when the signal y-η is multiplied by the perturbation 
signal sin(ωt), the resulting signal has a DC component 
greater than or less than zero if û  is less than or greater than 
u*, respectively. This DC component is extracted by the low-
pass filter ωl/(s+ωl) and represents the sensitivity (a0

2/2) 
∂f/∂u ( û ). We may use the gradient update law û&  = k(a0

2/2) 
∂f/∂u ( û ) to force û  to converge to u*. 

B. ES Control Design 

The synthesis process for an extremum seeking controller 
requires proper selection of the perturbation frequency ω, 
amplitude a0, gradient update law gain k, and filter cut-off 
frequencies ωh and ωl. The perturbation frequency must be 
slower than the slowest plant dynamics to ensure the plant 
appears as a static nonlinearity from the viewpoint of the ES 
feedback loop. Mathematically, this can be enforced by 
ensuring ω << min{eig(A)}, where A is the state matrix 
from linearizing the plant. Large values for a0 and k allow 
faster convergence rates, but respectively increase oscillation 
amplitude and sensitivity to disturbances. Therefore, one 
typically increases these parameter values to obtain 
maximum convergence speed for a permissible amount of 
oscillation and sensitivity. The filter cut-off frequencies 
must be designed in coordination with the perturbation 
frequency ω. Specifically, the high-pass filter must not 
attenuate the perturbation frequency, but the low-pass filter 
should – thus bounding the cut-off frequencies from above. 
Mathematically ωh < ω and ωl < ω. Moreover, the filters 
should have sufficiently fast dynamics to respond quickly to 
perturbations in the control input, thereby bounding the cut-
off frequencies from below.  

Generally, proper selection of the ES parameters is a 

tuning process [3]. However, the above guidelines are 
extremely valuable for effective calibration. The ES 
parameter values used in this report are provided in Table I. 

C. Averaging Stability Analysis 

Extremum seeking using periodic perturbations is 
particularly appealing because it converges to the local 
optimum (in the average sense) of a static nonlinearity in 
real-time, without a priori knowledge of the nonlinearity 
itself. Moreover, ES is self-optimizing in the presence of 
disturbances that alter the static nonlinearity. However, a 
general drawback of ES is that once the optimum value is 
determined, ES causes the system to enter a limit cycle 
around this value, as opposed to converging to it 
asymptotically.  To eliminate this limit cycle we propose a 
switching control scheme that effectively decays the 
amplitude of the periodic perturbation once the system has 
converged within the interior of a ball about the optimal 
value. The switch criterion is determined using Lyapunov 
stability methods. That is, we leverage a Lyapunov function 
designed from an averaged, linearized model of the original 
ES feedback system to estimate the proximity to the 
equilibrium point.1 Once the Lyapunov function value falls 
below a threshold, the perturbation decays exponentially. If 
the Lyapunov function value rises above the threshold, due 
to an external disturbance for example, the perturbation 
reengages. Allowing the perturbation to decay exponentially 
is not new [2], however it is the first application located in a 
switched scheme, to the authors’ knowledge. 

We start with the proof proposed by Krstić and Wang [1], 
which uses averaging theory to approximate the ES system 
behavior, linearizes it about the optimum, and then shows 
the resulting Jacobian is Hurwitz. From this proof, our new 
contribution is to develop a Lyapunov function that senses 
proximity to the equilibrium point.  

The state equations for the closed-loop ES system can be 
written as follows: 

 

 

û kξ=&

 

(1) 

 

( ) ( ) ( )sin sinl l lt f u tξ ω ξ ω η ω ω ω= − − +&

 

(2) 

 

( )h h f uη ω η ω= − +&

 

(3) 

 

( )0ˆ sinu u a tω= +

 

(4) 

 
1 The inspiration for this switched controller came from Homework #9 in 

Professor Jessy Grizzle's EECS 562 Nonlinear Systems and Control course 
at the University of Michigan, Ann Arbor. In this problem set, we use the 
same concept to stabilize a pendulum on a cart. 

TABLE I 
EXTREMUM SEEKING PARAMETERS 

Parameter Description Value 

ω Perturbation frequeuncy 250 Hz 
a0 Perturbation amplitude 0.015 

k Gradient update law gain 1 
ωh High-pass filter cut-off freq. 50 Hz 
ωl Low-pass filter cut-off freq. 50 Hz 

 

Fig. 1.  Block diagram of switched extremum seeking control system. 



