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Abstract

Using newspaper job ad text from 1960 to 2000, we measure job tasks and the

adoption of individual information and communication technologies (ICTs). Most new

technologies are associated with an increase in nonroutine analytic tasks, and a decrease

in nonroutine interactive, routine cognitive, and routine manual tasks. We embed these

interactions in a quantitative model of worker sorting across occupations and technology

adoption. Through the lens of the model, the arrival of ICTs broadly shifts workers

away from routine tasks, which increases the college premium. A notable exception is

the Microsoft Office suite, which has the opposite set of effects. JEL Codes: E24,

J20, O33
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1 Introduction

Enabled by increasingly powerful computers and the proliferation of new, ever more capable

software, the fraction of workers’ time spent using information and communication technolo-

gies (ICTs) has increased considerably over the last half century.1 In this project, we quantify

the impact of 48 distinct and widely-adopted ICTs on the aggregate demand for routine and

nonroutine tasks, on the allocation of workers across occupations, and on earnings inequality.

We start by constructing a data set tracking the adoption rates of 48 ICTs across occu-

pations and over time. We assemble this data set through a text analysis of 4.2 million

job vacancy ads appearing between 1960 and 2000 in the Boston Globe, New York Times,

and Wall Street Journal.2 We extract information about jobs’ ICT use and task content, as

measured by their appearance in the text of job postings.3

We study a wide set of technologies, ranging from office software (including Lotus 123,

Word Perfect, Microsoft Word, Excel, and PowerPoint), enterprise programming languages

(Electronic Data Processing and Sybase), general-purpose programming languages (COBOL,

FORTRAN, and Java), to hardware (UNIVAC, IBM 360, and IBM 370), among others. With

this data set, we document rich interactions between individual ICTs and the task content

of individual occupations. One of the strengths of the data is that we observe ICT adoption

separately by technology type, and indeed we find substantial heterogeneity in the impact of

individual ICTs. We show that, for the most part, job ads that mention a new technology

tend to also mention nonroutine analytic tasks more frequently, while mentioning other

tasks less frequently. An important exception is office software, which, compared to other

technologies, is relatively less likely to appear alongside words associated with nonroutine

analytic tasks.

Since our data set includes a wide range of occupations and technologies, we can speak

directly to the macroeconomic implications of changes in the availability of ICTs while main-

taining a detailed analysis of individual occupations. Informed by our micro estimates on

the relationship between the tasks that workers perform and the technologies they use on

1Nordhaus (2007) estimates that, between 1960 and 1999, the total cost of a standardized set of compu-
tations fell by between 30 and 75 percent annually, a rapid rate of change that far outpaced earlier periods.

2We introduce part of this data set in an earlier paper; in particular, the measurement of job tasks and
the mapping between job titles and SOCs (Atalay, Phongthiengtham, Sotelo, and Tannenbaum, 2017). In
it, we use the text of job vacancy ads to explore trends in the task content of occupations over the second
half of the 20th century, showing that within-occupation changes in the tasks workers perform are at least
as large as the changes that happen between occupations. In the current paper, we build on this earlier data
set to include information about job-specific technology adoption.

3Building on a mapping between survey question titles and task categories introduced by Spitz-Oener
(2006), we have identified words that represent nonroutine (analytic, interactive, and manual) and routine
(cognitive and manual) tasks.
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the job, we build a quantitative model of occupational sorting and technology adoption. In

the model, workers sort into occupations based on their comparative advantage. They also

choose which ICT to adopt, if any, based on the price of each piece of technology and the

technology’s complementarity with the tasks involved in their occupation. Within the model,

the availability of a new technology — which we model as a decline in the technology’s price

— alters the types of tasks workers perform in their occupation.

To explore the implications of new technologies on the labor market, we consider three

sets of counterfactual exercises. These exercises investigate the effects of three groups of

technologies: (i) Unix, (ii) the Microsoft Office suite (Microsoft Excel, Microsoft Power-

Point, and Microsoft Word), and (iii) all 48 of the technologies in our sample. In each of

the counterfactual exercises, we quantify the impact of the new technologies on occupati-

ons’ overall task content, workers’ sorting across occupations, and economy-wide income

inequality.

One of our main findings is that new technologies result in an increase in occupations’

nonroutine analytic task content, relative to other tasks. As we have documented elsewhere

(Atalay, Phongthiengtham, Sotelo, and Tannenbaum, 2017) and confirm again here, highly

educated workers have a comparative advantage in producing nonroutine analytic tasks. Be-

cause new technologies increase the demand for nonroutine analytic tasks, the introduction

of ICTs has (for the most part) led to an increase in income inequality. Overall, in a counter-

factual economy in which our ICT technologies were never introduced, earnings would have

been 15 log points lower for the average worker, and the college-high school skill premium

would have been 4.0 log points lower.4 Unlike most other technologies in our data, Micro-

soft Office technologies are only weakly correlated with nonroutine analytic tasks, and are

positively correlated with nonroutine interactive tasks. As a result, we find that the intro-

duction of Microsoft Office software has decreased the skill premium, the gender gap, and

income inequality, although the magnitude of these effects is small. Individual technologies

whose use is concentrated in a few high earning occupations, such as Unix, tend to modestly

increase inequality.

This paper relates to a rich literature exploring the implications of technological change

for skill prices and the wage distribution (Katz and Murphy, 1992; Juhn, Murphy, and Pierce,

1993; Berman, Bound, and Machin, 1998; Krusell, Ohanian, Rios-Rull, and Violante, 2000).

More recent work has argued that information technology complements high skilled workers

performing abstract tasks and substitutes for middle skilled workers performing routine tasks

(Autor, Levy, and Murnane, 2003; Goos and Manning, 2007; Autor, Katz, and Kearney,

2005; Acemoglu and Autor, 2011). Researchers have also studied the implications of changes

4Between 1960 and 2000, the college-high school skill premium increased by 23 log points.
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in the demand for tasks on the male-female wage gap and the female share of employment

in high-wage occupations (Black and Spitz-Oener, 2010; Cortes, Jaimovich, and Siu, 2018).

Our paper contributes to this literature by studying how new technologies complement (or

substitute for) the types of tasks that workers of different skill groups perform. We find

that ICTs tend to substitute for routine tasks (especially routine manual tasks) which are

disproportionately performed by low skill workers. ICTs also allow high skill workers to focus

on the activities in which they are most productive, which in our model is the essence of the

complementarity between tasks and technologies. A key contribution of this paper is that

we measure both technological adoption and the task content of occupations directly, over a

period of immense technological change.

Our paper relates to a second literature that directly measures the adoption of specific

technologies and its effect on wages and the demand for skills. These include studies of the

effect of computer adoption (Krueger, 1993; Entorf and Kramarz, 1998; Autor, Katz, and

Krueger, 1998; Haisken-DeNew and Schmidt, 1999) or the introduction of broadband internet

(Brynjolfsson and Hitt, 2003; Akerman, Gaarder, and Mogstad, 2015) on worker productivity

and wages.5 Also exploiting text descriptions of occupations, Michaels, Rauch, and Redding

(2016) provide evidence that, since 1880, new technologies that enhance human interaction

have reshaped the spatial distribution of economic activity. Focusing on a more recent

technological revolution, Burstein, Morales, and Vogel (2015) document how the diffusion of

computing technologies has contributed to the rise of inequality in the U.S. Our paper builds

on this literature by introducing a rich data set measuring the adoption of ICTs at the job

level.

The rest of the paper is organized as follows. Section 2 of the paper introduces our

new data set. Section 3 provides direct evidence on the interaction between individual ICT

adoption and task content. Section 4 takes our micro estimates and uses a quantitative

model to study the aggregate impact of ICTs, while Section 5 assesses three extensions of

the model. Section 6 concludes.

2 A New Data Set Measuring ICT Adoption

The construction of this new data set builds on our previous work with newspaper help

wanted ads (Atalay, Phongthiengtham, Sotelo, and Tannenbaum, 2017). In that paper,

we show how to transform the text of help wanted ads into time-varying measures of the

5Additional investigations of technology-driven reorganizations within specific firms or industries include
Levy and Murnane (1996)’s study of a U.S. bank and Bartel, Ichniowski, and Shaw (2007)’s study of the
steel valve industry.
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task content of occupations. In this paper, we turn to previously unexamined ad content:

mentions of ICTs.

Our main data set is built from the universe of job vacancies published in three major

metropolitan newspapers — the Boston Globe, New York Times, and Wall Street Journal

— which we purchased from ProQuest. We use the text contained in each vacancy to

measure the tasks that will be performed on the job, as well as to examine the computer

and information technologies that will be used on the job. Our sample period spans 1960 to

2000.

