## Neutrino Magnetic Moment

- Interesting because a magnetic moment ≤10<sup>-15</sup> implies the neutrino is a Dirac particle (and a Majorana particle otherwise)
- Current experimental limits are from GEMMA and Borexino, approx. 2.9 x 10<sup>-11</sup>
- Observable is the electron recoil energy T from nueelectron scatters
- IsoDAR should produce an order of magnitude more nue-electron scatters than these experiments

How much better can we do?

## **Cross sections**

### Weak-only cross section is:

$$\frac{d\sigma}{dT} = \frac{2G_F^2 m_e}{\pi} \left[ g_R^2 + g_L^2 (1 - \frac{T}{E_\nu})^2 - g_R g_L \frac{m_e T}{E_\nu^2} \right]$$

(arXiv 1307.5081)

### EM cross section from magnetic moment:

$$\left(\frac{d\sigma}{dT}\right)_{\mu_{\nu}} = \frac{\pi\alpha_{em}^{2}\mu_{\nu}^{2}}{m_{e}^{2}}\left[\frac{1-T/E_{\nu}}{T}\right]$$

(arXiv 0605006)

## What we tried

Our free parameter is the normalization, then:

- 1. Get the prediction for the weak-only case in T bins, integrated over the flux.
- 2. Get the statistical errors on each T bin
- 3. Add an extra bin which is the normalization pull term with err=0.7%
- 4. Find the chi2 for a weak only fit.
- 5. Loop over magnetic moment values for a weak+em fit
- 6. Azimov sensitivity at 90% CL is where the delta chi2 crosses critical value (1.64 for 90%)
- 7. We have no backgrounds (yet)



# Summary of Magnetic Moment 90% CL sensitivity (Azimov method)

| Location    | Threshold | Nevents     | Norm constraint | Limit @90% CL |
|-------------|-----------|-------------|-----------------|---------------|
| KamLAND     | >3 MeV    | 3000        | 0.7%            | 4.4E-11       |
| KamLAND     | >1 MeV    | <b>7500</b> | 0.7%            | 2.6E-11       |
| JUNO        | >3 MeV    | 80k         | 0.7%            | 2.5E-11       |
| JUNO        | >1 MeV    | 200k        | 0.7%            | 1.5E-11       |
| JUNO        | >0.2 MeV  | 280k        | 0.7%            | 7.6E-12       |
| SNO (maybe) | >0.2 MeV  | 10.5k       | 0.7%            | 1.5E-11       |

## Light vector exchange

 Replace the additional em component from the mag moment with this:

(From Pedro's paper)

Physics from solar neutrinos in dark matter direct detection experiments

David G. Cerdeño, <sup>1</sup> Malcolm Fairbairn, <sup>2</sup> Thomas Jubb, <sup>1</sup> Pedro A. N. Machado, <sup>3,4</sup> Aaron C. Vincent, <sup>1</sup> and Céline Bœhm<sup>1,5</sup>

## **Current limit**



# Summary of light vector exchange 90% CL sensitivity (Azimov method)

| Location    | Threshold | Nevents | Norm constraint | Limit @90% CL |
|-------------|-----------|---------|-----------------|---------------|
| KamLAND     | >3 MeV    | 3000    | 0.7%            | 2.35E-6       |
| KamLAND     | >1 MeV    | 7500    | 0.7%            | 1.75E-6       |
| JUNO        | >3 MeV    | 80k     | 0.7%            | 1.75E-6       |
| JUNO        | >1 MeV    | 200k    | 0.7%            | 1.25E-6       |
| JUNO        | >0.2 MeV  | 280k    | 0.7%            | 6E-7          |
| SNO (maybe) | >0.2 MeV  | 10.5k   | 0.7%            | 8.5E-7        |

## Why we think we cannot do this at DUNE

#### Georgia says:

- 10¹¹⁰ Ar42→ K42 decays in 5 years, with endpoint = 3 MeV
- We only get 250,000 events total (no threshold) in 5 years.

Even if we could reconstruct to point back, it seems unlikely we can reduce the rate sufficiently!

#### Question:

- Can we build a DUNE module that is good for low energy studies?
- Looks very hard with argon!