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1 The Weyl algebra

Let K[x1, · · · , xn] (henceforth abbreviated K[X]) be a polynomial ring. The nth Weyl
algebra is a K-subalgebra of EndK(K[X]) generated by:

• x̂i, where x̂i(g) = xig

• ∂
∂xi

Typically we denote x̂i simply by xi and ∂
∂xi

by ∂i. So a typical element of A2 might look
like

σ = ∂2
1∂2x1x2 − 4x3

1x
2
2

where

σ(x2
1) =

∂3

∂2x1∂x2
x1x2x

2
1 − 4x3

1x
2
2x

2
1 =

∂3

∂2x1∂x2
x3

1x2 − 4x5
1x

2
2 = 6x1 − 4x5

1x
2
2

We denote this Weyl algebra An. Note that the Weyl algebra is NOT commutative! It
comes with a commutator [·, ·] defined by [a, b] = ab − ba. Here are some commutators to
know:

• [∂i, xi] = 1, because for any f ∈ K[X], the product rule says

[∂i, xi]f = (∂ixi − xi∂i) f = ∂i(xif)− xi(∂if) = f + xi∂if − xi∂if = 1 · f

• More generally, [∂i, f ] = ∂f
∂xi

(this is an element of the Weyl algebra!)

• Thus, [∂i, xj ] = δij

• [xi, xj ] = 0 for all i, j

1.1 Canonical form

Writing xα1
1 · · ·xαn

n is clunky, so we adopt the following notation: given α = (α1, · · · , αn) ∈
Nn, by xα we mean xα1

1 · · ·xαn
n . Similarly for ∂α. Such an α is called a multi-index. Also,

by |α| we mean α1 + · · ·αn. If char k = 0, The Weyl algebra An has K-vector space basis
given by

{
xα∂β | α, β ∈ Nn

}
. For instance,

∂2
i x

2
i = ∂i(x

2
i ∂i + 2xi) = ∂ix

2
i ∂i + 2∂ixi = (x2

i ∂i + 2xi)∂i + 2xi∂i + 2

What goes wrong if char k = p? Well, in that case ∂pi = 0! Indeed, if a ≥ p, then
∂pi x

a
i = 0.
This canonical form is our friend and most proofs will rely on looking at it and applying

some commutators cleverly.
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1.2 Degree of an operator

Given a monomial xα∂β ∈ An, we can define degxα∂β = |α| + |β|. Given any element of
An, we define its degree to be the largest degree among the degrees of its monomials. It
takes a bit of work, but one can show

Proposition 1.1. We have the following:

• deg(D +D′) ≤ max{degD,degD′}

• deg(DD′) = degD + degD′

• deg[D,D′] ≤ degD + degD′ − 2

Proof. 1 is clear. For 2 and 3, Induce on degD+degD′. Also, from 1, it’s enough to assume
that D and D′ are monomials.

This shows that An is a domain. Also, we have the following neat fact:

Proposition 1.2. An has no nontrivial two-sided ideals (so it’s a simple algebra)

Proof. Proof by contradiction. Suppose I is a nonzero two-sided ideal. Choose D of minimal
degree k in I. Then [D, f ] ∈ I for all f . Now, degD > 0, so there is some α and β such
that xα∂β has a nonzero coefficient in the expansion of D, say βi > 0. But then [xi, D] is
nonzero and has degree ≤ k−1. Thus, β = 0. But if αi > 0, then [D, ∂i] has degree ≤ k−1
and is not zero.

2 Modules over An

We haven’t even defined a D-module yet! A D-module is a module over An (or the ring of
differential operators of any ring).

3 Graded and filtered modules

Recall that a ring R is graded if R =
⊕

iRi with Ri ·Rj ⊆ Ri+j . If R is a graded ring, then
a graded R-module is a module M such that M =

⊕
iMi where RiMj ⊆Mi+j .

Now, we’d like to make An into a graded algebra. There’s one problem though: we can’t
say something like “∂1x1 degree 2” because ∂1x1 = x1∂1 + 1. So instead we have to be
content with a filtration. Recall that a filtration of a K-algebra R is an ascending chain of
K-vector spaces F0 ⊂ F1 ⊂ F2 . . . such that FiFj ⊂ Fi+j .