The original newspapers were digitized by ProQuest using an Optical Character Recog-

nition (OCR) technology. We briefly describe the steps we take to transform this digitized

text into a structured database. To begin, the raw text does not distinguish between job

ads and other types of advertisements. Hence, in a first step, we apply a machine learning

algorithm to determine which pages of advertisements are job ads. The top panel of Figure 1

presents a portion of a page that, according to our algorithm, contains job ads. This snippet

of text refers to three job ads: first for a Software Engineer position, then a Senior Systems

Engineer position, and finally for a second Software Engineer position. Within this page of

ads, we then determine the boundaries of each individual advertisement (for instance, where

the first Software Engineer ad ends and the Senior Systems Engineer ad begins) and the job

title. In the second step we extract, from each advertisement, words that refer to tasks the

new hire is expected to perform and technologies that will be used on the job. So that we

may link our text-based data to occupation-level variables in the decennial census, including

wages, education, and demographic variables, our procedure also finds the Standard Occu-

pation Classification (SOC) code corresponding to each job title (for example, 151132 for

the “Software Engineers” job title).6

We extract job tasks from the text using a mapping between words and task categories

based on Spitz-Oener (2006). The five tasks are nonroutine analytic, nonroutine interactive,

nonroutine manual, routine cognitive, and routine analytic.7 To retrieve a more complete

6For additional details on the steps mentioned here, see Atalay, Phongthiengtham, Sotelo, and Tannen-
baum (2017). In that paper we also address issues regarding the representativeness of newspaper ads, and
the validity of task measures extracted from the text. Our data set, including information on occupations’
task and technology mentions is available at http://ssc.wisc.edu/˜eatalay/occupation data . There, we also
provide the full list of words and phrases we associate with each task and technology.

7We use the mapping of words to tasks as described in Atalay, Phongthiengtham, Sotelo, and Tannen-
baum (2017). For convenience, we list the taxonomy again here: 1) nonroutine analytic: analyze, analyzing,
design, designing, devising rule, evaluate, evaluating, interpreting rule, plan, planning, research, researching,
sketch, sketching; 2) nonroutine interactive: advertise, advertising, advise, advising, buying, coordinate,
coordinating, entertain, entertaining, lobby, lobbying, managing, negotiate, negotiating, organize, organi-
zing, presentation, presentations, presenting, purchase, sell, selling, teaching; 3) nonroutine manual: accom-
modate, accommodating, accommodation, renovate, renovating, repair, repairing, restore, restoring, serving;
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Figure 1: Text from the New York Times, January 12, 1997, Display Ad #87

SOFiWARE ENGINEERS - Modal Software Develop air-to-surface modal software, including 

design, code, unit test, integration and test, and documentation. Requires 5+ years software 

engineering experience with a BSEE/CS or Computer Engineering. Software development for 

real-time, multi-tasking/multi-processor, embedded systems experience a must. 3+ years C 

programming experience in a Unix environment and familiarity with modern software design 

methodologies essential. Knowledge of radar design principles a plus. Joint STARS The 

premiere ground surveillance system far the U.S. and allied forces. The DoD has authorized the 

full production of Joint STARS. In addition, significant activity on Joint STARS upgrades is 

underway. SENIOR SYSTEMS ENGINEERS Design and develop advanced, high-resolution 

radar imaging systems, including ultra-high resolution SAR and Moving Target Imaging 

Systems in real-time or near real-time environments. Represent the engineering organization ta 

senior technical management, potential partners and customers in industry and government; 

plan/coordinate R&amp;amp;amp;D program activities; lead a team of hardware/soare/systems 

engineers; develop and test complex signal processing modes and algorithms in a workstation 

environment; support development with analyses, reports, documentation and technical 

guidance. Requires an MS or PhD in Engineering, Physics or Mathematics with experience in 

specification, Imaging anss and testing of Advanced Coherent Radar High-Resolution Must have 

strong math, physics and signal processing skills, C/C++ and ,AN programming expertise, plus 

familiarity with workstations and analytical tools such as The following require knowledge oF 

emulators, debuggers, and logic ana/. Knowledge of Ada, Unix, VxWorks, DigitalAlpha 

Processor and assembly language desirable. Radar systems experience plus. SOFTWARE 

ENGINEERS Define requirements and develop software far RCU or Intel microprocessor-based 

RSEs. Help define software requirements far LRU ECPs and the Contractor Logistics software 

program, including design, code, integration and test, and documentation. BSCS/EE preferred 

with 3-5 years real-time software development experience using Ada and/or FORTRAN 

programming languages. U IS- * SOFiWARE 

engineers|- modal software develop air-to-surface modal software , including design , code , unit 

test , integration and test , and documentation . requires 5+ years software engineering 

experience with a b see cs or computer engineering . software development for real-time , 

multitasking multiprocessor , embedded systems experience a must . 3+ years c programming 

experience in a UNIX environment and familiarity with modern software design methodologies 

essential . knowledge of radar design principles a plus . joint stars the premiere ground 

surveillance system far the u . s . and allied forces . the DOD has authorized the full production 

of joint stars . in addition , significant activity on joint stars upgrades is underway .

senior systems engineer| design and develop advanced , high-resolution radar imaging systems , 

including ultra-high resolution sear and moving target imaging systems in real-time or near real-

time environments . represent the engineering organization ta senior technical management , 

potential partners and customers in industry and government ; plan coordinate r ; d program 

activities ; lead a team of hardware soared systems engineers ; develop and test complex signal 

processing modes and algorithms in a workstation environment ; support development with 

analysis , reports , documentation and technical guidance . requires an ms or PhD in engineering 

, physics or mathematics with experience in specification , imaging ans and testing of advanced 

coherent radar high-resolution must have strong math , physics and signal processing skills , c c 

and , an programming expertise , plus familiarity with workstations and analytical tools such as 

the following require knowledge of emulators , debuggers , and logic Ana . knowledge of Ada , 

UNIX , vxworks , digital alpha processor and assembly language desirable . radar systems 

experience plus.

software engineers|define requirements and develop software far r cu or Intel microprocessor-

based rs es . help define software requirements far lr u e cps and the contractor logistics software 

program , including design , code , integration and test , and documentation . bscs ee preferred 

with 3-5 years real-time software development experience using Ada and or FORTRAN

programming languages . u is- software

  Notes: The top panel presents text from three vacancy postings in a page of display ads in the New
York Times. The bottom panel presents the results from our text processing algorithm. Highlighted
text, within a rectangle, represents a mention of a nonroutine analytic task. Highlighted text, within
an oval, represents a mention of a nonroutine interactive task. Text within an open rectangle
represents a technology mention. Within these three ads, there are zero mentions of nonroutine
manual, routine cognitive, or routine manual tasks.
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measure of these task groups, and because we do not want our analysis to be sensitive to

trends in word usage or meaning, we adopt a machine-learning algorithm called the conti-

nuous bag of words to define a set of synonyms for each of our task-related words. The idea

of the algorithm is that two words that share surrounding words in the text are likely to

be synonyms. For example, one of the words corresponding to the nonroutine analytic task

is researching. The continuous bag of words method uses our corpus of job ad text to find

synonyms of researching ; these synonyms include interpreting, investigating, reviewing, etc.

In our analysis, we take the the union of our original task-related words (from footnote 7)

with the synonyms identified from our continuous bag of words (CBOW) model. In addi-

tion to the five task measures, we extract 48 different pieces of technology based on word

appearances in the text.

The bottom panel of Figure 1 presents the output of our text processing algorithm.

This algorithm has been able to correctly identify the boundaries between the three job

ads, as well as the positions of each of the three job titles. However, since the initial text

contained “Sofiware,” a misspelled version of “Software,” we have incorrectly identified the

first job ad as referring to an engineering position. Our algorithm identifies ten mentions of

nonroutine analytic tasks: “Design”and“plan”were words in Spitz-Oener (2006)’s definitions

of nonroutine task related words. In addition, our continuous bag of words model identifies

“develop,” “define,” and “engineering” as referring to nonroutine analytic tasks. We also

identify one mention of a nonroutine interactive task — based on the word “coordinate” —

and three mentions of software: two mentions of Unix and one of FORTRAN. Overall, while

our data set contains some measurement error in identifying each job ad’s title and task and

technology content, there is still considerable information in the text.

