
COUNTABLE BOREL EQUIVALENCE RELATIONS

SCOTT SCHNEIDER AND SIMON THOMAS

Introduction. These notes are an account of a day-long lecture workshop presented by

Simon Thomas of Rutgers University at the University of Ohio at Athens on November 17,

2007, as part of the Appalachian Set Theory series. The workshop served as an intensive

introduction to the emerging theory of countable Borel equivalence relations. These notes

have been compiled from the lecture slides by Scott Schneider, an attendee of the workshop.

1. First Session

1.1. Standard Borel Spaces. A topological space is said to be Polish if it admits a complete,

separable metric. If B is a σ-algebra of subsets of a given set X, then the pair (X,B) is called

a standard Borel space if there exists a Polish topology T on X that generates B as its

Borel σ-algebra. For example, each of the sets R, [0, 1], NN, and 2N = P(N) is Polish in its

natural topology, and so may be viewed, equipped with its corresponding Borel structure, as

a standard Borel space.

The abstraction involved in passing from a topology to its associated Borel structure is

analagous to that of passing from a metric to its induced topology. Just as distinct metrics on

a space may induce the same topology, distinct topologies may very well generate the same

Borel σ-algebra. In a standard Borel space, then, one “remembers” only the Borel sets, and

forgets which of them were open; it is natural therefore to imagine that any of them might

have been, and indeed this is the case:

Theorem 1.1.1. Let (X, T ) be a Polish space and Y ⊆ X any Borel subset. Then there

exists a Polish topology TY ⊇ T such that B(TY ) = B(T ) and Y is clopen in (X, TY ).

It follows that if (X,B) is a standard Borel space with Y ∈ B, then (T,B � Y ) is also a

standard Borel space. In fact, so much structual information is “forgotten” in passing from a

Polish space to its Borel structure that we obtain the following theorem of Kuratowski [18].

Theorem 1.1.2. There exists a unique uncountable standard Borel space up to isomorphism.
1
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A remarkably wide range of naturally occurring classes of mathematical objects may be

viewed as standard Borel spaces. In fact, experience has shown that practically anything one

is able to “write down” or describe explicitly in a way that does not make us of the Axiom of

Choice can be treated in the context of some suitably defined standard Borel space.

1.2. Borel Equivalence Relations. It turns out that many classification problems from

diverse areas of mathematics may be viewed as equivalence relations on suitably defined

standard Borel spaces. For example, consider the problem of classifying all countable graphs

up to graph isomorphism. Letting C be the set of graphs of the form Γ = 〈N, E〉 and identifying

each graph Γ ∈ C with its edge relation E ∈ 2N2
, one easily checks that C is a Borel subset of

2N2
, and hence is itself a standard Borel space. Moreover, the isomorphism relation on C is

simply the orbit equivalence relation arising from the natural action of Sym(N) on C. More

generally, if σ is a sentence of Lω1,ω, then

Mod(σ) = {M = 〈N, · · · 〉 | M |= σ}

is a standard Borel space, and the isomorphism relation on Mod(σ) is the orbit equivalence

relation generated by the Sym(N) action. However, while this orbit equivalence relation is

always analytic, it is not in general Borel; for instance, the graph isomorphism relation on C

is not Borel. On the other hand, the restriction of graph isomorphism to the standard Borel

space of countable locally finite graphs is Borel, and in general the isomorphism relation on

a standard Borel space of countable structures which are “finitely generated” in some broad

sense will be Borel. With these examples in mind we make the following definitions.

Definition 1.2.1. Let X be a standard Borel space. Then a Borel equivalence relation on X

is an equivalence relation E ⊆ X2 which is a Borel subset of X2.

Definition 1.2.2. Let G be a Polish group. Then a standard Borel G-space is a standard

Borel space X equipped with a Borel action (g, x) 7→ g · x. The corresponding G-orbit equiva-

lence relation is denoted by EX
G .

We observe that if G is a countable group and X is a standard Borel G-space, then EX
G

is a Borel equivalence relation. As further examples, we consider the standard Borel space

R(Qn) of torsion-free abelian groups of rank n and the Polish space G of finitely generated

groups.
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Letting Qn =
⊕

1≤i≤n

Q for each n ≥ 1, we define

R(Qn) = {A ≤ Qn | A contains a basis of Qn}.

Then for A,B ∈ R(Qn), we have that

A ∼= B iff there exists ϕ ∈ GLn(Q) such that ϕ(A) = B,

and hence the isomorphism relation on R(Qn) is the Borel equivalence relation arising from

the natural GLn(Qn) action on R(Qn).

For the Polish space G of finitely generated groups, we first define, for each m ∈ N, Gm

to be the compact space of normal subgroups of the free group Fm on the m generators

{x1, . . . , xm}. Since each m-generator group can be realized as a quotient Fm/N for some

N ∈ Gm, we can regard Gm as the space of m-generator groups. We then have natural

embeddings

G1 ↪→ G2 ↪→ · · · ↪→ Gm ↪→ · · ·

and can regard

G =
⋃

m≥1

Gm

as the space of finitely generated groups.

By a theorem of Tietze, if N,M ∈ Gm, then Fm/N ∼= Fm/M if and only if there exists

π ∈ Aut(F2m) such that π(N) = M . It follows that the isomorphism relation ∼= on the space

G of finitely generated groups is the orbit equivalence relation arising form the homeomorphic

action of the countable group Autf (F∞) of finitary automorphisms of the free group F∞ on

{x1, x2, · · · , xm, · · · }.

1.3. Borel Reducibility. Evidently various naturally occurring classification problems may

be viewed as Borel equivalence relations on standard Borel spaces. In particular, the com-

plexity of the problem of finding complete invariants for such classification problems can be

gauged to some extent by the “structural complexity” of the associated Borel equivalence

relations. Here the crucial notion of comparison is that of a Borel reduction.

Definition 1.3.1. If E and F are Borel equivalence relations on the standard Borel spaces X,

Y respectively, then we say that E is Borel reducible to F , and write E ≤B F , if there exists

a Borel map f : X → Y such that xEy ↔ f(x)Ff(y). Such a map is called a Borel reduction

from E to F . If f : X → Y satisfies the weaker condition that xEy → f(x)Ff(y), then f is
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called a Borel homomorphism from E to F . We say that E and F are Borel bireducible, and

write E ∼B F , if both E ≤B F and F ≤B E; and we write E <B F if E ≤B F but F 6≤B E.

If E and F are Borel equivalence relations, then we interpret E ≤B F to mean that the

classification problem associated with E is at most as complicated as that associated with

F , in the sense that an assignment of complete invariants for F would, via composition with

the Borel reduction from E to F , yield one for E as well. Additionally we observe that if

f : E ≤B F , then the induced map f̃ : X/E → Y/F is an embedding of quotient spaces, the

existence of which is sometimes interpreted as saying that X/E has “Borel cardinality” less

than or equal to that of Y/F .

This notion of Borel reducibility imposes a partial (pre)-order on the collection of Borel

equivalence relations, and much of the work currently taking place in the theory of Borel

equivalence relations concerns determining the structure of this partial ordering. For a long

time, many questions about this structure remained open, and it was notoriously difficult

to obtain non-reducibility results. More recently, however, some progress has been made in

establishing benchmarks within the ≤B-hierarchy. For instance, an important breakthrough

occurred in 2000 when Adams and Kechris [2] proved that the partial ordering of Borel sets

under inclusion embeds into the ≤B ordering on the subclass of countable Borel equivalence

relations, which we shall define shortly.

As a first step towards describing the ≤B-hierarchy, we introduce the so-called smooth and

hyperfinite Borel equivalence relations. Writing idR for the identity relation on R, we begin

with the following theorem of Silver [24]:

Theorem 1.3.2 (Silver). If E is a Borel equivalence relation with uncountably many classes,

then idR ≤B E.

Hence idR — and any Borel equivalence relation bireducible with it — is a ≤B-minimal

element in the partial ordering of Borel equivalence relations with uncountably many classes.

We call such relations smooth.

Definition 1.3.3. The Borel equivalence relation E is smooth iff E ≤B idX for some (equiv-

alently every) uncountable standard Borel space X.

