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Matlis duality is an important tool in commutative algebra. It states:

Theorem 0.1 ([Hoc, Theorem 5.1, Theorem 5.4]). Let (R,m, k) be a local ring, and let E = ER(k) be the
injective hull of the residue field of R. If R is complete, then the functor, (·)∨, defined by

M∨ := HomR(M,E),

induces an equivalence of categories from Noetherian R-modules to Artinian R-modules and vice-versa, and
further (M∨)∨ = M for all Noetherian/Artinian M .

Even if R is not complete, then R̂ = HomR(E,E).

If you’re not familiar with Matlis duality, then the first five chapters of [Hoc] are a great reference. The
following two lemmas are used often in the older literature on test ideals, e.g. [Tak06]. Indeed, Takagi seems
to refer to the first lemma itself as “Matlis duality.” I couldn’t find a reference for these results, so I’m
putting them here:

Lemma 0.2 (c.f. [BH98], exercise 3.2.15c). Let (R,m, k) be a complete local ring, and let E = ER(k). If
M ⊆ E is a submodule, then

AnnE AnnR M = M.

Similarly, if I ⊆ R is an ideal, then
AnnR AnnE I = I

Proof. I claim that (M∨)∨ = AnnE AnnR M . Then the result follows by Matlis duality. First, note that by
the universal property of injective modules, for any map M → E, we can fill in the diagram:

0 // M

��

// E

~~
E

In other words, Hom(E,E) � Hom(M,E). But, since R is complete, any map Hom(E,E) is just given by
multiplication by an element of R. Thus M∨ is a quotient of R. Now we ask: what is the kernel of the
quotient? The kernel of this quotient is the set of maps E → E that restrict to 0 on M . Since maps E → E
are given by multiplication by elements of R, we see that the kernel is AnnR(M). Thus M∨ = R/AnnR(M)

By the “first isomorphism thoerem” (or, if you like, the universal property of quotient modules), an
element of HomR(R/AnnR(M), E) is the same as a map R → E that restricts to 0 on AnnR(M). A map
R→ E is completely determined by where we send 1 ∈ R, so we see that (M∨)∨ = HomR(R/AnnR(M), E) =
AnnE AnnR M .

The second statement is proved in the same way.

Lemma 0.3. Notation as in lemma 0.2. Let M ⊆ E be a submodule and I ⊆ R be an ideal. Then

(0 : (M : I)E)R = I · (0 : M)R

In other words,
AnnR(M : I)E = I ·AnnR M
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Proof. First I’ll show that (M : I)E = AnnE (I ·AnnR(M)). To do so, we start by showing the left-hand side
is smaller than the right-hand side. So let x ∈ (M : I)E . Then I · x ⊆M = AnnE AnnR M . In other words,
I AnnR M · x = 0, as desired. To get the opposite inclusion, let y ∈ AnnE (I ·AnnR(M)). By definition,
AnnR(M) · (Iy) = 0. In other words, Iy ⊆ AnnE AnnR M = M , as desired.

From the above, it follows that

AnnR(M : I)E = AnnR AnnE (I ·AnnR(M)) = I ·AnnR(M).
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