Table 1 lists the technologies in our sample together with information on their timing of

introduction and adoption, and on their overall usage.8 The columns titled “First Year” and

“Last Year” list the first and last years within the 1960 to 2000 period in which the frequency

of technology mentions is at least one-third of the mentions in the year when the technology

is mentioned most frequently. Using this one-third cutoff, the lag between technology in-

troduction and technology adoption (i.e. the difference between the “Introduction” and the

“First Year” column) is 8 years on average. The next column lists the overall frequency of

mentions of each piece of technology, across the 4.2 million job ads in our data set.

4) routine cognitive: bookkeeping, calculate, calculating, correcting, corrections, measurement, measuring;
5) routine manual: control, controlling, equip, equipment, equipping, operate, operating.

8Some of the introduction dates are ambiguous. We assign the introduction date for CAD to 1968, the
date at which UNISURF (one of the original CAD/CAM systems) was introduced. Regarding point of sales
technologies, Charles Kettering invented the electric motor cash register in 1906. Computerized point of
sales systems were introduced in the early 1970s.
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The top left panel of Figure 2 plots the trends in technology mentions in our data set.

Over the sample period, there is a broad increase in the frequency with which employers

mention technologies, from 0.01 mentions per ad in the beginning of the sample to 0.19

mentions by 2000. While there is a broad increase in technology adoption rates throughout

the sample, certain technologies have faded from use over time. The top right panel of

Figure 2 documents adoption rates for each of the 48 technologies in our sample, with eight

of these highlighted. Certain technologies which were prevalent in the 1960s and 1970s —

including Electronic Data Processing (EDP) and COBOL — have declined in usage. Other

technologies — Word Perfect and Lotus 123 — quickly increased and then decreased in

newspaper mentions.

In the next four panels of Figure 2, we examine the heterogeneity across occupations in

their adoption rates. Here, we plot the frequency of job ads which mention each technology,

across 4-digit SOC groups, of four different technologies: FORTRAN, Unix, Word Perfect,

and Microsoft Word.9 In each plot, a vertical line indicates the year of release of the techno-

logy to the public. These plots suggest several new facts. First, technological adoption is

uneven across occupations, occurring at different times and to different degrees. For instance

FORTRAN is quickly adopted by Computer Programmers, while the adoption by Engineers

lags behind and is more limited. Second, for technologies that perform the same function,

such as Word Perfect and Microsoft Word, the figures suggest dramatic substitution between

technologies. Third, we see that office software is adopted widely across diverse occupations,

whereas other types of software, such as FORTRAN and Unix, are adopted more narrowly.

Finally, between the time of release to the public and the peak of adoption, adoption rates in-

crease first quickly and then slowly. This pattern is consistent with the S-shape documented

in the diffusion of many technologies (Griliches, 1957; Gort and Klepper, 1982). Here, we do

not offer a theory of the pattern of adoption of new technologies for each occupation, but we

do exploit the time variation in adoption rates to gauge their impact on the macroeconomy.

While our data set is new in its measurement of the adoption of a large number ICTs

9A foundational assumption in our work is that the words within job titles in the body of each job ad have
fixed semantic meaning. Individual words (including the words within job titles) may change their semantic
meaning. For instance, in 1900, the word “wanting” usually represented “lacking” or “insufficient.” In 1990,
the primary meaning of “wanting” was closer to that of “wishing;” see Table 5 of Hamilton, Leskovec, and
Jurafsky (2016). Another example, one which requires careful attention: In the beginning of the sample,
“server”almost always represented someone in a food service occupation. Near the end of the sample, “server”
appeared in job titles both for food service occupations and for computer / systems engineering occupations.
For the most part, though, modifiers within job titles help distinguish between the two cases: “server - diner”
and “sql server” exemplify job titles within the two occupations.

Throughout the paper, we assume that occupation titles describe bundles of tasks that are stable enough
to warrant a comparison over time — e.g., it is valid to compare computer programmers in 1980 to computer
programmers in 2000. Without a stable relation between job titles and occupations, there is no hope of
studying trends in employment, task intensities, and ICT use across occupations.
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Figure 2: Mentions of Technologies
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Notes: These plots give the smoothed frequency with which job ads mention our set of technologies.
The top left panel depicts the sum frequency — the number of technology mentions per job ad —
of all 48 technologies. The top right panel depicts the frequencies of each of the 48 technologies
separately, eight of which are highlighted in thick, dark lines and 40 of which are depicted by thin,
light gray lines. Each of the bottom four panels depicts the frequencies of technology mentions for
five of the top (those with the most mentions) Standard Occupation Classification (SOC) occupa-
tions, along with the economy-wide average frequency of technology mentions. The vertical lines
depict the date the technology was introduced. FORTRAN was introduced in 1957, shortly before
the beginning of our sample.
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across time and occupations, there are existing data sets — O*NET and the October CPS

— that measure ICT usage across occupations. O*NET contains information on multiple

ICTs over a relatively short horizon, while the October CPS tracks computer usage rates

across a number of years. In Appendix A, we document that our technology measures align

with those in these two existing data sets.

3 Task and Technology Complementarity

This section documents how new technologies interact with occupational task content. We

investigate the relationship between mentions of the technologies that employees use on the

job and the tasks that these employees are expected to perform. This estimated relationship

is a critical input into the equilibrium model in the following section.

As new technologies are introduced and developed, the implicit price of technology adop-

tion falls. As the price falls, in certain jobs employers will find it profitable to have their

employees adopt the new technology. Based on the applicability of the new technology, jobs

will differ in the extent to which adoption occurs, even if the price of adopting the technology

is the same across occupations. Exploiting this temporal and occupational variation in the

extent to which workers adopt technologies, we estimate the following equation:

taskhajt = βhk · techajkt + fh (wordsajt) + ιjh + ιth + εahjkt (1)

In Equation 1, h refers to one of five potential task categories; techajkt gives the number of

mentions of a particular technology k in individual job ad a, published in year t for an occu-

pation j; ιjh and ιth refer to occupation and year fixed effects, respectively; and fh (wordsajt)

is a quartic polynomial controlling for the number of words in the ad, since the word count

varies across ads. We run the regressions characterized by Equation 1 separately for each

technology k and task h. The occupation fixed effects and year fixed effects respectively con-

trol for occupation-specific differences in the frequency of task mentions and economy-wide

trends in the tasks that workers perform unrelated to technology adoption.10

10Since our job vacancy data originate from two metropolitan areas — New York and Boston — there is
a potential external validity concern that the consequences of ICT adoption for occupational change may
not generalize beyond these regions. We explore the extent to which the task content of occupations in
Boston and New York differs substantially from the rest of the U.S. over a more recent period (2012-2017)
in Appendix D.3 of Atalay, Phongthiengtham, Sotelo, and Tannenbaum (2017) and find relatively minor
differences. With the same data, we perform a similar exercise in Appendix B of this paper, comparing the
task-technology relationships in Boston and New York to those in the country more generally. We find that
the relationship between technologies and routine manual tasks is stronger in the New York and Boston
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Figure 3 presents the estimates of βhk for each task-technology pair. Within each panel,

technologies are grouped according to their type, with database management systems first,

followed by office software, networking software and hardware, other hardware, and general

purpose software. According to the left panel, the relationship between nonroutine analytic

task mentions and technology mentions is increasing for database management systems, net-

working software and hardware, and general purpose software. Among the 48 technologies

in our sample, the median effect of an additional technology-related mention is an additional

0.061 nonroutine analytic task mentions per job ad. On the other hand, technology mentions

and task mentions are broadly inversely related for three of the other task categories: An

additional mention of a technology is associated (again, according to the median of the 48

coefficient estimates) with 0.125 fewer mentions of nonroutine interactive tasks, 0.017 fewer

mentions of routine cognitive tasks, and 0.011 fewer mentions of routine manual tasks.11 But

there are important exceptions to these interactions: Quark XPress, Point of Sale systems,

Microsoft Excel, and PowerPoint are the four technologies associated with an increasing fre-

quency of nonroutine interactive task-related words. For most office technologies, nonroutine

analytic task mentions are negatively related to technology mentions. Finally, for the fifth

task category — nonroutine manual tasks — the task-technology relationships are increasing

for all four of the networking technologies (LAN, Novell NetWare, TCP, and TSO) and all

six of the hardware technologies (BAL, IBM 360, IBM 370, IBM RPG, JCL, and UNIVAC),

with no clear relationship for the other technologies.12

In interpreting the regression coefficient βhk, a key challenge is that technology adop-

tion may be correlated with unobserved attributes of the job (Athey and Stern, 1998). For

instance, within a particular 4-digit SOC (e.g., SOC 1721: Engineers) certain jobs (e.g.,

Mechanical Engineers relative to Industrial Engineers) potentially could be both more likely

metro areas than in the rest of the U.S., while the relationship between technologies and the other four task
measures is broadly similar.