As an example, the isomorphism problem on the space of countable divisible abelian groups

is smooth. Furthermore, if ≡ is the equivalence relation defined on the space G of finitely
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generated groups by G ≡ H iff Th G = Th H, then ≡ is smooth. For an example of a

non-smooth Borel equivalence relation, we turn to the following:

Definition 1.3.4. E0 is the Borel equivalence relation defined on 2N by xE0y iff x(n) = y(n)

for all but finitely many n.

To see that E0 is not smooth, suppose f : 2N → [0, 1] is a Borel reduction from E0 to

id[0,1], and let µ be the usual product probability measure on 2N. Then f−1([0, 1
2 ]) and

f−1([ 12 , 1]) are Borel tail events, so by Kolmogorov’s zero-one law, either µ(f−1([0, 1
2 ])) = 1

or µ(f−1([ 12 , 1])) = 1. Continuing to cut intervals in half in this manner, we obtain that f is

µ-a.e. constant, a contradiction.

1.4. Countable Borel Equivalence Relations. An important subclass of Borel equiva-

lence relations consists of those with countable sections.

Definition 1.4.1. A Borel equivalence relation on a standard Borel space is called countable

if each of its equivalence classes is countable.

The importance of this subclass stems in large part from the fact that each such equivalence

relation can be realized as the orbit equivalence relation of a Borel action of a countable group.

Of course, if G is a countable group and X a standard Borel G-space, then the corresponding

orbit equivalence relation EX
G is a countable Borel equivalence relation. But by a remarkable

result of Feldman and Moore [8], the converse is also true:

Theorem 1.4.2 (Feldman-Moore). If E is a countable Borel equivalence relation on the

standard Borel space X, then there exists a countable group G and a Borel action of G on X

such that E = EX
G .

Sketch of Proof. (See [26, 5.8.13]). Let E be a countable Borel equivalence relation on the

standard Borel space X. Since E ⊆ X2 has countable sections, the Lusin-Novikov Uni-

formization Theorem [17, 18.10] implies that we can write E as a countable union of graphs

of injective partial Borel functions, fn : dom fn → X. Each fn is easily modified into a Borel

bijection gn : X → X with the same “orbits.” But then E is simply the orbit equivalence

relation arising from the resulting Borel action of the group G = 〈gn | n ∈ N〉. �

Unfortunately, the countable group and its action given by the Feldman-Moore theorem

are by no means canonical. For example, let us define the Turing equivalence relation ≡T on
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P(N) by

A ≡T B iff A ≤T B ∧B ≤T A,

where ≤T denotes Turing reducibility. Then ≡T is clearly a countable Borel equivalence

relation, and hence by Feldman-Moore it must arise as the orbit equivalence relation induced

by a Borel action of some countable group G on P(N). However, the proof of the theorem

gives us no information about G or this action, and so it is reasonable to ask:

Vague Question 1.4.3. Can ≡T be realized as the orbit equivalence relation of a “nice”

Borel action of some countable group?

We have seen that there is a ≤B-minimal Borel equivalence relation on an uncountable

standard Borel space. While there is no maximal relation in the general setting, the subclass

of countable Borel equivalence relations does indeed admit a universal element, by a result of

Dougherty, Jackson, and Kechris [7].

Definition 1.4.4. A countable Borel equivalence relation E is universal iff F ≤B E for every

countable Borel equivalence relation F .

This universal countable Borel equivalence relation can be realized as follows. Let Fω be

the free group on infinitely many generators, and define a Borel action of Fω on

(2N)Fω = {p | p : Fω → 2N}

by setting

(g · p)(h) = p(g−1h), p ∈ (2N)Fω .

Let Eω be the resulting orbit equivalence relation.

Claim 1.4.5. Eω is a universal countable Borel equivalence relation.

Proof. Let X be a standard Borel space and let E be any countable Borel equivalence relation

on X. Since every countable group is a homomorphic image of Fω, by Feldman-Moore it

follows that E is the orbit equivalence relation of a Borel action of Fω. Let {Ui}i∈N be a

sequence of Borel subsets of X which separates points and define f : X → (2N)Fω by x 7→ fx,

where

fx(h)(i) = 1 iff x ∈ h(Ui).
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Then f is injective and

(g · fx)(h)(i) = 1 iff fx(g−1h)(i) = 1

iff x ∈ g−1h(Ui)

iff g · x ∈ h(Ui)

iff fg·x(h)(i) = 1

�

Another universal countable Borel equivalence relation is the orbit equivalence relation E∞

arising from the translation action of the free group F2 on its powerset. Of course, any two

universal countable Borel equivalence relations are Borel bireducible, so we often speak of

“the” (up to ∼B) universal countable Borel equivalence relation.

We have now seen that within the class of countable Borel equivalence relations, there exist

a ≤B-least and a ≤B-greatest element, up to ∼B , with realizations idR and E∞, respectively.

It turns out that the minimal idR has an immediate ≤B-successor [11]:

Theorem 1.4.6 (The Glimm-Effros Dichotomy). If E is nonsmooth Borel, then E0 ≤B E.

We call a Borel equivalence relation E hyperfinite if it can be written as the increasing union

E = ∪nFn of a sequence of Borel equivalence relations with finite classes. It is easily shown

that E0 is hyperfinite, and in fact it is the case that every nonsmooth hyperfinte countable

Borel equivalence relation is Borel bireducible with E0. Furthermore, by a result of Dougherty,

Jackson, and Kechris [7], if E is a countable Borel equivalence relation, then E can be realized

as the orbit equivalence relation of a Borel Z-action if and only if E ≤B E0. Finally, by the

Adams-Kechris [2] result mentioned above, we know that there exist 2ℵ0 distinct countable

Borel equivalence relations up to Borel bireducibility. Combining these basic facts gives the

following picture of the universe of countable Borel equivalence relations.
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x
xE0 = hyperfinite

id2N = smooth

E∞ = universalx

Uncountably
many

relations

Given this picture, one might ask where a particular countable Borel equivalence relation

lies relative to the known benchmarks. In the following section we shall consider this question

for the Turing equivalence relation, ≡T . Here Martin has conjectured that ≡T is not universal,

while Kechris has conjectured that it is. However, despite some progress, which we discuss

below, the problem remains open.

1.5. Turing Equivalence and The Martin Conjectures. We first define the set of Turing

degrees to be the collection

D = { a = [A]≡T
| A ∈ P(N)}

of ≡T -classes. A subset X ⊆ D is said to be Borel iff X∗ =
⋃
{a | a ∈ X} is a Borel subset of

P(N). It is well known that if E is a Borel equivalence relation on a standard Borel space X,

then the quotient space X/E is standard Borel if and only if E is smooth. Since ≡T is not

smooth, it follows that D is not a standard Borel space.

For a, b ∈ D, we define a ≤ b iff A ≤T B for each A ∈ a and B ∈ b; and for each a ∈ D, we

define the corresponding cone Ca = {b ∈ D | a ≤ b}. Of course, each Ca is a Borel subset of

D.

Theorem 1.5.1 (Martin). If X ⊆ D is Borel, then for some a ∈ D, either Ca ⊆ X or

Ca ⊆ D \X.
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Proof. Let X ⊆ D be Borel and consider the 2-player game G(X∗)

a = a(0)a(1)a(2) · · · where each a(n) ∈ 2

such that Player 1 wins iff a ∈ X∗. Then G(X∗) is Borel and hence is determined. Suppose

that ϕ : 2<N → 2 is a winning strategy for Player 1. We claim that Cϕ ⊆ X.

To see this, suppose that ϕ ≤T x and let Player 2 play x = a(1)a(3)a(5) · · · . Then

y = ϕ(x) ∈ X∗ and x ≡T y. It follows that x ∈ X∗. �

For later use, note that if X ⊆ D is Borel, then X contains a cone iff X is cofinal in D.

Similarly, we define a function f : D → D to be Borel iff there exists a Borel function

ϕ : P(N) → P(N) such that f([A]≡T
) = [ϕ(A)]≡T

. We are now ready to state the following

conjecture of Martin, which will implies that ≡T is not universal.