One filtration on An that’s of particular interest to us is the Bernstein filtration, denoted
Bi. We define Bi to be the k-vectorspace generated by

{
xα∂β | |α|+ |β| ≤ i

}
. This filtration

is cool because every Bi is a finite-dimensional vector space over k.
One more construction: let R be a ring and {Fi} a filtration of R. For all n, let σn :

Fn → Fn/Fn−1 be the usual quotient map. This map σ is called the symbol map in this
context. Then the graded ring associated to F , denoted grF (R), is given by

grF (R) =
⊕
i

Fi/Fi−1

Note that any homogenous element of degree k in this ring can be written as σk(q) for some
q ∈ Fk.

In the case of the Weyl algebra, we write Sn to denote grBAn.
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Lemma 3.1. Sn is a polynomial ring in 2n variables.

Proof. It’s easy to see that grβAn is generated by σ1(xi) and σ1(δi) over k. Let yi = σ(xi) ∈
Sn and yn+i = ∂i ∈ Sn. We wish to show that the yi commute. For this it’s enough to show
that yiyn+i = yn+iyi. But this is clear: σ2(∂ixi) = σ2(xi∂i + 1) = σ2(x2∂i).

Thus we can write a surjective map from a polynomial ring k[z1, · · · , z2n] → Sn by
zj 7→ yj , for 1 ≤ j ≤ 2n. It remains to show that this map, ϕ, is injective. To that end,
suppose some homogenous polynomial F is sent to zero. If ϕ(F ) = 0, then ϕ(F ) = σk(d)
where d = F (x1, · · · , xn, ∂1, · · · , ∂n). But if σk(d) = 0, then d can also be written as a sum
of monomomials of degree less than k. So d must be zero to begin with, since canonical
form is a k-basis of An.

Similarly define a filtered module and graded module associated to a filtration: if M is
an An module, then a filtration of M with respect to B is an ascending chain of k-vector
spaces Γ0 ⊆ Γ1 ⊆ · · · with M =

⋃
i Γi and BiΓi ⊆ Γi+j .

A filtration on M induces filtrations on its submodules and quotients: let Γ be a filtration
on M with respect to B and let N ⊆ M be a submodule. Then Γi ∩N and Γi + N/N are
filtrations on N and M/N , repesctively, that agree with B.

Now, let M be a left An module. Then

Lemma 3.2. if grΓM is a (left) noetherian Sn module, then M is a noetherian An module

Proof. Pick any N ⊆M and let Γ′ be the induced grading on N . Then grΓ′
N ⊆ grΓM is a

finitely generated submodule. We wish to show that N is a finitely generated submodule of
M .

Since grΓ′
N is finitely generated, we can enumerate its generators f1, · · · , fs. Then

there is some m such that grΓ′
N is generated by elements of degree ≤ m. I claim that

N is generated by elements of degree ≤ m. Suppose this weren’t the case: then choose
a homogenous element f ∈ N of minimal degree such that f 6∈ An · Γ′m. Then f has
some degree k > m. Then σk(f) =

∑
σk−ri(ai)fi for some ai ∈ Sn. But this implies

f −
∑
aif̂i ∈ kerσk = Γk−1, where fi = µ(f̂i). This contradicts the fact that deg f = k.

Thus N is generated by elements in Γ′m. But Γ′m is a finite-dimensional k-vector space
with a finite dimensional basis. So this basis generates N .

The converse doesn’t hold. If grΓM is noetherian, we call Γ a good filtration of M .
Theres a lemma saying all good filtrations are sorta the same. Namely:

Lemma 3.3. A filtration Γ of M is good if and only if there exists some k0 such that
Γi+k = Biγk for all k > k0.

and

Lemma 3.4. Let Γ and Ω be two filtrations of M . If Γ is good, then there is some k1 such
that Γj ⊆ Ωj+k1 for all j.

Proof. This follows from the above: choose some k0 such that Γi+k0 = BiΓk0 . Then there
is some k1 such that Ωk1 ⊇ Γk0 , since Γk0 is a finite-dimensional k-vector space. Then for
any j,

Γj ⊆ Γj+k0 = BjΓk0 ⊆ BjΩk0 ⊆ Ωk0+j
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Note that any NoetherianAn module has a good filtration: ifM is generated by u1, · · ·uk,
set Γj =

∑k
i=1 Bjui.

