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Statement of the theorem

Theorem 1

Let p be a degree-3 polynomial over C. Suppose the roots of p form a
triangle in the complex plane. Then the roots of p′ are the foci of the
steiner inellipse of this triangle.
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Ellipse: {p : d(p, a) + d(p, b) = r} for some a, b called foci and some
r called the major axis length

Steiner inellipse: the unique ellipse tangent to the three sides of a
triangle at their midpoints
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Ellipse properties

Optical property
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Ellipse properties

Uniqueness property: given a pair of points and a line, there is at most one
ellipse with foci at those points tangent to that line
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Ellipse properties

∠F1PG1 = ∠F2PG2
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Outline (following Kalman)

Let T be the triangle defined by the roots of p and let E be an ellipse
with foci at the roots of p′. If E intersects a side of T at its
midpoint, then. . .

E is tangent to that side (at its midpoint)

E is tangent to the other two sides of T as well

E is tangent to every side at its midpoint
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Outline in pictures
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Step 1

Let T be the triangle defined by the roots of p and let E be an ellipse with
foci at the roots of p′. If E intersects a side of T at its midpoint, then E
is tangent to that side.

Thus, the unique ellipse that is tangent to that side and has foci at
the roots of p′ is tangent to that side at its midpoint (what we really
need).

Proof:

WLOG, can rotate, scale, translate, reflect (exercise)
So we can assume the following picture:
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Step 1

Roots= {1,−1,w}

⇒ p(z) = z3 − wz2 − z , p′(z) = 3z2 − 2wz − 1

Note: (
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z1z2 = −1/3⇒ Arg z1 + Arg z2 = π (mod 2πZ)

z1 + z2 = 2w/3⇒ Im z1 > 0 or Im z2 > 0

So 0 < Arg z1,Arg z2 < π and Arg z1 + Arg z2 = π

By the optical property of ellipses, x-axis is tangent to our ellipse
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Step 2

Let T be the triangle defined by the roots of p and let E be an ellipse with
foci at the roots of p′. If E is tangent to a side of T at its midpoint, then
E is tangent to every side of T .

Proof:

Assume the following picture:
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Step 2

p(z) = z3 − (1 + w)z2 + wz , p′(z) = 3z2 − 2(1 + w)z + w

z1 + z2 = 2
3(1 + w), so one focus is above x-axis.

Since ellipse tangent to x-axis, both foci on one side
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Step 2

z1z2 = w/3

⇒ Arg z1 + Arg z2 = Arg w .

The line between 0 and w is tangent to the ellipse by third ellipse
property.

∠F1PG1 = ∠F2PG2
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Step 3

E is tangent to each side at its midpoint

By step 1, there is some E ′ with same foci tangent to another side at
its midpoint
By uniqueness property, E = E ′ .
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Empirical evidence
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