  

where each equation respectively represents the integrator, 
low-pass filter, high-pass filter, and perturbed control input. 
 Now define a new coordinate system that shifts the 
equilibrium/optimal operating point to the origin 

 

 

ˆu u u∗= −%

 

(5) 

 

( )f uη η ∗= −%  (6) 

 
resulting in the following translated system 
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(8) 

 

( ) ( )0 sinh h hf u f u u a tη ω η ω ω ω∗ ∗= − − + + +&% % %

 

(9) 

 
To investigate the stability properties of this system, we 

consider the averaged system, as done in [1]. This makes 
intuitive sense because extremum seeking injects a 
sinusoidal perturbation into the system. Therefore studying 
the averaged behavior is a appropriate approach. The 
averaged state variables are defined as follows [9] 

 

 

( )2
2

t

a t
x x dπ

ω

ω τ τ
π −
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(11) 

 
where the period of the signal is 2π/ω. Hence, our immediate 
goal is to use the notion of an average system to investigate 
the stability properties of the closed loop system. Applying 
the definition of averaging yields the following system 

 

a au kξ=&%

 

(12) 
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a l a l a

l
a

t

f u u a t f u t

ξ ω ξ ω η ω

ω ω ω∗ ∗

= − −

+ + + −

& %

%

 

(13) 

( )( ) ( )( )0 sina h a h
a

f u u a t f uη ω η ω ω∗ ∗= − + + + +&% % %

 

(14) 

 
where (·)a denotes the averaging operation given by the 
definition in (11). To simplify this system, the following 
properties are useful: 
• (sin(ωt))a = 0 
• (xy)a ≈ xa ya. That is, the average of the product of two 

state variables is approximately equal to the product of the 
average. This result arises from taking the DC term in a 
Fourier series expansion [10] – which is appropriate for 
the present averaging analysis. 

These properties imply the second term of (13) is equal to 
zero, and will help us evaluate the third term of (13) and the 
second term of (14). Note that these terms are not equal to 
zero due to the static nonlinearity. 
 Let us first evaluate the second term of (14), ωh(f(u% + 
u*+a0sin(ωt)) - f(u*))a. For ease of notation, define 

 

( )( ) ( )( ) ( )0 0sin sinh u a t f u u a t f uω ω∗ ∗+ = + + −% %

 

(15) 

 
The function h( u%  + a0sin(ωt)) translates the extremum of 
the static nonlinearity to the origin. Let us approximate this 
function by a quadratic: 
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(16) 

 
Since the origin is located at the optimum, b0 = 0, b1 = 0, and 
b2 < 0. As we shall see later, the quadratic approximation 
need only satisfy these conditions to prove the maximum 
operating point is exponentially stable. That is, we only need 
to capture the fact that the static nonlinearity is concave and 
stationary at the maximum operating point (i.e. the first and 
second order necessary conditions for optimality apply).  In 
other words, a quadratic approximation is sufficient to 
achieve our immediate goal. 

Substituting the quadratic approximation for the translated 
nonlinear map and applying the averaging definition yields 
the following nonlinear system 
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(19) 

 
The Jacobian of this system evaluated at the origin is: 
 

 

2 0
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0 0

0
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(20) 

 
The Jacobian is Hurwitz precisely when b2 < 0, which is true 
if and only if the static nonlinearity is concave. In the case of 
estimating the minimum of a convex static map, pick k < 0 
and b2 > 0, and the resulting Jacobian is Hurwitz. In other 
words, the extremum seeking approach converges 
exponentially to both local maxima and minima. 
 Since the Jacobian is Hurwitz, the averaged system is 
exponentially stable according to Theorem 4.7 of Khalil [9]. 
This also satisfies the conditions of Theorem 10.4 of Khalil 
[9], which states that the original system has a unique 
exponentially stable periodic orbit about the optimal point. 
Therefore the ES control system is stable in the sense that 
the averaged system converges exponentially to the 
extremum. We leverage this fact to design the Lyapunov-
based switching criterion, described next. 