11The frequencies with which employers mention tasks — and with which our text-processing algorithm
detects task-related words — differ across the five task categories. Stating our coefficients in a comparable
scale, the median effect of an individual technology mention is associated with a 0.09 standard deviation
increase in nonroutine analytic task mentions, a 0.02 standard deviation increase in nonroutine manual tasks,
and a decline in nonroutine interactive, routine cognitive, and routine manual task mentions of 0.18, 0.07,
and 0.07 standard deviations.

12The relationships that we estimate between point of sale technologies and nonroutine interactive tasks
and between computer numerical control production technologies and routine manual tasks are exceptionally
strong. These estimated relationships represent, in part, an unfortunate consequence of the way in which our
text processing algorithm identifies tasks and technologies. For these two technologies, the words that refer to
tasks are to some extent the same words that refer to technologies: “sale” is one word that refers to nonroutine
interactive tasks; “machining” is a word that both refers to routine manual tasks and also regularly appears
next to CNC in our job ad text. However, since these two technologies represent such a small share of overall
technology mentions in our newspaper text, these two spuriously estimated task-technology relationships
will not alter the aggregate impact of ICTs that we discuss in the following section.
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to adopt a new technology and more intensive in nonroutine analytic tasks. In other words,

instead of concluding that ICT adoption and nonroutine analytic tasks are complements,

one may conclude that jobs that are high in nonroutine analytic tasks tend to adopt the

technology. This distinction is important for the interpretation of the empirical results, and

we explore it in Appendix C. There, we re-estimate the regressions specified by Equation 1

with increasingly detailed job-level fixed effects, showing that the relationship between ICT

adoption and task content does not change with these more detailed controls.13 Within this

appendix, we also estimate Equation 1 using occupation-year fixed effects. This specifica-

tion identifies βhk from comparisons of adopting jobs to non-adopting jobs within the same

occupation-year cell. Here, too, the estimates of βhk are close to those presented in Figure

3.14 Finally, in Appendix C, we also demonstrate that the task-technology relationships that

we document within this section are, for the most part, highly correlated across ICT-task

pairs over time.

In sum, our job ads data set allows us to investigate the degree of complementarity be-

tween tasks and technologies for the adopting occupations. In our data, new technologies

tend to be mentioned jointly with analytic tasks, not with nonroutine interactive, nonrou-

tine manual, routine cognitive, or routine manual tasks. There are important exceptions,

however, such as the complementarity between the widely adopted Microsoft Office suite and

interactive tasks.

4 The Macroeconomic Implications of ICTs

In this section, we develop a general equilibrium model, based on the model of Autor, Levy,

and Murnane (2003), Michaels, Rauch, and Redding (2016), Burstein, Morales, and Vogel

(2015), and most directly Atalay, Phongthiengtham, Sotelo, and Tannenbaum (2017). In

our framework, new technologies directly alter the task content of occupations and, through

changes in the value of occupations’ output, indirectly reduce the demand for workers who

were originally producing tasks now substituted by the new technologies. We use our model

to study how new technologies alter the tasks that workers perform, and as a result, reshape

their occupational choices and the wages they earn. We first describe the model (Section

13If job titles with the highest nonroutine analytic task content were more likely to adopt ICTs, controlling
for job title fixed effects would diminish our main estimates, as they would be partially driven by the
composition of job titles across occupations. As Appendix C shows, this does not appear to happen.

14The specification with occupation-year fixed effects lessens the danger of spuriously attributing the
impact of new technologies on occupations’ task content to unobserved variables with coincident timing with
these new technologies. Nevertheless, we prefer the specification with occupation fixed effects and year fixed
effects separately. The occupation-year fixed effects remove variation which we believe to be the primary
channel through which occupational change is occurring: the declining price of technologies over time.
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4.1), explain how we estimate workers’ skills in producing tasks (Section 4.2), delineate

our procedure for computing counterfactual changes in equilibrium allocations and prices in

response to changes in the price of ICT capital (Section 4.3), provide details of our calibration

(Section 4.4), and finally present the results from our counterfactual exercises (Section 4.5).

4.1 An Equilibrium Model of Occupation and Technology Choice

Workers belong to one of many groups g = 1, . . . , G, and sort across occupations j =

1, . . . , J . There are k = 1, . . . , K ICT technologies that workers can use to perform their

occupations, and we reserve k = 0 for no ICT adoption. Workers’ observable characteristics,

captured by their group g, shape their ability to perform tasks. In addition, workers have an

unobservable comparative advantage across occupation-ICT pairs. Workers supply one unit

of labor inelastically to their jobs.15

Preferences The representative consumer has constant elasticity of substitution prefe-

rences across outputs of each of the J occupations, given by the following utility function:

U =
(∑

j a
1/σ
j Y

σ−1
σ

j

) σ
σ−1

. In this function, Yj equals the sum of the production of individual

workers who work in occupation j, σ equals the elasticity of substitution, while aj controls

the importance of each occupation in the economy.

Production The focus of our analysis is on the technology used to produce output in each

occupation. We model an occupation as a combination of tasks and ICTs. Labor is used

to produce a bundle of tasks h = 1, . . . , H that workers need to perform. Occupation-ICT

combinations are different in the intensity with which they require tasks.

Workers jointly choose their occupation and whether to adopt one of the ICTs. Conditi-

onal on their ICT-occupation choice, workers choose how to allocate their time among the H

tasks. We adopt, in particular, the following formulation for occupation output of a worker

from group g, if working in occupation j and using technology k:

Ṽgjk (ε) = εᾱk ·

(
H∏
h=1

[
qhgjk (ε)

αhjk

]αhjk)
·
(

κgjk
1− ᾱk

)1−ᾱk
, (2)

where ε is the worker’s idiosyncratic efficiency term, which varies across occupations and

ICTs; qhgjk equals the units of task h produced by the worker; and κgjk equals the units

15Our benchmark model does not capture the decision to leave the labor market. An extension in Section
5 relaxes this assumption of inelastic labor supply.
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of ICT k used in production. We impose that ᾱk ≡
∑

h αhjk equals 1 if k = 0 (where no

technology is adopted), and ᾱ < 1 for technologies k = 1, ...K. This formulation allows for

flexible cost shares αhjk, reflecting that at the occupation level some tasks are complementary

with ICT k, while others are substitutable. We assume that ε is drawn i.i.d. from a Fréchet

distribution, such that Pr [ε < x] = exp
(
−x−θ

)
.

Workers decide how to allocate their unit endowment of time to perform the H tasks that

the occupation requires. Each worker’s skill, Sgh, to perform each task h is determined by

the group g to which she belongs. The number of units of task h that the worker produces

is a function of the worker’s skill and the time she allocates, lhgjk, to task h:

qhgjk = Sgh · lhgjk .

ICT k = 1, . . . , K is produced with a constant returns to scale technology that employs

only the final good as an input, with productivity 1/c̃k.

Equilibrium Payments per efficiency unit of labor for group g workers in occupation j

using ICT k is

wgjk = p
1
ᾱk
j (ck)

− 1−ᾱk
ᾱk

H∏
h=1

S

αhjk
ᾱk

gh , (3)

where ck is the price of ICT k in terms of the final good, and pj is the price of occupation j

output.16 These payments reflect that workers allocate their time to each task h according

to their comparative advantage, that ICTs are used as to maximize profits in an occupation,

and that workers appropriate all of the residual value of their job, net of payments to ICTs.17

The fraction of workers in group g that sort into occupation j and technology k is then

λgjk =
wθgjk∑J

j′=1

∑K
k′=0w

θ
gj′k′

. (4)

Note that our distributional assumptions imply that the average total payment to workers

in group g, which is the same as the average total payments to workers in that group who

16Appendix D contains the proofs to all the analytic results we obtain from the model.
17A way to rationalize this result, as in Burstein, Morales, and Vogel (2015), is to assume that each

occupation’s output is produced by single-worker firms that enter freely into the market, ensuring zero
profits are earned.
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select into occupation j using ICT k, is equal to

W̄g = Γ (1− 1/θ) ·

(
J∑
j=1

K∑
k=0

wθgjk

)1/θ

, (5)

where Γ(·) is the Gamma function.