Conjecture 1.5.2 (Martin). If f : D → D is Borel, then either f is constant on a cone or

else f(a) ≥ a on a cone.

While this conjecture remains open, there do exist some partial results of Slaman and Steel

[25] that point in its direction:

Theorem 1.5.3 (Slaman-Steel). If f : D → D is Borel and f(a) < a on a cone, then f is

constant on a cone.

Theorem 1.5.4 (Slaman-Steel). If the Borel map f : D → D is uniformly invariant, then

either f is constant on a cone or else f(a) ≥ a on a cone.

The definition of a uniformly invariant map can be found in Slaman-Steel [25].

In order to see that the Martin conjecture implies that ≡T is not universal, note that if

≡T is universal then (≡T × ≡T ) ∼B≡T , whence there exist Borel complete sections Y ⊆

P(N)× P(N), Z ⊆ P(N) and a Borel isomorphism

f : 〈Y, (≡T × ≡T ) � Y 〉 → 〈Z,≡T � Z〉.

This isomorphism induces a Borel pairing function f : D×D → D. Now fix d0 6= d1 ∈ D and

define the Borel maps fi : D → D by fi(a) = f(di, a). By the Martin Conjecture, fi(a) ≥ a

on a cone and so ran fi are cofinal Borel subsets of D. Hence each ran fi contains a cone,

which is impossible since ran f0 ∩ ran f1 = ∅.
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Letting ≤A denote arithmetic reducibility, we define the arithmetic equivalence relation

≡A on P(N) by

B ≡A C iff B ≤A C ∧ C ≤A B.

It is a theorem of Slaman and Steel that ≡A is a universal countable Borel equivalence

relation. One might take this as evidence that ≡T is also universal. However, as Slaman has

pointed out, an important difference between the two cases is that the arithmetic degrees have

less closure with respect to arithmetic equivalences than the Turing degrees do for recursive

equivalences.

2. Second Session

2.1. The Fundamental Question in the Theory of Countable Borel Equivalence

Relations. We have already seen, by the remarkable result of Feldman and Moore, that every

countable Borel equivalence relation on a standard Borel space arises as the orbit equivalence

relation of some Borel action of a suitable countable group. We have also seen, however,

that this action is not canonically determined, and that it is sometimes difficult to express

a given countable Borel equivalence relation as the orbit equivalence relation arising from

a “natural” group action. Since many of the techniques currently available for analyzing

countable Borel equivalence relations deal with properties of the groups and actions from

which they arise, one of the fundamental questions in the theory concerns the extent to which

an orbit equivalence relation EX
G determines the group G and its action on X. Ideally one

would hope for the complexity of EX
G to reflect the complexity of G, so that relations EX

G and

EX
H can be distinguished (in the sense of ≤B) by distinguishing G from H.

Of course, strong hypotheses on a countable group G and its action on a standard Borel

space X must be made if there is to be any hope of recovering G and its action from EX
G ,

or, even worse, from the Borel complexity of EX
G alone. For example, let G be any countable

group and consider the Borel action of G on G × [0, 1] defined by g · (h, r) = (gh, r). Then

the Borel map (h, r) 7→ (1G, r) selects a point in each G-orbit, and so the corresponding orbit

equivalence relation is smooth. Notice, however, that this action does not admit an invariant

probability measure. In fact, we have the following important observation:

Proposition 2.1.1. If G acts freely on X and preserves a probability measure, then EX
G is

not smooth.
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It turns out that each of these properties is necessary if we are serious about recovering G

and its action from EX
G , as the following two theorems suggest.

Theorem 2.1.2 (Dougherty-Jackson-Kechris [7]). Let G be a countable group and let X be

a standard Borel G-space. If X does not admit a G-invariant probability measure, then for

every countable group H ⊃ G, there exists a Borel action of H on X such that EX
H = EX

G .

Theorem 2.1.3. If E is a countable Borel equivalence relation in which every E-class is

infinite, then E can be realized as the orbit equivalence relation of a faithful Borel action of

uncountably many distinct countable groups.

Definition 2.1.4. A countable Borel equivalence relation in which every E-class is infinite

is called aperiodic.

Hence we shall be especially concerned with free, measure-preserving Borel actions of count-

able groups on standard Borel probability spaces. A natural question, then, is whether we

can always hope for this setting:

Question 2.1.5. Let E be a nonsmooth countable Borel equivalence relation. Does there

necessarily exist a countable group G with a free measure-preserving Borel action on a standard

probability space (X,µ) such that E ∼B EX
G ?

We first observe that half of this question is easily answered: namely, if E is a countable

Borel equivalence relation on an uncountable standard Borel space Y , then there exists a

countable group G and a standard Borel G-space X such that G preserves a nonatomic

probability measure µ on X, and E ∼B EX
G . Before considering freeness, we shall need some

definitions.

Definition 2.1.6. A Borel action of a countable group G on the standard Borel space X is

free iff g · x 6= x for all 1 6= g ∈ G and x ∈ X. In this case we say that X is a free standard

Borel G-space.

Definition 2.1.7. The countable Borel equivalence relation E on X is free iff there exists a

countable group G with a free Borel action on X such that EX
G = E.

Definition 2.1.8. The countable Borel equivalence relation E is essentially free iff there

exists a free countable Borel equivalence relation F such that E ∼B F .
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The obvious question, then, is the following:

Question 2.1.9 (Jackson-Kechris-Louveau [15]). Is every countable Borel equivalence relation

essentially free?

2.2. Essentially Free Countable Borel Equivalence Relations. In order to answer

Question 2.1.9, it will first be helpful to list some closure properties of essential freeness.

Theorem 2.2.1 (Jackson-Kechris-Louveau [15]). Let E,F be countable Borel equivalence

relations on the standard Borel spaces X,Y respectively.

• If E ≤B F and F is essentially free, then so is E.

• If E ⊆ F and F is essentially free, then so is E.

It follows that every countable Borel equivalence relation is essentially free if and only if

E∞ is essentially free.

Theorem 2.2.2 (Thomas 2006, [27]). The class of essentially free countable Borel equivalence

relations does not admit a universal element. In particular, E∞ is not essentially free.

Thus, unfortunately, the answer to Question 2.1.5 is no. As a corollary to 2.2.2, we observe

that ≡T is not essentially free; for identifying the free group F2 with a suitably chosen group

of recursive permutations of N, we have that E∞ ⊆≡T .

This gives us the following map of the universe of nonsmooth countable Borel equivalence

relations. t

Essentially
Free

t E0

E∞

Turing
Equivalence
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2.3. Bernoulli Actions, Popa Superrigidity, and a Proof of Theorem 2.2.2. In this

section we present a proof of Theorem 2.2.2 from an easy consequence of Popa’s Superrigidity

Theorem. We begin by considering Bernoulli actions.

By a Bernoulli action we mean the shift action of a countably infinite discrete group G on

its powerset P(G) = 2G. (This is a special case of the notion as it appears in [23]). Under

this action the usual product probability measure µ on 2G is G-invariant and the free part

P∗(G) = (2)G = {x ∈ 2G | g · x 6= x for all 1 6= g ∈ G}

has µ-measure 1. We let EG denote the corresponding orbit equivalence relation on (2)G, and

make the following observation:

Proposition 2.3.1. If G ≤ H, then EG ≤B EH .

Proof. The inclusion map P∗(G) ↪→ P∗(H) is a Borel reduction from EG to EH . �

Now we just need a few more preliminary definitions before stating the consequence of

Popa’s theorem we need to prove 2.2.2.

Definition 2.3.2. Let E be a countable Borel equivalence relation on the standard Borel space

X with invariant probability measure µ, and let F be a countable Borel equivalence relation

on the standard Borel space Y . Then the Borel homomorphism f : X → Y from E to F is

said to be µ-trivial iff there exists a Borel subset Z ⊆ X with µ(Z) = 1 such that f maps Z

into a single F -class.

Definition 2.3.3. If G and H are countable groups, then the homomorphism π : G → H is

a virtual embedding iff |ker π| <∞.