D. Lyapunov-Based Switching Scheme 

The linearization of the average system about the 
extremum produces a Jacobian that approximates the system 



  

dynamics near the equilibrium. We now use this Jacobian to 
develop a quadratic Lyapunov function for the switching 
control, by solving the following Lyapunov equation for P 

 

 

TPJ J P Q+ = −

 

(21) 

 
where Q is taken to be a symmetric matrix (e.g. identity). 
This results in the following quadratic Lyapunov function 
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which we use for the following switched control law: 
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(23) 

 
whose conditions are evaluated only when sin(ωt) equals 
zero to ensure the control signal remains continuous in time. 
Note the dynamics in the decaying amplitude state are stable 
because the perturbation amplitude has stable dynamics that 
are decoupled from the remainder of the system [11]. 
 This quadratic Lyapunov function estimates how closely 
the averaged system converges to the extremum. That is, 
V(xa) → 0 as xa → 0. Once extremum seeking converges 
sufficiently close to the optimum, the sinusoidal perturbation 
decays exponentially to zero and the control input arrives at 
the optimal value u*. If external disturbances cause the 
Lyapunov function value to increase above the threshold 
value ε, then the original amplitude a0 is used until the 
system converges to the new extremum. This switched 
control approach has the following advantageous properties: 
 
1. The proposed scheme eliminates the limit cycles which 

characterize traditional ES algorithms with sinusoidal 
excitation signals. Instead, the system converges 
exponentially to the extremum. In the case of maximum 
power point tracking of PV systems, which we study in 
the following section, the proposed algorithm does not 
oscillate around the maximum power point – a limitation 
of some existing methods. 

2. The sub-level set Ωc = {xa ∈  R3 | V(x) ≤ c} with V& (x) ≤ 
0 is positively invariant, meaning a solution starting in Ωc 
remains in Ωc for all t ≥ 0. In other words, the Lyapunov 
function will be decreasing monotonically in time, 
therefore eliminating chattering behavior. 

3. Under external disturbances the state vector xa may shift 
away from the origin and produce an instantaneous 
increase in the Lyapunov function. This causes the 
perturbation to reengage, and ES proceeds to find the 
new extremum. Hence, the proposed switched control 
scheme is self-optimizing with respect to disturbances. 
This situation is illustrated in the following case study on 

PV systems, where disturbances may include shading, 
solar irradiation, and temperature shifts. 

Note that to evaluate the Lyapunov function V(xa), one 
needs to calculate ũa and therefore know the optimal control 
input u*. In this paper we apply an estimate of u*, which can 
often be obtained in practice, and demonstrate that Lyap-ES 
indeed converges to the extremum. For sufficiently 
inaccurate estimates of u* the switching condition may never 
be satisfied and the algorithm degenerates into regular ES, in 
the worst case. However this can be avoided by appropriate 
parameter selections for the threshold ε and gain γ [11]. 

III.  CASE STUDY: PHOTOVOLTAIC SYSTEMS 

In this section, we investigate the properties and 
performance of the proposed Lyapunov-based switched 
extremum seeking scheme on a MPPT problem for PV 
systems, shown in Fig. 2. Solar energy represents a key 
opportunity for increasing the role of renewable energy in 
the electric grid. However, high manufacturing and 
installation costs have limited the economic viability of PV-
based energy production [12]. Therefore, it is vitally 
important to maximize the energy conversion efficiency of 
PV arrays. This problem is particularly difficult because 
high fidelity PV models require detailed semiconductor 
physics, which are highly dependent on environmental 
conditions, such as incident solar radiation, temperature, and 
shading effects. As such, we desire control theoretic 
techniques that mathematically guarantee asymptotic 
convergence to the maximum power point (MPP), while 

 
 
Fig. 2.  Photovoltaic (PV) system comprised of a PV array, DC/DC 
converter, and the proposed switched ES MPPT control algorithm. 
 

TABLE II 
PHOTOVOLTAIC ARRAY PARAMETERS  

Parameter Description Value 

A Ideality factor 1.92 

ESi Band gap energy for silicon 1.11 eV 

I0,r Reference reverse saturation current 20 × 10-6 A 

Isc,r Reference short-circuit current 2.52 A 

kI Short-circuit temperature coefficient 0.0017 A/K 

k Boltzmann’s constant 1.38× 10-23 C 

ncell Number of PV cells arranged in series 36 

q Electron charge 1.6× 10-19 C 

Rp Parallel resistance 9 Ω 

Rs Series resistance 0.0009 Ω 

Tr Reference temperature 301.18 K 

 



  

rejecting disturbances due to changing environments. 
First, we summarize a popular equivalent circuit model 

for PV arrays and a low frequency DC/DC boost converter 
model. Next we apply Lyap-ES to the PV system and 
analyze: (1) The asymptotic convergence and self-
optimizing behavior under external disturbances due to 
varying environmental effects, and (2) the algorithm’s merits 
and drawbacks versus traditional ES and MPPT algorithms. 