Given the price of ICTs {ck}, an equilibrium is given by prices of occupational output

{pj} and ICT uses {κgjk} such that: (i) occupational-output markets clear,

aj

(pj
P

)1−σ
E︸ ︷︷ ︸

total spending on occupation j output

=
G∑
g=1

K∑
k=0

W̄gλgjkLg︸ ︷︷ ︸
wage bill in j

+
G∑
g=1

K∑
k=1

ckκgjkλgjkLg︸ ︷︷ ︸
payments to all ICTs in occupation j

∀j, (6)

and (ii) ICT markets clear,18

ckκgjkλgjkLg = (1− ᾱk)︸ ︷︷ ︸
fraction of factor payments going to k

× W̄gλgjkLg
ᾱk︸ ︷︷ ︸

total factor payments in g,j

∀g, j, k, (7)

In Equation 6, total expenditure E is given by the sum of payments to all factors of pro-

duction:

E =
G∑
g=1

(
W̄gLg +

J∑
j=1

K∑
k=1

ckκgjk

)
;

the employment shares λgjk are consistent with sorting, as in Equation 4; efficiency wages

are consistent with the worker’s optimal time allocation and with free entry, as in Equation

3; and our price index relates to occupational prices according to

P =

(
J∑
j=1

aj · p1−σ
j

) 1
1−σ

.

This system of equations contains J + G · J · K · 3 + 2 equations and the same number of

unknowns: {pj}, {κgjk, wgjk, λgjk}, P , and E (together with a normalization).19

18This market clearing condition is equivalent to a condition in terms of ICT use per worker

ckκgjk =
(1− ᾱk)

ᾱk
W̄g ∀g, j, k.

19To aid in mapping the model to data, going forward we set W̄g for a particular group g as the numeraire.
The choice of numeraire does not alter our results.
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4.2 Estimating Groups’ Skills

A key input into the calibration of our model and our counterfactual exercises are measures

of comparative advantage of worker groups across occupations and for using ICTs. We

parameterize the skill of worker group g in producing task h, Sgh, as in our earlier paper:

logSgh = ah,gender ·Dgender,g + ah,edu ·Dedu,g + ah,exp ·Dexp,g. (8)

In this equation, Dgender,g, Dedu,g, and Dexp,g are dummies for gender, education, and

experience, which define demographic groups, g. In our parameterization, we have two

genders, five education groups, and four experience groups. As a result, there are 40 =

[1 + 4 + 3] · 5 parameters ah that we need to estimate.

Our model delivers three aggregate moments that we take to the data using a method of

moments estimator. Let Θ denote the vector of parameters we estimate. Let x̃ denote the

value of variable x observed in the data and x (Θ) denote the model-implied dependence of

variable x on the set of parameters. Our moments are, first, the fraction of workers of group

g who work in occupation j:

λ̃gj =
K∑
k=0

[
wθgjk (Θ)∑J

j′=1

∑K
k′=0w

θ
gj′k′ (Θ)

]
∀g, j, (9)

where λgj ≡
∑K

k=0 λgjk; second, the fraction of workers in occupation j that adopt ICT k:

π̃jk =
G∑
g=1

λgjk (Θ) L̃gj∑G
g′=1 L̃g′j

∀j, k, (10)

and, third, the average earnings per group:

˜̄Wg = Γ (1− 1/θ) ·

(
J∑
j=1

K∑
k=0

wθgjk (Θ)

)1/θ

∀g. (11)

This system contains G · J + K · J + G moments each decade, which we use to estimate

40 + 3 × (J +K) moments: 40 ah parameters, and, as fixed effects, J occupational prices

and K ICT prices. We estimate the ah parameters using only data from 2000. To limit the

number of parameters we need to estimate, we use the values of θ = σ = 1.78 from Burstein,

Morales, and Vogel (2015).20

20We do not estimate the model on all five decades’ worth of data because it is computationally infeasible.
Estimating the model using data for the year 1980 yields a smaller effect for the impact of the Microsoft
Office suite on the male-female earnings differential; and it somewhat dampens the effect of overall ICT

18



Table 2: Estimates of Skills

Nonroutine Nonroutine Nonroutine Routine Routine
Analytic Interactive Manual Cognitive Manual

Gender
Female -0.520 -0.241 -1.434 2.168 -5.964
Education
< HS -2.351 0.015 1.534 -1.413 3.189
High School -1.210 -0.051 1.098 -0.376 2.231
College 1.878 0.515 -2.444 -0.589 -9.018
Post-Graduate 2.466 0.698 0.588 -1.915 -20.127
Experience
0-9 Years -0.941 -0.232 -0.451 -0.229 -1.469
10-19 Years -0.190 -0.102 0.076 0.005 -0.410
30+ Years -0.135 0.135 0.080 0.300 -0.380

Notes: The table presents the estimates of ah,gender, ah,edu, and ah,exp for the five tasks h in our

main classification of tasks. The omitted demographic groups are males, workers with some college

education, and workers with 20-29 years of potential experience.

To compute the fraction of group g workers who sort into occupation j (the left hand-side

of Equation 9) and the average earnings of group g workers (Equation 11), we draw on the

public use sample of the decennial censuses (Ruggles, Genadek, Goeken, Grover, and Sobek,

2015).21 We use our new data set to compute the share of workers who adopt various ICT

technologies (the left-hand side of Equation 10). We set this adoption rate equal to the

fraction of ads corresponding to SOC code j which mention ICT technology k.

These data moments allow us to estimate the patterns of comparative advantage of worker

groups across tasks, which Table 2 contains. An additional outcome of our estimation are

the ICT prices, ck, that rationalize the patterns of technology adoption we observe in the

data.

4.3 Computing Counterfactual Equilibria

In this section, we use our estimated model to compute the effect of changes to exogenous

variables, {ck}, and {Lg}, exploiting the “exact hat algebra” approach popularized by Dekle,

Eaton, and Kortum (2008) and used in a similar context to ours by Burstein, Morales,

and Vogel (2015). The advantage of this approach is that it does not require us to fully

adoption on the college premium.
21We restrict our sample to workers who were are between the age of 16 and 65, who worked at least 40

weeks in the preceding year, who work for wages, and who have non-imputed gender, age, occupation, and
education data.
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parameterize the model and instead incorporates information about the parameters contained

in employment shares and technology adoption rates observed directly in the data.

Throughout, for any variable x, we use x′ to refer to the counterfactual value of that

variable in response to changes in either labor supply or ICT prices, and x̂ to refer to its

relative change, x′/x. We start by rewriting all of our equations in terms of changes. We

obtain the following system of equilibrium conditions that depends on the observed shares

of payments to labor and ICT and on exogenous shocks, which act as forcing variables:

(i) occupational-output markets

(
p̂j/P̂

)1−σ
ÊΨj = Ξ

G∑
g=1

K∑
k=0

̂̄W gλ̂gjkL̂gχgjk + (1− Ξ)
G∑
g=1

K∑
k=1

ξgjkĉkκ̂gjkλ̂gjkL̂g , (12)

where Ψj is the share of payments to occupation j in total expenditure, Ξ is the share of

labor in aggregate payments, χgjk is the share of group g, occupation j using ICT k in total

labor payments, and ξgjk is the share of ICT k used by group g in occupation j in total

payments to ICTs;

(ii) ICT market clearing

κ̂gjk =
̂̄W g

ĉk
; (13)

(iii) changes in aggregate income

Ê = Ξ
G∑
g=1

̂̄W gL̂gζg + (1− Ξ)
G∑
g=1

J∑
j=1

K∑
k=1

ξgjkĉkκ̂gjkλ̂gjkL̂g , (14)

where ζg is group g’s share of total payments to labor (i.e., ζg ≡
∑J

j=1

∑K
k=0 χgjk);

(iv) changes in employment shares

λ̂gjk =
ŵθgjk∑J

j′=1

∑K
k′=0 ŵ

θ
gj′k′λgj′k′

; (15)

(v) changes in wages per efficiency unit of labor

ŵgjk = (p̂j)
1
ᾱk (ĉk)

− 1−ᾱk
ᾱk ; and (16)
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(vi) changes in average wages per group22

̂̄W g =

(
J∑
j=1

K∑
k=0

λgjkŵ
θ
gjk

)1/θ

. (17)

We use this system to study the effect of the availability of ICTs — driven in our model by

changes in the price of individual ICT pieces, ĉk — on task content, wages, and inequality.