Now we are finally ready to state the consequence of Popa’s Cocycle Superrigidity Theorem

[23] that we shall use to prove Theorem 2.2.2. We shall discuss Popa’s theorem and the proof

of this consequence from it at a later point in these notes.

Theorem 2.3.4. Let G = SL3(Z) × S, where S is any countable group. Let H be any

countable group, and let Y be a free standard Borel H-space. If there exists a µ-nontrivial

Borel homomorphism from EG to EY
H , then there exists a virtual embedding π : G→ H.

We observe that in particular this conclusion holds if there exists a Borel subset Z ⊆ (2)G

with µ(Z) = 1 such that EG � Z ≤B EY
H . Theorem 2.2.2 is then an immediate corollary of

the following:
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Theorem 2.3.5. If E is an essentially free countable Borel equivalence relation, then there

exists a countable group G such that EG 6≤B E.

Proof. We can suppose that E = EX
H is realized by a free Borel action on X of the countable

group H. Let L be a finitely generated group which does not embed into H. Let S = L ∗ Z

and let G = SL3(Z)× S. Then G has no finite normal subgroups and so there does not exist

a virtual embedding π : G→ H. It follows that EG 6≤B EX
H . �

2.4. Free and Non-Essentially Free Countable Borel Equivalence Relations. We

now use 2.3.4 to show that there are continuum many free countable Borel equivalence rela-

tions. For each prime p ∈ P, let Ap =
⊕∞

i=0 Cp, and for each subset C ⊆ P, let

GC = SL3(Z)×
⊕
p∈C

Ap.

The desired result is then an immediate consequence of the following:

Theorem 2.4.1. If C,D ⊆ P, then EGC
≤B EGD

iff C ⊆ D.

Proof. If C ⊆ D, then GC ≤ GD, and hence EGC
≤B EGD

. Conversely, applying 2.3.4, if

EGC
≤B EGD

, then there exists a virtual embedding π : GC → GD. Since SL3(Z) contains

a torsion-free subgroup of finite index, it follows that for each p ∈ C, the cyclic group Cp

embeds into
⊕

q∈D Aq. This implies that p ∈ D. �

We now show that there also exist continuum many non-essentially free countable Borel

equivalence relations. We begin by introducing the notion of ergodicity.

Definition 2.4.2. Let G be a countable group and let X be a standard Borel G-space with

invariant probability measure µ. Then the action of G on (X,µ) is said to be ergodic iff

µ(A) = 0 or µ(A) = 1 for every G-invariant Borel subset A ⊆ X.

For example, every countable group G acts ergodically on ((2)G, µ). The following charac-

terization of ergodicity is well known.

Theorem 2.4.3. If µ is a G-invariant probability measure on the standard Borel G-space X,

then the following statements are equivalent.

• The action of G on (X,µ) is ergodic.

• If Y is a standard Borel space and f : X → Y is a G-invariant Borel function, then

there exists a G-invariant Borel subset M ⊆ X with µ(M) = 1 such that f � M is a

constant function.
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Next we need another definition.

Definition 2.4.4. The countable groups G,H are called virtually isomorphic iff there exist

finite normal subgroups N �G, M �H such that G/N ∼= H/M .

The groups defined in the following lemma will be used to construct below the desired

examples of non-essentially free countable Borel equivalence relations.

Lemma 2.4.5. There exists a Borel family {Sx | x ∈ 2N} of finitely generated groups such

that if Gx = SL3(Z)× Sx, then the following conditions hold:

• If x 6= y, then Gx and Gy are not virtually isomorphic.

• If x 6= y, then Gx does not virtually embed in Gy.

Now, for each Borel subset A ⊆ 2N, let EA =
⊔

x∈AEGx .

Lemma 2.4.6. If the Borel subset A ⊆ 2N is uncountable, then EA is not essentially free.

Proof. Suppose that EA ≤B EY
H , where H is a countable group and Y is a free standard

Borel H-space. Then for each x ∈ A, we have that EGx ≤B EY
H and so there exists a virtual

embedding πx : Gx → H. Since A is uncountable and each Gx is finitely generated, there

exist x 6= y ∈ A such that πx[Gx] = πy[Gy]. But then Gx, Gy are virtually isomorphic, which

is a contradiction. �

Lemma 2.4.7. EA ≤B EB iff A ⊆ B.

Proof. Suppose that EA ≤B EB . Suppose also that A 6⊆ B and that x ∈ A \ B. Then there

exists a Borel reduction

f : (2)Gx →
⊔

y∈B

(2)Gy

from EGx
to EB . By ergodicity, there exists a µx-measure 1 subset of (2)Gx which maps to

a fixed (2)Gy . This yields a µx-nontrivial Borel homomorphism from EGx
to EGy

and so Gx

virtually embeds into Gy, which is a contradiction. �

The existence of uncountably many non-essentially free countably Borel equivalence rela-

tions is an immediate consequence of Lemmas 2.4.6 and 2.4.7.
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3. Third Session

3.1. Ergodicity, Strong Mixing, and Borel Cocycles. In this section, we introduce

some of the background theory necessary to understand the statement of Popa’s Cocycle

Superrigidity Theorem and the proof of Theorem 2.3.4. As usual, if a countable group G

acts on a standard probability space (X,µ), then we assume the action to be both free and

measure-preserving so that we may stand some chance of recovering the group G and its

action on X from the orbit equivalence relation EX
G .

Recall now that the measure-preserving action of a countable group G on a standard Borel

probability G-space (X,µ) is ergodic iff every G-invariant subset of X is null or conull. Recall

also that if µ is a G-invariant probability measure on the standard Borel G-space X, then the

action of G on (X,µ) is ergodic if and only if every G-invariant Borel function f : X → Y

into a standard Borel space Y is constant on an invariant Borel set M ⊆ X with µ(M) = 1.

Thus ergodicity is a natural obstruction to smoothness: if (X,µ) is a standard Borel G-space

where G acts ergodically and preserves the nonatomic probability measure µ, then EX
G is not

smooth.

Definition 3.1.1. The action of G on the standard probability space (X,µ) is strongly mixing

iff for any Borel subsets A,B ⊆ X, we have that

µ(g(A) ∩B) → µ(A) · µ(B) as g →∞.

In other words, if 〈gn | n ∈ N〉 is any sequence of distinct elements of G, then

lim
n→∞

µ(gn(A) ∩B) = µ(A) · µ(B).

Mixing may be viewed as a strong form of ergodicity. Indeed, suppose that the action of

G on (X,µ) is strongly mixing, and let A ⊆ X be a G-invariant Borel subset. Then

µ(A)2 = lim
g→∞

µ(g(A) ∩A) = lim
g→∞

µ(A) = µ(A),

which implies that µ(A) = 0 or 1. Hence strongly mixing actions are ergodic. Unlike ergod-

icity, however, strong mixing is a property that passes to infinite subgroups.

Observation 3.1.2. If the action of G on (X,µ) is strongly mixing and H ≤ G is an infinite

subgroup of G, then the action of H on (X,µ) is also strongly mixing.

That the above observations actually apply to our setting is given by the following:
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Theorem 3.1.3. The action of G on ((2)G, µ) is strongly mixing.

Proof. Consider the case when there exist finite subsets S, T ⊆ G and subsets F ⊆ 2S , G ⊆ 2T

such that A = {f ∈ (2)G | f � S ∈ F} and B = {f ∈ (2)G | f � T ∈ G}. If 〈gn | n ∈ N〉 is

a sequence of distinct elements of G, then gn(S) ∩ T = ∅ for all but finitely many n. This

means that gn(A) and B are independent events, and so, as desired,

µ(gn(A) ∩B) = µ(gn(A)) · µ(B) = µ(A) · µ(B).

�

The last remaining important concept which we must introduce before stating Popa’s

Theorem is that of a Borel cocycle. Let G and H be countable discrete groups, X a standard

Borel G-space with invariant Borel probability measure µ. A Borel map α : G×X → H is a

cocycle iff α satisfies the cocycle identity

∀g, h ∈ G α(hg, x) = α(h, gx)α(g, x) µ-a.e.(x).