A. PV System Model Development 

For the purposes of MPPT we consider an equivalent 
circuit model [13], [14] of a PV cell shown in Fig. 3. This 
model consists of an ideal current source Isc in parallel with a 
diode and resistance Rp, all together in series with resistor Rs, 
which models contactor and semiconductor material 
resistance. The ideal current source delivers current in 
proportion to solar flux S, and is also a function of 
temperature T. The diode models the effects of the 
semiconductor material, and also depends on temperature. In 
total, the PV cell model equations are given by 
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cell cellV n V=

 

(28) 

 
The cell model is scaled to represent an array by considering 
36 cells in series (28). Since (23)-(27) are implicit nonlinear 
functions of cell current I and voltage Vcell, they must be 
solved numerically, using Newton's algorithm for example. 
The parameters for this model are adopted from [13] and 
provided in Table II. 

The PV model is parameterized by environmental 
conditions - namely incident solar irradiation S and 
temperature T. Figure 4 demonstrates that current and power 
increase linearly with incident solar irradiation. Temperature 
has a more complex impact on current and power. The short 
circuit current increases slightly with temperature, however 
the power (and the MPP) decreases as temperature increases. 
In other words, PV cells operate best in full sunlight and 
cold temperatures. As a result, we desire a control loop that 
automatically tracks the MPP under rapidly changing 
environments to maximize energy conversion efficiency. 

A DC/DC boost converter steps up the PV array voltage 
and provides a control actuator for MPPT, using PWM 
control on the switches. At the output end of the boost 
converter a capacitor maintains a roughly constant voltage of 
120V and is typically interfaced with the electric grid using 
a three-phase DC/AC inverter [15]. In this paper, we focus 
on the boost converter only for the purposes of MPPT, and 
assume the capacitor maintains a constant 120V at the 
output. Since the switching frequency is significantly faster 
than the extremum seeking control loop dynamics, we model 
the boost converter by the following static relation 
 

 

( )1invV V d= −

 

(29) 

 
where V is the PV array voltage, Vinv is the constant 120 V 
capacitor voltage, and d is the duty ratio control input. 

B. Simulation Results & Discussion 

In this section we demonstrate the proposed switched ES 
MPPT control approach by (1) analyzing the impact of 
varying environmental conditions, and (2) comparing it to 
traditional ES and MPPT methods. In the first part we 

 
Fig. 3.  Equivalent circuit model of PV cell [12], [13]. 

 
Fig. 4.  Characteristic I-V and P-V curves for (a) varying irradiation levels and T = 25ºC, (b) varying temperature levels and S = 1000 W/m2. 



  

impose 1000 W/m2 of solar irradiation and then provide a 
500W/m2 step change at 200ms. This might model the 
transient effect of a passing cloud blocking incident sunlight. 
The duty ratio is initialized at a nominal value of 0.9. 

1) Impact of Varying Environmental Conditions 
Figure 5 demonstrates the current and power trajectories 

superimposed on the PV array's characteristic I-V and P-V 
curves (S = 1000 W/m2). These plots demonstrate that Lyap-
ES indeed achieves the maximum power of 38W at voltage 
and current values of 17V and 2.24A for S = 1000W/m2, and 
maximum power of 19.5W at voltage and current values of 
18V and 1.09A for S = 500W/m2. Moreover, one can see 

how the operating point jumps from the 1000 W/m2 
characteristic curve to the 500 W/m2 curve during the step 
change. Immediately after the step change, the operating 
point is no longer at the MPP. The algorithm senses this 
change and reengages the perturbation to find the new MPP. 

Time responses of power, duty ratio, voltage, and current 
are provided in Fig. 6. This figure demonstrates how ES 
injects sinusoidal perturbations into the duty ratio to 
determine the MPP, which occurs at a duty ratio of 0.8585 
for S = 1000W/m2 and 0.8509 for S = 500W/m2. Also, the 
perturbations begin to decay exponentially at 36.5 ms and 
the duty ratio converges to the optimal value. Once the 
irradiation changes at 200 ms, the perturbation re-engages to 
search for the new MPP. Once it converges sufficiently close 
to the optimal duty ratio, the perturbation amplitude decays 
exponentially once again. 