Since we are also interested in changes in aggregate task content for task h produced in

occupation j, we also compute the changes in the aggregate content of task h,23

T̂hj =

∑G
g=1

∑K
k=0

αjhk
ᾱk
· Lgλgjkλ̂gjkL̂g∑G

g=1

∑K
k=0

αjhk
ᾱk
· Lgλgjk

. (18)

4.4 Calibration

In this section, we explain how to calibrate the shares required for computing our counterfac-

tual exercises. The primitive data for our calibration are (i) the frequency of task mentions in

each occupation, (ii) our task-technology regression coefficients from Section 3, (iii) average

wages per group W̄g, (iv) employment shares by group and occupation, λgj =
∑K

k=0 λgjk,

and (v) the fraction of adopters in occupation j, πjk.

First, our calibrated αhjk emerge from the coefficient estimates from our Section 3 re-

gressions. To compute αhj0 — the parameter which governs the importance of task h in

occupation j when no ICT technology is being used — we take the predicted value for each

occupation-task pair (plugging in the occupation fixed effect, the average of the year fixed

effects, and the average ad length) when no technologies are mentioned. Since the sum of

the task shares equals 1, we normalize these predicted values to sum to 1. To calibrate

22The change for the price index is given by

P̂ =

 J∑
j=1

Ψj p̂
1−σ
j

 1
1−σ

,

while the change in the prices of ICTs is given by

ĉk = P̂ ˆ̃ck.

23We define the aggregate content of task h as

Thj =

G∑
g=1

K∑
k=0

(αhjk/ᾱk)Lgλgjk.
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αhjk/
∑H

h′=1 αh′jk for k 6= 0, we take the predicted number of task h mentions when the k

technology is mentioned once.

In addition, in Appendix D.6 we explain how to construct each of the shares we list below.

We start by constructing aggregates, such as the payments to ICT pieces across groups and

occupations, as well as total expenditures in the economy. We then calibrate shares related

to occupations, groups, and ICT use. We calibrate the share of labor in total payments, Ξ,

as:

Ξ =

∑G
g=1 W̄gLg

E
.

To match this moment, we use information from the Bureau of Economic Analysis.24 Next,

we compute the share of group g, occupation j, using ICT k in total labor payments

χgjk =
W̄gLgλgjπgjk

ΞE
.

Finally, we compute the share of ICT k used by group g in occupation j in total payments

to ICT

ξgjk =
(1− ᾱk)
ᾱk

W̄gπgjkLgλgj
(1− Ξ)E

.

Importantly, we do not observe variation across groups in adoption rates of ICT k, so

we use the estimates of group skills, S, together with our estimates of task content, α, to

impute πgjk. Appendix D.6 explains this imputation in detail.

4.5 Results

We now explore a set of counterfactual scenarios, aimed at understanding how ICTs have

transformed the U.S. labor market. More specifically, we analyze the impact of increasing the

price of different sets of ICTs on inequality and aggregate task content, taking the economy

in the year 2000 as a baseline. Our choice of taking the end of the sample as the baseline

reflects the fact that, in that year, the ICTs we study were already available and widely

24We compute payments to labor using the data series on wage and salary disbursements in private
industries. To compute payments to ICT capital, we begin by taking the stock of ICT capital — Information
Processing Equipment and Software. From these capital stocks, we compute the value of capital services by
multiplying each of the stocks as the sum of the real interest rate and depreciation rate. We set the real
interest rate at 0.04, the depreciation rate on Information Processing Equipment at 0.18, and the depreciation
rate on Software at 0.40. The average ratio over the 1960 to 2000 sample of payments to ICT capital to
payments to labor equals 0.053. This procedure yields a value of 0.57 for ᾱ. While we use the sample average
when calibrating ᾱ, note that the ratio of payments to ICT capital to payments to labor increases from 0.020
in 1960 to 0.088 in 2000. Our model will be able to match, at least qualitatively, the increased share of
payments to ICT capital through increased ICT adoption rates (which occur in the model as a result of
declines in the various ck).
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adopted, which allows us to exploit the method described in Section 4.3 and thus rely on

observed adoption shares.25 In all of our counterfactual exercises, we simulate a situation

where ICTs are less available by increasing their price (i.e., setting ĉk > 1).26

We study three sets of shocks. First, exploiting the granularity of our ICT data, we

study the impact of Unix, which was disproportionately adopted in computer programming

and engineering occupations. Second, we study the impact of the Microsoft Office suite

(consisting of Excel, Word, and PowerPoint), a set of office technologies widely adopted

across occupations. Finally, we study the impact of all 48 of the ICTs in our data set.

We choose these counterfactual exercises to study the effects of ICTs that affect particular

groups more than others, and also to compare micro and macro shocks.27

A common theme in our applications is a tension between two forces that shape the effect

of ICTs on inequality. On the one hand, adoption of ICTs differs across groups of workers,

who we estimate to have different skills for performing tasks. Consider, for example, a worker

who has relatively high productivity in nonroutine tasks. The introduction of an ICT which

is complementary to nonroutine tasks benefits the worker, since it shifts the allocation of her

time to tasks in which she has a comparative advantage. On the other hand, the arrival of an

ICT acts as a supply shock to the occupations that adopt the technology most intensively,

decreasing the price of this occupation’s output, and thus lowering the wage of the workers

who specialize disproportionately in this occupation.28

4.5.1 The Impact of Unix

In this counterfactual, we increase the price of Unix, cUnix, as to decrease the adoption rates

to essentially zero. Again, the spirit of the exercise is to get close to what the economy would

look like if this ICT were not available. Although this is a large shock, the aggregate effect

is somewhat muted, as it is concentrated on a small fraction of the population.

25The opposite exercise, namely starting the economy in the year 1960, is difficult since most technologies
had not yet been introduced, and thus their impact through the lens of the model would be negligible.
Studying the removal of specific technologies that were widely used in 2000 — as we do — is analogous
to the exercise in the international trade literature of comparing the current, observable situation with a
counterfactual autarky scenario.

26Note that while in our model we allow for many margins of adjustment in general equilibrium, we keep
other choices fixed. For instance, human capital accumulation decisions — which would manifest as changes
in the relative size of Lg — are fixed.

27As we have argued above, Unix is mostly adopted by programmers and engineers, and tends to comple-
ment analytic tasks (as do the large majority of ICTs), while adoption of the Microsoft Office suite has been
widespread and tends to complement interactive skills.

28Appendix D.4 shows that, when occupations are substitutable in consumption, there will be larger
equilibrium movements of workers across occupations in response to shocks, which limits the effect on relative
prices, and thus decreases the strength of the second force.
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We first plot in Figure 4 the counterfactual changes in occupations’ task content which

would have prevailed in an environment without Unix. Had Unix not been present, across

all occupations the counterfactual nonroutine analytic task content would have been lower

by 0.6 percent, while the corresponding routine cognitive task content would have been 0.6

percent higher. Moreover, the occupations with the largest counterfactual task changes are

those which adopted Unix most intensely.

Turning to the implications for the earnings distribution, the bottom right panel of right

panel of Figure 4 shows that making Unix unavailable tends to reduce inequality, which we

interpret as saying that the arrival of Unix increased inequality. Workers with less than high

school education are least affected; their earnings are 0.3 percent lower in a counterfactual

environment without Unix. On the other hand, workers with a post-graduate degree lose

about 1.2 percent of their baseline real earnings.

4.5.2 The Impact of the Microsoft Office Suite

In this counterfactual, we increase the price of three technologies — Excel, Word, and Power-

Point — so as to decrease their adoption rates to zero. The impact of increasing their price is

larger and opposite to that of Unix. To begin, these ICTs are used by many occupations and

groups, and thus they are more widespread than Unix (or other specialty ICTs). Further-

more, unlike in the previous Unix exercise, a counterfactual elimination of Microsoft Office

software would lead to an increase in the economy-wide nonroutine analytic task content by

0.8 percent, and a decline in nonroutine interactive task content by 0.9 percent.