If β : G × X → H is another cocyle into H, then we say that α and β are equivalent, and

write α ∼ β, iff there is a Borel map b : X → H such that

∀g ∈ G β(g, x) = b(gx)α(g, x) b(x)−1 µ-a.e.(x).

It is clear that ∼ is an equivalence relation on cocycles G×X → H.

For our purposes cocycles α : G ×X → H shall always arise from Borel homomorphisms

into free standard BorelH-spaces in the following way: suppose that Y is a free standard Borel

H-space and that f is a Borel homomorphism from EX
G to EY

H . Then the map α : G×X → H

defined by

α(g, x) f(x) = f(gx)

is a cocycle. Moreoever, if α is the cocycle corresponding in this manner to the Borel homo-

morphism f : X → Y , and if b : X → H is any Borel function, then the map f ′ : X → Y

defined by f ′(x) = b(x)f(x) is also a Borel homomorphism, and the corresponding cocycle β

is equivalent to α via the the equation

β(g, x) = b(gx)α(g, x) b(x)−1.

Equivalence of cocycles can be easily visualized with the aid of the following diagram:



18 SCOTT SCHNEIDER AND SIMON THOMAS

G

x

g

y
g · x

(X,µ)

f−−−−→

H

f(x)
b(x)−−−−→ f ′(x)

α(g,x)

y yβ(g,x)

f(g · x) b(g·x)−−−−→ f ′(g · x)

Y

Notice that if a cocycle α : G×X → H can be written as a function of only one variable,

in the form α(g, x) = α(g), then α is in fact a group homomorphism from G to H; and the

corresponding Borel homomorphism f : X → Y is, together with α, a permutation group

homomorphism (G,X) → (H,Y ).

3.2. Popa’s Cocycle Superrigidity Theorem and the Proof of Theorem 2.3.4. We

are now ready to state (a special case of) Popa’s Cocycle Superrigidity Theorem [23].

Theorem 3.2.1 (Popa). Let Γ be a countably infinite Kazhdan group and let G be a countable

group such that Γ �G. If H is any countable group, then every Borel cocycle

α : G× (2)G → H

is equivalent to a group homomorphism of G into H.

For example, we may let Γ = SLn(Z) for any n ≥ 3, and G = Γ×S, where S is any count-

able group. We are now ready to prove Theorem 2.3.4, which we restate now for convenience.

Recall that EG denotes the orbit equivalence relation of the Bernoulli action of the countable

group G on ((2)G, µ). Suppose G = SL3(Z)×S and that Y is a free standard Borel H-space,

where S and H are any countable groups. Then Theorem 2.3.4 states that if there exists

a µ-nontrivial Borel homomorphism from EG to EY
H , then there exists a virtual embedding

π : G→ H.

Proof of Theorem 2.3.4. Suppose the f : (2)G → Y is a µ-nontrivial Borel homomorphism

from EG to EY
H . Then we can define a Borel cocycle α : G× (2)G → H by

α(g, x) = the unique h ∈ H such that h · f(x) = f(g · x).

By 3.2.1, after deleting a null set and adjusting f if necessary, we can suppose that α : G→ H

is a group homomorphism.
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Now, suppose thatK = ker α is infinite. Note that if k ∈ K, then f(k·x) = α(k)·x = f(x),

and so f : (2)G → X is K-invariant. Also since the action of G is strongly mixing, it follows

that K acts ergodically on ((2)G, µ). But then the K-invariant function f : (2)G → X is

µ-a.e. constant, which is a contradiction. �

3.3. Torsion-free Abelian Groups of Finite Rank. Recall that an additive subgroup

G ≤ Qn has rank n iff G contains n linearly independent elements, and that we previously

defined the standard Borel space R(Qn) of torsion-free abelian groups of rank n to be

R(Qn) = {A ≤ Qn | A contains a basis of Qn}.

Recall also that for A,B ∈ R(Qn), we have

A ∼= B iff there exists g ∈ GLn(Q) such that g(A) = B.

Thus the isomorphism relation ∼=n on R(Qn) is the orbit equivalence relation arising from the

action of GLn(Q) on R(Qn).

In 1937, Baer [4] gave a satisfactory classification of the rank 1 groups, which showed that

∼=1 is hyperfinite. In 1938, Kurosh [19] and Malcev [20] independently gave unsatisfactory

classifications of the higher rank groups. In light of this failure to classify even the rank 2

groups in a satisfactory way, Hjorth and Kechris conjectured in 1996 [13] that the isomorphism

relation for the torsion-free abelian groups of rank 2 is countable universal. As an initial step

towards establishing this result, Hjorth then proved in 1998 [12] that the classification problem

for the rank 2 groups is strictly harder than that for the rank 1 groups; that is, Hjorth proved

that ∼=1<B
∼=2. Soon afterwards, making essential use of the techniques of Hjorth [12] and

Adams-Kechris [2], Thomas obtained the following [28]:

Theorem 3.3.1 (Thomas 2000). The complexity of the classification problems for the torsion-

free abelian groups of rank n increases strictly with the rank n.

Of course, this implies that none of the relations ∼=n is countable universal. It remained

open, however, whether the isomorphism relation on the space of torsion-free abelian groups

of finite rank was countable universal. In 2006 [27], Thomas was able to show that it is not.

Theorem 3.3.2 (Thomas 2006). The isomorphism relation on the space of torsion-free

abelian groups of finite rank is not countable universal.
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In the next couple of sections, we shall present an outline of the proof of 3.3.2. We begin

with the notion of E0-ergodicity, which shall play an important role at the end of the proof.

3.4. E0-ergodicity. The following is a useful generalization of ergodicity.

Definition 3.4.1. Let E,F be countable Borel equivalence relations on X,Y and let µ be

an E-invariant probability measure on X. Then we say that E is F -ergodic iff every Borel

homomorphism f : X → Y from E to F is µ-trivial.

Thus idR-ergodicity coincides with the usual ergodicity. Furthermore, observe that if E is

F -ergodic and F ′ ≤B F , then E is also F ′-ergodic. We now introduce a characterization of

E0-ergodicity due to Jones and Schmidt [16].

Definition 3.4.2. Let E = EX
G be a countable Borel equivalence relation and let µ be an

E-invariant probability measure on X. Then E has nontrivial almost invariant subsets iff

there exists a sequence of Borel subsets 〈An ⊆ X | n ∈ N〉 satisfying the following conditions:

• µ(g ·An 4An) → 0 for all g ∈ G.

• There exists δ > 0 such that δ < µ(An) < 1− δ for all n ∈ N.

Theorem 3.4.3 (Jones-Schmidt). E is E0-ergodic iff E has no nontrivial almost invariant

subsets.

This can in turn be used to prove the following:

Theorem 3.4.4 (Jones-Schmidt). Let G be a countable group and let H ≤ G be a nona-

menable subgroup. then the shift action of H on ((2)G, µ) is E0-ergodic.

Finally, we remark for later use that if E is E0-ergodic and F is hyperfinite, then E is

F -ergodic. We are now ready to commence with a sketch of the proof of the non-universality

of the isomorphism relation on the space of torsion-free abelian groups of finite rank.

3.5. The Non-universality of the Isomorphism Relation on Torsion-free Abelian

Groups of Finite Rank. Roughly speaking, our strategy of proof will be as follows. We

know that a smooth disjoint union of countably many essentially free countable Borel equiva-

lence relations is itself essentially free, and we know that the class of essentially free countable

Borel equivalence relations does not admit a universal element. Since the isomorphism relation

on the space of torsion-free abelian groups of finite rank is the smooth disjoint union of the
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∼=n relations, n ≥ 1, it would suffice to show that each ∼=n is essentially free. Unfortunately,

it appears to be difficult to determine whether this is even true for n ≥ 2. However, we shall

see that coarsening each ∼=n by the hyperfinite relation of quasi-equality yields a relation that

is essentially free. In this way each ∼=n is seen to be “(hyperfinite)-by-(essentially free),” and

this will suffice to prove the non-universality of the isomorphism relation. We now proceed

with the details.