4 Dimension and multiplicity

Here’s a result from commutative algebra:

Theorem 4.1. Let M =
⊕

i≥0Mi be a graded module over a polynomial ring K[x1, · · · , xn].
There exists a polynomial h(t) ∈ Q[t] such that

s∑
i=0

dimkMi = h(s)

for s >> 0.

Let M be a module over An and let h be the hilbert polynomial of grΓM , where Γ is a
good filtration of M with respect to An. We define the dimension of M to be the degree d
of h, and we define the multiplicity of M to be d!ad, where ad is the leading coefficient. It’s
not hard to see this is indepedent of good filtration using 4.3.

Example: d(K[x1, · · · , xn] = n and d(An) = 2n.
These have some nice properties:

Lemma 4.2. Let M be a finitely generated An module and N a submodule. Then

• dimM = max {dimN, dimM/N}

• More generally, if M = M1 ⊕ · · · ⊕Ms, then dimM = max{dimM1, · · · ,dimMs}

• m(M) = m(N) +m(M/N) if dimN = dimM/N

Proof. Let Γ be the good filtration of M . Let Γ′ and Γ′′ be the induced filtrations on N
and M/N , respectively. It’s easy to see that

0→ grΓ′
N → grΓM → grΓ′′

M/N → 0

whence Γ′ and Γ′′ are good filtrations. This allows us to see hN + hM/N = hM . The lemma
follows.

Now let M be a finitely generated An module. Since we have a surjection An →M , the
above lemma tells us that dimM ≤ dimAn = 2n. Surprisingly, we get another inequality:

Theorem 4.3 (Bernstein’s inequality). If M is a finitely-generated An-module, n ≤ dimM ≤
2n

Proof. First, we define a map Bi → Homk(Γi,Γ2i) where b get’s sent to “multiplication by
b”. This is an injective map. The proof uses induction and some manipulation of canonical
forms. Indeed, to see this, it’s enough to show that aΓi 6= 0 for any 0 6= a ∈ Bi. We proceed
by induction. The base case is easy since B0 = k.

Now, if aΓi = 0, then a 6∈ K, and hence the canonical form of a has some term cxα∂β

where c 6= 0, and |α|+ |β| > 0. Then [a, ∂i] is not zero and it’s in Bi. Now,

[a, ∂i]Γi−1 = a∂iΓi−1 − ∂iaΓi−1
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but aΓi−1 = 0 because aΓi = 0 and Γi contains Γi−1. Also, ∂iΓi−1 ⊆ Γi So,

[a, ∂i]Γi−1 = 0

but this contradicts the induction hypothesis. We get that dimBi ≤ dim Hom(Γi,Γ2i) =
χ(i)χ(2i). So χ(i)χ(2i) is a polynomial of degree as least 2n in i. But, the degree of this
polynomial is also 2d(M), so d(M) ≥ n.

5 Holonomic modules

. . . are D-modules of minimal dimension.
It’s easy to see holonomic modules are artinian, using multiplicity! Indeed, the length

of a holonomic D-module cannot exceed its length.

6 Differential operators (time permitting)

Let R be a commutative k-algebra. Then we define the differential operators of order ≤ n
as follows:

• the differential operators of order 0 are the elements of EndR whose commutator with
anythign in R is zero

• order ≤ n if [a, P ] has order ≤ n− 1 for all a ∈ R.

operators of order 1 turn out to just be the derivations.
The Weyl algebra is D(k[x1, · · · , xn])

6.1 Other construction of the Weyl algebra

It turns out the commutator relations above characterize the Weyl algebra. To be more
precise, let R = K {z1, · · · , z2n} be the free (non-commutative!) K-algebra in 2n generators.
Then we get a surjective map R→ An given by zi 7→ xi for i ≤ n, and zn+j 7→ ∂j for j ≤ n.
If char k = 0, the kernel of this map is exactly the two-sided ideal generated by

• [zi, zj ], |i− j| 6= n

• [zn+i, zi] = 1

Otherwise, the kernel includes zpn+i for all i. So there are two possible ways to define the
Weyl algebra in characteristic p! I think the preference is to use something called “divided
powers”. . . or just the ring of differential operators!
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