The bottom right panel of Figure 5 shows that reducing the availability of the Microsoft

Office suite decreases average earnings and increases inequality. The earnings decrease is

least severe for workers with moderate levels of education: Earnings of workers without a

high school degree would decline by 2.3 percent, while the earnings of high school graduates,

workers with some college education, college graduates, and post-graduates would decline

by 2.0, 1.8, 1.8, and 1.8 percent, respectively. Unlike Unix, there is a noticeable difference

between female and male workers. The earnings of female workers decrease by about 0.2

percentage points more in a counterfactual world without Microsoft Excel, PowerPoint, and

Word (i.e., close to a 13 percent larger drop than for males). The intuition for this finding

is that, according to our Section 4.2 estimation, male workers have a comparative advantage

over women in producing nonroutine analytic tasks. Since the Microsoft Office technologies

are substitutes with these tasks, these technologies have attenuated the gender wage gap.
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Figure 4: The Impact of Unix on Occupations’ Tasks and Groups’ Earnings
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Figure 5: The Impact of the Microsoft Office Suite on Occupations’ Tasks and Groups’
Earnings
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4.5.3 The Impact of All Observed ICTs

In this counterfactual, we increase the price of all ICTs so as to reduce adoption rates to

essentially zero. Such a large shock has important macroeconomic implications, the most

important of which is to reduce earnings across the board. In the counterfactual equilibrium,

the ratio of nonroutine analytic to nonroutine interactive aggregate task content is approx-

imately 8 log points lower, while the ratio of nonroutine analytic to routine manual task

content is also approximately 8 log points lower. The bottom right panel of Figure 6 shows

that earnings drop by 15 percent on average in a counterfactual without ICTs. However,

the reduction is unevenly distributed across workers of different demographic groups. The

removal of ICTs is associated with a 4.0 percentage point decline in the earnings of college

graduates relative to those of high school graduates. This counterfactual reduction in the

college premium is 5.2 percentage points for males and 2.7 percentage points for females. In

this way, the introduction of ICTs accounts for approximately 17 percent of the 23 log point

increase in the college to high school premium observed from 1960 to 2000.29

This 17 percent figure is substantially smaller than that in Burstein, Morales, and Vogel

(2015). There, the authors report that computerization accounts for 60 percent of the in-

crease in the skill premium that occurred from 1984 to 2003. There are two key differences

between their setup and ours. First, while we study the effect of a particular set of ICTs,

Burstein, Morales, and Vogel (2015) consider the effect of computer use as a whole. Second,

while in Burstein, Morales, and Vogel (2015) worker groups’ comparative advantage in using

computers is based on idiosyncratic shocks, our model also contains a comparative advan-

tage component based on how ICTs change occupational tasks. In applying the hat algebra

approach, however, we both condition on observed shares of workers across occupations and

technologies. Therefore, our approaches will yield differing results to the extent that we

calibrate to different groups of technologies — ICTs in our exercises as opposed to computer

equipment in Burstein, Morales, and Vogel (2015) — or that we have different methods to

compute the baseline shares.

Also responsible for the relatively low figure in this section’s counterfactual exercise is me-

asurement error in ads’ reporting of technologies, which will tend to attenuate the coefficient

estimates presented in Section 3. Attenuated coefficient estimates in our ad-level regressions

lead to calibrated αhjk coefficients which vary less across k, within h, j pairs. In turn, this

leads to a smaller role that lower capital prices can play in shaping occupations’ task content

29To compute this 23 log point figure, we draw on our sample of full time workers in the public use sample
of the decennial census. We compute the college-high school premium by regressing log earnings against
education, potential experience, and gender dummies and then comparing the coefficient estimates on the
college and high school category dummies.
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Figure 6: The Impact of All 48 ICTs on Occupations’ Tasks and Groups’ Earnings
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and workers’ earnings.

5 Extensions

We now consider three extensions of our model. First, we relax the rather severe imposition

that counterfactual ICT price changes are so large as to completely eliminate technology

adoption in our counterfactual equilibrium, by extracting changes by decade in ICT prices

from observed adoption rates. Next, we break down the total effect we have measured in our

Section 4 exercises into a component that comes from technology changes and a component

that comes from worker sorting. We do so by considering counterfactual scenarios in which

workers are fixed in their occupations. In a final extension, we augment our model to have

a non-employment margin.

5.1 Finite Price Changes

In Section 4, we assessed the impact of technologies on the labor market by examining a

counterfactual equilibrium in which the 48 technologies in our data set were unavailable.

This counterfactual is a useful approximation of the long-run impact of these technologies:

The frequencies at which employers mention our 48 ICTs is an order of magnitude smaller at

the beginning of our sample than at the end. In this section, we aim to explore the impact

of ICTs at shorter horizons, with more moderate shifts in ICT prices.

In Section 4.2, we have already estimated the changes in ICT prices that best explain

demographic groups’ wages, occupational choices, and average ICT adoption rates across

each decade. The top left panel of Figure 7 presents the shifts in ICT prices from 1970 to

2000. For the median ICT, prices declined between 1970 and 2000 by approximately 6 log

points per year. Among the ICTs we have highlighted in our counterfactual exercises, the

price of Unix declined by 8 log points per year, with the largest decrease occurring in the

1980s. The price of Microsoft Excel, PowerPoint, and Word decreased by 16 log points, 27

log points, and 12 log points annually during the 1990s. In sum, our data on technology

usage rates indicate a relatively sharp decline in the price of ICTs.

In the remaining panels of Figure 7, we consider counterfactual equilibria we would obtain

if different combinations of ICT prices were changed from their year 2000 values. In the top

right panel, we consider the effect of increasing Microsoft Office prices from their 2000 levels

to their 1990 levels. For these prices, the effect on groups’ earnings is similar to the changes we

report in Figure 5. In other words, a large portion of the impact of the Microsoft Office suite

on the distribution of earnings is due to shifts which occurred in the 1990s. In the bottom
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Figure 7: The Impact of All 48 ICTs on Groups’ Earnings: Finite Price Changes
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Figure 8: The Impact of All 48 ICTs on Tasks and Groups’ Earnings and Occupations’:
Baseline and Fixed-Shares Counterfactual
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Notes: The left panel depicts the relationship between counterfactual changes in our 40 groups’
earnings, according to the benchmark equilibrium in which workers are allowed to sort across
ICT-occupation groups (x-axis), versus the equilibrium in which workers are fixed to their ICT-
occupation (y-axis). The right panel depicts the changes in the value of occupations’ routine
cognitive tasks in the two counterfactual equilibria. In both panels, we also plot the 45-degree line.

two panels, we depict the counterfactual earnings which would result from an increase in the

price of Unix to their 1970 levels (left panel) or their 1990 levels (right panel). From these

panels, we conclude that similar to Microsoft Office, much of the Unix’s impact on the labor

market occurred due to 1990s price declines.

5.2 Short-run Adjustment

We now compute an equilibrium, which we also interpret as a short-run one, in which we

limit workers ability to sort across occupations and technology uses in response to shocks.

(We revert to the Section 4 assumption that ICT price changes are so large as to remove

technology entirely.) In particular, we fix employment shares, λgjk, at their levels in 2000.

Our goal is to break down the changes in inequality and task content that we measure

in Section 4 into a component coming from re-sorting of workers across occupations and

technology uses, and a component coming from changes in worker productivity (associated

with the unavailability of ICTs).30

For the sake of brevity, we focus again on our third counterfactual, in which we remove

30Appendix E spells out this new notion of equilibrium and the associated hat-algebra equations. An
intermediate counterfactual in which workers retain their occupations but are free to adjust across ICTs
is conceptually possible, but is difficult to implement properly: Optimal re-sorting, conditional on optimal
sorting at the baseline, removes most of the tractability of our framework.
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all ICTs. The left panel of Figure 8 compares the changes in group average earnings in our

baseline to those we obtain with fixed labor shares. When workers cannot re-sort, wages

adjust more strongly to clear markets. Two results stand out. First, the resulting changes

in inequality are larger than in the baseline since high income workers, who are more hurt

by the absence of ICTs, cannot redeploy their skills in different occupations. For example,

the standard deviation of the changes in earnings is approximately 26 percent smaller in the

baseline, relative to this fixed labor counterfactual. Second, since the economy as a whole is

less able to adjust to these changes, real wages fall more on average.

Next, we compare changes in task content. The first thing to note is that, given our

specification of technology (Equation 2), changes in task quantities can only happen when

workers move at the extensive margin — i.e., when they re-sort across occupations and

ICTs. The reason is that, conditional on an occupation and ICT choice, the time allocation

and task output, qhgjk, is independent of ICT prices. Therefore, for the purpose of this

exercise, we compare changes in the value of task content. As an example, the right panel

of Figure 8 compares changes in the total value accrued to routine cognitive tasks in the

baseline to those in the fixed-labor counterfactual. Again, there are two main takeaways

from this comparison. First, most of the variation in changes in task value come from

workers sorting across occupations, as the dispersion in changes is quite small relative to the

full-adjustment baseline. Second, there is essentially no correlation between these changes,

across occupations, suggesting that these intensive margin changes do not point in the same

direction as the extensive margin ones.

5.3 Non-employment

Finally, we extend our model to allow workers to vary their total labor supply in response to

market conditions. The motivation for this extension is the difference in trends in groups’

labor force participation. In particular, labor force participation has declined for men, espe-

cially for low skilled men, throughout our sample period.