Let G = SL3(Z)× S, where S is a suitably chosen countable group that we shall describe

at a later stage in the proof. Let E = EG be the orbit equivalence relation arising from the

action of G on ((2)G, µ).

Suppose that

f : (2)G →
⊔
n≥1

R(Qn)

is a Borel reduction from E to the isomorphism relation. After deleting a null set of (2)G if

necessary, we may assume that f takes values in R(Qn) for some fixed n ≥ 1.

At this point we would like to define a Borel cocycle corresponding to f , but unfortunately

GLn(Q) does not act freely on R(Qn). In fact, the stabilizer of each B ∈ R(Qn) under

the action of GLn(Q) is precisely its automorphism group Aut(B). We shall overcome this

difficulty by shifting our focus from the isomorphism relation on R(Qn) to the coarser quasi-

isomorphism relation.

Definition 3.5.1. If A,B ∈ R(Qn), then A and B are said to be quasi-equal, written A ≈n B,

iff A ∩B has finite index in both A and B.

Theorem 3.5.2 (Thomas [28]). The quasi-equality relation ≈n is hyperfinite.

For each A ∈ R(Qn), let [A] be the ≈n-class containing A. We shall consider the induced

action of GLn(Q) on the set X = {[A] | A ∈ R(Qn)} of ≈n-classes. Of course, since ≈n is

not smooth, X is not a standard Borel space; but fortunately this will not pose a problem in

what follows. In order to describe the setwise stabilizer in GLn(Q) of each ≈n-class [A], we

now make some new definitions.

Definition 3.5.3. For each A ∈ R(Qn), the ring of quasi-endomorphisms is

QE(A) = {ϕ ∈ Matn(Q) | (∃m ≥ 1)mϕ ∈ End(A)}.

Clearly QE(A) is a Q-subalgebra of Matn(Q), and so there are only countably many pos-

sibilities for QE(A), a fact which will be of crucial importance below.
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Definition 3.5.4. QAut(A) is the group of units of the Q-algebra QE(A).

Lemma 3.5.5. If A ∈ R(Qn), then QAut(A) is the setwise stabilizer of [A] in GLn(Q).

For each x ∈ (2)G, let Ax = f(x) ∈ R(Qn). Since there are only countably many possibili-

ties for the group QAut(Ax), there exists a fixed subgroup L ≤ GLn(Q) and a Borel subset

X ⊆ (2)G with µ(X) > 0 such that QAut(Ax) = L for all x ∈ X. Since G acts ergodically

on ((2)G, µ), it follows that µ(G ·X) = 1. In order to simplify notation, we shall assume that

G ·X = (2)G. After slightly adjusting f if necessary, we can suppose that QAut(Ax) = L for

all x ∈ (2)G.

Note that the quotient group H = NGLn(Q)(L)/L acts freely on the corresponding set

Y = { [A] | QAut(A) = L} of ≈n-classes. Hence we can define a corresponding cocycle

α : G× (2)G → H

by setting

α(g, x) = the unique h ∈ H such that h · [Ax] = [Ag·x].

Now let S be a countable simple nonamenable group which does not embed into any of

the countably many possibilities for H. Applying Theorem 3.2.1, after deleting a null set and

slightly adjusting f if necessary, we can suppose that

α : G = SL3(Z)× S → H

is a group homomorphism. Since S ≤ ker α, it follows that f : (2)G → R(Qn) is a Borel

homomorphism from the S-action on (2)G to the hyperfinite quasi-equality ≈n-relation. Since

S is nonamenable, the S-action on (2)G is E0-ergodic and hence µ-almost all x ∈ (2)G

are mapped to a single ≈n-class, which is a contradiction. This completes the proof of

Theorem 3.3.2.

4. Fourth Session

4.1. Containment vs. Borel Reducibility. Our next goal will be to present some appli-

cations of Ioana’s Cocycle Superrigidity Theorem. We shall focus on a problem that was

initially raised in the context of Kechris’ Conjecture that ≡T is universal. Recall that ≡T

denotes the Turing equivalence relation on P(N), so that A ≡T B iff A and B are Turing

reducible to each other. Recall also that the translation action of the free group F2 on its

power set gives rise to a universal countable Borel equivalence relation, denoted by E∞. Now,
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if we identify F2 with a suitably chosen group of recursive permutations of N, we see that E∞

may be realized as a subset of ≡T . Thus the following conjecture of Hjorth [3] would imply

that ≡T is universal.

Conjecture 4.1.1 (Hjorth). If F is a universal countable Borel equivalence relation on the

standard Borel space X and E is a countable Borel equivalence relation such that F ⊆ E,

then E is also universal.

In [28], Thomas pointed out that it was not even known whether there existed a pair

F ⊆ E of countable Borel equivalence relations for which F 6≤B E. Soon afterwards, Adams

[1] constructed a pair of countable Borel equivalence relations F ⊆ E which were incomparable

with respect to Borel reducibility. In the remainder of this session, as an application of Ioana

Superrigidity, we shall sketch a proof of the following:

Theorem 4.1.2 (Thomas 2002). There exists a pair of countable Borel equivalence relations

F ⊆ E on a standard Borel space X such that E <B F .

Here E and F will arise from the actions of SLn(Z) and a suitable congruence subgroup

on SLn(Zp). We shall first need to recall some basic facts about Zp.

4.2. The Ring Zp of p-adic Integers.

Definition 4.2.1. The ring Zp of p-adic integers is the inverse limit of the system

· · · ϕn+1−−−→ Z/pn+1Z ϕn−−→ Z/pnZ ϕn−1−−−→ · · · ϕ1−→ Z/pZ.

It is useful to think of p-adic integers as formal sums

z = a0 + a1p+ a2p
2 + · · ·+ anp

n + · · ·

where each 0 ≤ an < p. We define the p-adic norm | |p by

|z|p = p−ordp(z), ordp(z) = min{n | an 6= 0},

and the p-adic metric by

dp(x, y) = |x− y|p.

With this metric, Zp is a compact Polish space having the integers as a dense subring. It

follows that SLn(Zp) is a compact Polish group with dense subgroup SLn(Z) ≤ SLn(Zp).

Note that SLn(Zp) is the inverse limit of the system

· · · θn+1−−−→ SLn(Z/pn+1Z) θn−→ SLn(Z/pnZ)
θn−1−−−→ · · · θ1−→ SLn(Z/pZ).
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Since SLn(Zp) is compact, there exists a unique Haar probability measure on SLn(Zp) (ie,

a unique a probability measure µp which is invariant under the left translation action). In

fact, µp is simply the inverse limit of the counting measures on

· · · θn+1−−−→ SLn(Z/pn+1Z) θn−→ SLn(Z/pnZ)
θn−1−−−→ · · · θ1−→ SLn(Z/pZ).

Observe that if H ≤ SLn(Zp) is an open subgroup, then H has finite index in SLn(Zp) and

µp(H) =
1

[SLn(Zp) : H]
.

We claim further that there are no other SLn(Z)-invariant probability measures on SLn(Zp).

Theorem 4.2.2. µp is the unique SLn(Z)-invariant probability measure on SLn(Zp).

Proof. First note that SLn(Z) acts continuously on the space M of probability measures on

SLn(Zp). Hence if ν is any probability measure on SLn(Zp), then

Sν = {g ∈ SLn(Zp) | ν is g-invariant}

is a closed subgroup of SLn(Zp). Thus, by density, any SLn(Z)-invariant probability measure

is actually SLn(Zp)-invariant, and so must be µp. �

4.3. Unique Ergodicity and Ergodic Components. We define an action of a group G

on a standard Borel G-space X to be uniquely ergodic iff there exists a unique G-invaraint

probability measure µ on X. In this case, it is well known that µ must be ergodic. For if

there were a G-invariant Borel set A ⊆ X with 0 < µ(A) < 1, then we could define distinct

G-invariant probability measures by

ν1(Z) = µ(Z ∩A)/µ(A)

ν2(Z) = µ(Z \A)/µ(X \A).

Note that 4.2.2 above simply states that the action of SLn(Z) on SLn(Zp) is uniquely ergodic.