The switch behavior can be understood by analyzing Fig. 
7. At 36.5 ms, the Lyapunov function drops below the 
switching threshold and hence the perturbation decays. Once 
the solar flux step change occurs at 200 ms, the averaged 
states become excited and the Lyapunov function value 
exceeds the switch threshold. This resets the amplitude of 
the perturbation to the original value a0. Then, as the 
Lyapunov function vanishes below the switch threshold, the 
perturbation amplitude decays exponentially once again. 

2) Comparative Analysis to Existing Methods 
This section compares the proposed ES algorithm to 

standard ES and a traditional MPPT technique: perturb & 
observe [15], [16]. Although some traditional MPPT 
methods are somewhat heuristic and may not appeal to the 
typical control theorist, they often produce satisfactory 
results and are simple to implement. However they lack 
guaranteed stability properties and have fundamental 
limitations. First we review the workhorse MPPT method, 
perturb & observe. Further interested readers should refer to 
the review paper [17] and references therein for a more 
expansive analysis of MPPT techniques. 

Perturb & observe algorithms are the most widely used 
MPPT control systems, where the basic idea is as follows: 
Periodically perturb the PV array terminal voltage and 
measure the resulting power output. If the output power 
increases, then perturb the voltage in the same direction. If 
power output decreases, then reverse the perturbation. Note 

 

Fig. 7. Lyapunov function and switch threshold for 1000W/m2 to 500W/m2

step change in solar irradiation. 

Fig. 5. Trajectories of current and power on PV array characteristic curves 
for 1000W/m2 to 500W/m2 step change in solar irradiation. 
 

Fig. 6. Time responses of PV array power, duty ratio, voltage, and current 
for 1000W/m2 to 500W/m2 step change in solar irradiation. 
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that when the MPP is reached, the P&O algorithm oscillates 
about this value, thus producing suboptimal energy 
conversion efficiency. One may reduce the perturbation size 
to improve efficiency during steady-state, but this reduces 
convergence speed. Moreover, P&O cannot differentiate if a 
power increase is due to the voltage perturbation or a 
disturbance. Therefore, an increase in solar irradiation or 
drop in temperature will confuse the P&O algorithm. 
 Figure 8 compares Lyap-ES to two benchmarks: P&O and 
basic ES (no switching). The scenario under consideration is 
identical to the previous subsection, however we do not 
consider varying incident solar irradiation. Moreover, 
perturbation amplitudes and frequencies of P&O are set to 
match Lyap-ES, to make the comparison fair.  

Several key observations arise from this study. First, ES 
and Lyap-ES are identical for the first 36.5 ms and then the 
switch condition is satisfied and Lyap-ES begins to converge 
to the optimum. Secondly, P&O converges faster than Lyap-
ES, for the parameters considered here. Alternative 
parameter choices for Lyap-ES can close this gap, but 
sacrifices sensitivity to noise. Finally, ES and P&O oscillate 
about the MPP whereas Lyap-ES converges to it exactly, 
thus producing greater power output as shown in the second 
subplot. This is significant because, for long periods of time, 
the energy conversion efficiency will be much higher for 
Lyap-ES than P&O and basic ES. 

IV.  CONCLUSION 

In this paper we propose a novel Lyapunov-based 
switched extremum seeking control method (Lyap-ES) that 
provides a practical extension to existing research on ES by 
eliminating limit cycles. Specifically, this approach 
guarantees asymptotic convergence to the extremum of a 
static map by exponentially decaying the perturbation 
amplitude once the algorithm reaches a neighborhood of the 
extremum. This neighborhood is approximated via 
Lyapunov stability analysis arguments that extend the 
stability proof originally presented in [1]. We apply Lyap-ES 
to the MPPT problem in a PV system as a case study to 

analyze performance. The advantage of Lyap-ES over 
traditional MPPT methods, e.g. P&O, is that the algorithm 
converges to the MPP asymptotically without entering a 
limit cycle. Moreover, the method is self-optimizing with 
respect to disturbances, such as varying solar irradiation and 
temperature shifts. It is also computationally efficient and 
simple to implement in practice. Experimental studies are 
currently underway in collaboration with National 
Instruments to demonstrate the model simulation, controller 
design, and real-time implementation capabilities of 
LabVIEW. Finally, Lyap-ES also offers a systematic method 
to solve MPPT problems using systems and control theory.  
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Fig. 8. Comparison of Lyapunov-based switched extremum seeking (Lyap-
ES) to basic extremum seeking (ES) and perturb & observe (P&O). 
 