Next, suppose that Γ is a countable group with finite-index subgroup Λ ≤ Γ, and that X

is a standard Borel Γ-space with an invariant ergodic probability measure µ. Then we call

a positive measure, Λ-invariant Borel set Z ⊆ X an ergodic component for the action of Λ

on X iff Λ acts ergodically on (Z, µZ), where µZ is the normalized probability measure on Z

defined by µZ(A) = µ(A)/µ(Z). It is easily checked that there exists a partition Z1 t · · · tZd

of X into finitely many ergodic components and that the collection of ergodic components

is uniquely determined up to µ-null sets. Furthermore, if the action of Γ on X is uniquely

ergodic, then the action of Λ on each ergodic component is also uniquely ergodic.
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Now fix a prime p and for n ≥ 3, let SLn(Z) act by translations as a subgroup on SLn(Zp).

Notice that this action is ergodic but not strongly mixing. Let Λ = ker ϕ and H = ker ψ be

the kernels of the homomorphisms

ϕ : SLn(Z) → SLn(Z/pZ)

and

ψ : SLn(Zp) → SLn(Zp/pZp) ∼= SLn(Z/pZ).

Then H is the closure of Λ in SLn(Zp), and the ergodic decomposition of the Λ-action is

given by

SLn(Zp) = Hg1 t · · · tHgd, d = |SLn(Z/pZ)|.

We are now ready to state Thomas’ result.

Theorem 4.3.1. Let n ≥ 3 and let F ⊆ E be the orbit equivalence relations of the actions of

Λ and SLn(Z) on SLn(Zp). Then E <B F .

We shall devote the next section to a proof of this result.

4.4. Proof of Theorem 4.3.1. First consider the ergodic decomposition of the Λ-action,

SLn(Zp) = Hg1 t · · · tHgd, d = |SLn(Z/pZ)|.

From this we see that

F = E1 ⊕ · · · ⊕ Ed, where Ei = F � Hgi.

We claim that E ∼B Ei for each i.

To see that Ei ≤B E, we check that the inclusion mapHgi → SLn(Zp) is a Borel reduction.

Given x, y ∈ Hgi, xEiy clearly implies xEy, since F ⊆ E; and conversely, if xEy, then there

exists γ ∈ SLn(Z) such that γx = y, whence ∅ 6= γHgi ∩Hgi = Hγgi ∩Hgi, and therefore

γ ∈ SLn(Z) ∩H = Λ.

To show that E ≤B Ei, we choose coset representatives gk so that each gk ∈ SLn(Z). Then

for each 1 ≤ k ≤ d, define hk : Hgk → Hgi by hk(x) = gig
−1
k x. We claim that h = h1∪· · ·∪hd

is a Borel reduction from E to Ei. For if x, y ∈ SLn(Zp), then

xEy iff h(x)Eh(y)

iff h(x)Eih(y),
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where this last equivalence follows because h(x), h(y) ∈ Hgi. This shows that E ∼B Ei for

each i, and hence we have shown that

F ∼B E ⊕ · · · ⊕ E︸ ︷︷ ︸
d times

.

It will therefore be enough to prove the following:

Theorem 4.4.1 (Thomas 2002). If n ≥ 3, then

E <B E ⊕ E <B · · · <B E ⊕ · · · ⊕ E︸ ︷︷ ︸
d times

<B · · ·

Proof of Theorem 4.4.1. Let us first introduce some notation. We let Γ = SLn(Z) and write

(K,µ) for (SLn(Zp), µp), so that E is the orbit equivalence relation arising from the Γ-action

on K. It clearly suffices to show that if f : K → K is a Borel reduction from E to E, then

µ(Γ · f(K)) = 1.

Thus suppose f : K → K is a Borel reduction from E to E. Since Γ acts freely on K, we

can define a Borel cocycle α : Γ×K → Γ by

α(g, x) = the unique h ∈ H such that h · f(x) = f(g · x).

By Ioana Superrigidity [14], there exists a subgroup ∆ ≤ Γ of finite index and an ergodic

component X ⊆ K for the ∆-action such that α � (∆ × X) is equivalent to a group homo-

morphism

ψ : ∆ → SLn(Z).

After slightly adjusting f if necessary, we can suppose that α � (∆×X) = ψ, and hence that

ψ(g) · f(x) = f(g · x) for all g ∈ ∆ and x ∈ X.

Furthermore, by Margulis Superrigidity [21], if ∆ ≤ SLn(Z) is a subgroup of finite index

and ψ : ∆ → SLn(Z) is a group homomorphism, then either ψ(∆) is finite, or ψ is an

embedding and ψ(∆) is a subgroup of finite index in SLn(Z). We shall now handle each of

these cases in turn.

If ψ(∆) is finite, then we can define a ∆-invariant map φ : X → [K]<ω by

φ(x) = {f(g · x) | g ∈ ∆}.

Since ∆ acts ergodically on X, it follows that φ is constant on a µ-conull subset of X, which

is a contradiction.
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Supposing instead that ψ is an embedding and that ψ(∆) is a subgroup of finite index in

SLn(Z), let Y1, . . . , Yd be the ergodic components for the action of ψ(∆) on K. Since ∆ acts

ergodically on X, we can suppose that there exists Y = Yi such that f : X → Y . Recalling

that ψ(g) · f(x) = f(g · x), we can then define a ψ(∆)-invariant probability measure ν on Y

by

ν(Z) = µ(f−1(Z))/µ(X).

As the action of ψ(∆) on Y is uniquely ergodic, ν(Z) = µ(Z)/µ(Y ). Hence µ(f(X)) =

µ(Y ) > 0, and so µ(Γ · f(K)) = 1, as desired. This completes the proof of 4.4.1, and hence

also that of 4.3.1. �

4.5. Profinite Actions and Ioana Superrigidity.

Definition 4.5.1. Let Γ be a countable group. For each n ∈ N, let (Xn, µn) be a finite

Γ-space, where for Y ⊆ Xn, µn(Y ) = |Y |/|Xn|. Suppose that each (Xn, µn) is a quotient of

(Xn+1, µn+1). Then the canonical action of Γ on

(X,µ) = lim
←

(Xn, µn)

is said to be a profinite action.

For example, if K is a profinite group and Γ, L ≤ K are subgroups such that Γ is countable

dense and L is closed, then the action of Γ on K/L is profinite. In particular, if Γ is a

residually finite group with decreasing sequence of finite index normal subgroups

Γ = Γ0 > Γ1 > · · · > Γn > · · ·

such that
⋂

Γn = 1, then Γ is a dense subgoup of the profinite group lim
←

Γ/Γn, and its action

as a subgroup will be profinite. Of course, this example covers the situation discussed above,

ie, the action of SLn(Z) on SLn(Zp). As one further example, we remark that the action of

SLn(Z) on the projective space PG(n− 1,Qp) is profinite.

We may now finally state Ioana’s Cocycle Superrigidity Theorem [14], which was used

above in our proof of 4.3.1.

Theorem 4.5.2 (Ioana). Let Γ be a countably infinite Kazhdan group and let (X,µ) be a free

ergodic profinite Γ-space. Suppose that H is any countable group and that α : Γ×X → H is

a Borel cocycle. Then there exists a subgroup ∆ ≤ Γ of finite index and an ergodic component

Y ⊆ X for the ∆-action such that α � (∆× Y ) is equivalent to a homomorphism ψ : ∆ → H.
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To conclude this section, we shall present a final application of Ioana’s theorem.

Theorem 4.5.3 (Thomas 2002). Fix n ≥ 3. Let S be a nonempty set of primes and regard

SLn(Z) as a subgroup of

G(S) =
∏
p∈S

SLn(Zp)

via the diagonal embedding. Let ES be the corresponding orbit equivalence relation. If S 6= T ,

then ES and ET are incomparable with respect to Borel reducibility.

Sketch of Proof. For simplicity, suppose that S = {p} and T = {q}, where p 6= q are distinct

primes. Suppose that f : SLn(Zp) → SLn(Zq) is a Borel reduction from E{p} to E{q}. Then

applying Ioana Superrigidity and arguing as in the proof of Theorem 4.4.1 above, we see that

after passing to subgroups of finite index and ergodic components if necessary,

(SLn(Z), SLn(Zp), µp) ∼= (SLn(Z), SLn(Zq), µq)

as measure-preserving permutation groups. Hence it only remains to detect the prime in

(SLn(Z), SLn(Zp), µp).

Towards this end, recall that Aut(SLn(Z), SLn(Zp)µp) consists of the measure-preserving

bijections ϕ : SLn(Zp) → SLn(Zp) such that for all γ ∈ SLn(Z),

ϕ(γ · x) = γ · ϕ(x) for µp-a.e. x,

where as usual we identify two such maps if they agree µp-a.e. Also notice that for each

g ∈ SLn(Zp), we can define a corresponding automorphism ϕ ∈ Aut(SLn(Z), SLn(Zp)µp) by

ϕ(x) = xg. The following proposition shows that there are no others.

Proposition 4.5.4 (Gefter-Golodets 1988 [10]). Aut(SLn(Z), SLn(Zp), µp) = SLn(Zp).

Proof of 4.5.4. Suppose that ϕ ∈ Aut(SLn(Z), SLn(Zp), µp). For each x ∈ SLn(Zp), let

h(x) ∈ SLn(Zp) be such that ϕ(x) = xh(x). If γ ∈ SLn(Z), then

ϕ(γ · x) = γ · ϕ(x) = γ · xh(x),

and so h(γ · x) = h(x). Since SLn(Z) acts ergodically on (SLn(Zp), µp), there exists g ∈

SLn(Zp) such that h(x) = g for µp-a.e. x. �
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Thus we have reduced our problem to that of detecting the prime p in the topological group

SLn(Zp). But this is easy, since SLn(Zp) is virtually a pro-p group. More precisely, if H is

any open subgroup of SLn(Zp), then

[SLn(Zp) : H] = bpl

for some l ≥ 0 and some divisor b of |SLn(Z/pZ)|. This completes our sketch of a proof of

Theorem 4.5.3. �

4.6. Open Problems. In this closing section, we shall point out a number of open problems

in the area of countable Borel equivalence relations, some of them being quite basic. Indeed,

the field remains in a pre-classical stage of development, and many of the natural question

one might ask are still completely open. We shall organize our survey by considering ques-

tions from the theories of the hyperfinite, treeable, and universal countable Borel equivalence

relations, respectively.

4.6.1. Hyperfinite Relations. Recall that a countable Borel equivalence relation E on a stan-

dard Borel space X is said to be hyperfinite iff E can be written as the union of a countable

increasing sequence of finite Borel equivalence relations on X, where an equivalence relation is

finite if each of its classes is finite. A theorem of Dougherty, Jackson, and Kechris [7] provides

two additional characterizations:

Theorem 4.6.1 (Dougherty-Jackson-Kechris). If E is a countable Borel equivalence relation

on a standard Borel space X, then the following are equivalent:

• E is hyperfinite.

• E ≤B E0.

• There exists a Borel action of Z on X such that E = EX
Z .

In fact, every Z-action on a standard Borel Z-space X yields a hyperfinite orbit equivalence

relation. By a theorem of Gao and Jackson [9], even more is true.

Theorem 4.6.2 (Gao-Jackson). If G is a countable abelian group and X is a standard Borel

G-space, then EX
G is hyperfinite.

An important question is how much further this result can be extended. By a theorem

of Jackson, Kechris, and Louveau [15], if G is a countable, nonamenable group, then the

orbit equivalence relation EG arising from the free action of G on ((2)G, µ) is not hyperfinite.

However, the following remains open:
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Question 4.6.3 (Weiss [29]). Suppose that G is a countable amenable group and that X is a

standard Borel G-space. Does it follow that EX
G is hyperfinite?

As a partial answer we have the following theorem of Connes, Feldman, and Weiss [5].

Theorem 4.6.4 (Connes-Feldman-Weiss). Suppose that G is a countable amenable group

and that X is a standard Borel G-space. If µ is any Borel probability measure on X, then

there exists a Borel subset Y ⊆ X with µ(Y ) = 1 such that E � Y is hyperfinite.

Finally, recall that von Neumann proved that no amenable group contains a free nonabelian

subgroup, and went on to conjecture that this property characterizes amenability. (While

the conjecture probably goes back to von Neumann, and bears his name, its first official

appearance was in Day [6]). Then in 1980 Ol’shanskii refuted the conjecture, exhibiting a

periodic nonamenable group with no free nonabelian subgroup [22]. As a sort of analogue of

the von Neumann Conjecture, we have the following:

Conjecture 4.6.5 (Kechris). If E is a non-hyperfinite countable Borel equivalence relation,

then there exists a non-hyperfinite treeable relation F such that F ≤B E.

4.6.2. Treeable Relations.

Definition 4.6.6. The countable Borel equivalence relation E on X is said to be treeble iff

there is a Borel acyclic graph (X,R) whose connected components are the E-classes.

For example, if the countable free group F acts freely on a standard Borel F-space X,

then the corresponding orbit equivalence relation EX
F is treeable. Conversely, by a theorem

of Jackson, Kechris, and Louveau [15], if E is treeable then there exists a free Borel action of

a countable free group F on a standard Borel space Y such that E ∼B EY
F .

Every hyperfinite countable Borel equivalence relation is treeable; however, the universal

countable Borel equivalence relation E∞ is not treeable, and there exist countable Borel

equivalence relations that are treeable but not hyperfinte. Moreover, the class of treeable

countable Borel equivalence relations admits a universal element.

Theorem 4.6.7 (Jackson-Kechris-Louveau [15]). Let E∞T be the orbit equivalence relation

arising from the free action of F2 on (2)F2 . Then E∞T is universal for treeable countable

Borel equivalence relations.
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Unfortunately, only three nonsmooth treeable countable Borel equivalence relations are

currently known up to Borel bireducibility; namely: E0, E∞T , and an intermediate one con-

structed by Hjorth. This leads to the following basic open question:

Question 4.6.8 (Jackson-Kechris-Louveau). Do there exist infinitely many nonsmooth tree-

able countable Borel equivalence relations up to Borel bireducibility?

Hjorth has shown that if E is a profinite treeable relation, then E <B E∞T . Consider,

then, the following examples. Let S be a nonempty set of primes and regard SL2(Z) as a

subgroup of

G(S) =
∏
p∈S

SL2(Zp)

via the diagonal embedding. Letting SL2(Z) act by translation on G(S), the corresponding

orbit equivalence relation ES is a non-hyperfinite profinite treeable relation.

Conjecture 4.6.9 (Thomas). If S 6= T , then ES and ET are incomparable with respect to

Borel reducibility.

Conjecture 4.6.10 (Thomas). If S is any nonempty set of primes, then

ES <B ES ⊕ ES <B · · · <B ES ⊕ · · · ⊕ ES︸ ︷︷ ︸
n times

<B · · ·

4.6.3. Universal Relations. We conclude with some basic open questions concerning univer-

sal countable Borel equivalence relations. Already mentioned above was the following basic

question of Hjorth [3]:

Conjecture 4.6.11 (Hjorth). If E is a universal countable Borel equivalence relation on the

standard Borel space X and F is a countable Borel equivalence relation such that E ⊆ F ,

then F is also universal.

Of course, if true, this would imply that ≡T is universal.

Question 4.6.12 (Jackson-Kechris-Louveau [15]). Suppose that E is a universal countable

Borel equivalence relation on the standard Borel space X and that Y ⊆ X is an E-invariant

Borel subset. Does it follow that either E � Y or E � (X \ Y ) is universal?

Finally we consider some questions concerning the notion of a minimal cover of an equiv-

alence relation.
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Definition 4.6.13. If E, E′ are countable Borel, then E′ is a minimal cover of E iff:

• E <B E′; and

• if the countable Borel F satisfies E ≤B F ≤B E′, then either E ∼B F or F ∼B E′.

Open Problem 4.6.14. Find an example of a nonsmooth countable Borel equivalence rela-

tion which has a minimal cover.

Open Problem 4.6.15. Find an example of a nonuniversal countable Borel equivalence

relation which does not have a minimal cover.
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