In our extension, we associate non-employment with a group-specific nonmarket benefit;

within groups, workers are heterogeneous in their ability to take advantage of this benefit.

The purpose of this exercise is to assess whether ICTs, by reducing the demand for certain

tasks, have contributed to movements out of employment of groups that have a comparative

advantage in producing those tasks.31

31Appendix F spells out how we extend our model. It also explains how most of our hat algebra expressions
remain unchanged, since information on the fraction of non-employed in each group, which is directly obser-
vable, is a sufficient statistic for the benefits of non-employment. For simplicity, we assume that heterogeneity
in the idiosyncratic benefits of non-employment is governed by the same θ as before.
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We start by replicating our third counterfactual, in which we make all ICTs unavailable,

and examine how our inequality results change. These results are governed by two opposing

forces. First, as we have shown before, low earning individuals tend to lose less from the

disappearance of ICTs, because these demographic groups adopt ICTs less. Their labor

market prospects are less sensitive to the presence of ICTs in the workplace. As a result,

low earning individuals’ labor market participation should be relatively unaffected by the

removal of ICTs. Second, in this new extension, workers select into participating in the

labor market. If a group has a relatively low baseline equilibrium labor force participation

rate, the same drop in market wages will induce an exceptionally large drop in this group’s

participation rate.

In Appendix F, we show that the second effect tends to dominate in our model. As a

result, removing all ICTs leads to large drops in employment in low income groups, perhaps

unintuitively. To isolate the effects of the first force, we examine a counterfactual in which

we set a constant baseline rate of non-employment across all groups. This counterfactual

shows that the lowest earning workers leave employment about 2.0 percentage points less

(relative to their original employment shares) than the highest income workers.

6 Conclusion

This paper contributes to the literature on the labor market effects of the information and

communication technology revolution of the second half of the 20th century, a transformative

period of technological change. In particular, we study the effect of ICT adoption on the task

content of occupations, the sorting of workers across occupations, and earnings inequality.

Our first contribution is to measure technological adoption at the job ad level. We

extract these data from the job descriptions of 4.2 million ads appearing between 1960 and

2000 in the Boston Globe, New York Times, and Wall Street Journal. This new and publicly

available data set is, as far as we are aware, the most comprehensive available that includes

time-varying information on tasks and technologies at the occupation level.

With this rich source of data, we first show that, for the most part, technology adoption

is associated with an increase in nonroutine analytic tasks and — in conjunction with high

income workers’ comparative advantage in occupations rich in these types of tasks — an

increase in earnings inequality. However, there are important exceptions: Office software

tends to substitute for nonroutine analytic tasks, and leads to an attenuation of the male-

female earnings gap. We view our characterization of these types of differences in the impact

of ICTs as a first step towards understanding how new technologies may impact the labor

market of the future.
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A Comparison of Technology Adoption in Our Data

Set to Adoption in Existing Data Sources

In this appendix, we compare our technology measures with those in existing data sets. Data

from O*NET permit the measurement of technology adoption for multiple types of ICTs, but

the data do not allow us to measure long-run patterns of technology adoption. On the other

hand, the October CPS permits the measurement of technology adoption over a portion of

our sample period, but not across technologies.

As a first comparison, from O*NET’s Tools and Technologies (Version 22.1) file, we

compute the average number of mentions of eighteen ICTs (per 8-digit SOC) in each 4-digit

SOC code.32 In Figure 9, we compare the average mentions per ad in our newspaper data

set (as of 2000, at the end of the sample period) to the number of mentions in the O*NET

Tools and Technology data set. According to the left panel of this figure, there are 0.02

mentions per ad of C++ for computer programmers (SOC=1511) in our data set and 0.71

mentions per 8-digit SOC code according to O*NET. Weighted by the number of vacancy

postings in our newspaper data, the correlation between the two data sets’ measures of

C++ adoption is 0.84; the unweighted correlation is 0.40. In the right panel, we display

the same comparison for a second ICT, Microsoft Excel. Here, the analogous weighted and

unweighted correlations are 0.50 and 0.25. Overall, averaging across the 21 ICTs for which we

can compare occupations’ technology adoption rates, the median weighted and unweighted

correlations are 0.66 and 0.38. In sum, technology adoption rates measured in our new data

set broadly correlate with the rates measured in O*NET. O*NET, however, only permits

measuring ICT adoption over a short horizon.

As a second check, we compare computer usage across occupations in the October CPS

and the sum of the 48 technology mentions in our newspaper data. Here, we apply three

editions of the October CPS — 1989, 1993, and 1997.33 In the left panel of Figure 10, we plot

the fraction of occupations’ full time workers who directly use computers at work, according

32These are the 21 (among the 48 in our original data set) which are measured in O*NET. They are C++,
CAD, CNC, Foxpro, HTML, Java, LAN, Lotus Notes, Microsoft Excel, Microsoft PowerPoint, Microsoft
Word, Novell NetWare, Oracle, Point of Sale, PowerBuilder, Quark, SQL, Sybase, Unix, VisualBasic, and
WordPerfect.

33For these years, the October CPS measures computer adoption rates by use (e.g., using computers
for analysis, using computers for bookkeeping; using computers for calendar/scheduling, using computers
for communications, using computers for databases; etc.). While computer use at work (according to the
question, “Do you directly use computers at work?”) is broadly increasing from 1989 to 1993 to 1997, the
average of computer adoption rates by use are decreasing from 1993 to 1997. Moreover, many of the individual
questions regarding computer adoption rates by use are missing for substantially more survey respondents
than for the question about overall computer use at work. For this reason, we restrict our comparison to
only the overall measure of computer use.
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Figure 9: Relationship between Technology Mentions in Newspaper Data and O*NET
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Notes: Each panel plots the relationship of ICT adoption according to O*NET (on the y-axis) and
our newspaper data (on the x-axis). For each 4-digit SOC, the O*NET average is constructed by
taking the number of mentions of the ICT across all 8-digit SOCs in our data and dividing by the
number of 8-digit SOCs within the 4-digit SOC. We calculate the newspaper frequency by first
computing the locally weighted number of ICT mentions per ad across years, within occupations,
throughout the sample period and then taking the predicted value for the year 2000. The weighted
correlations for the two plotted panels are 0.84 and 0.50, respectively. Among the other ICTs, the
same correlations range from -0.02, 0.10, and 0.38 (for Point of Sale technologies, Lotus Notes, and
Novell) to 0.93, 0.96, and 0.96 (for Unix, Java and SQL).

to the CPS, to the number of technology mentions per ad in our newspaper text. The

correlation (across years and occupations), again weighting by the number of job ads in our

newspaper data, is 0.40. According to this figure, the fraction of full-time CPS respondents

who report using computers on the job increases from 37 percent in 1989 to 50 percent in

1997. Similarly, in the newspaper data, the number of ICT mentions per ad increases from

0.09 in 1989 to 0.15 in 1993, and then to 0.23 in 1997. Exploiting the time variation in

the October CPS and in our newspaper data, we next de-mean (within occupations) the

technology measures in the two data sets. In the right panel, we plot the result of this

exercise: Again, focusing on the computer programmer SOC (1511), the leftmost point in

the right panel indicates that in 1989 our newspaper frequency of ICT adoption was below the

average within the t ∈ {1989, 1993, 1997} sample period. The positive correlation indicates

that variation in computer usage is correlated across time within occupations.

To summarize, our new data set containing measurement of the adoption of 48 ICTs

within occupations over time concurs with existing data sets’ measurements of ICT adop-

tion across occupations and ICTs (according to O*NET) and across occupations and time

(according to the October CPS).
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Figure 10: Relationship between Technology Mentions in Newspaper Data and October CPS
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Notes: Each point represents a combination of a 4-digit SOC and year. In the left panel, we plot
the raw ICT measures. In the right panel, we plot the measures relative to their SOC averages.
The stated correlations refer to correlations weighted by the number of newspaper ads in the
corresponding SOC-year combination.

B Representativeness of Boston and New York Job

Ads

A key limitation of our newspaper data is that they draw on text from New York City

and Boston metro area newspapers. We assess the potential scope of this limitation by

comparing online vacancy postings from the New York City and Boston metro areas to

vacancy postings from the rest of the United States. The underlying assumption behind

this exercise is that the non-representativeness of these two metro areas in the early 2010s is

informative of the non-representativeness of our sample of newspaper text during the earlier

1960 to 2000 period. To preview the results from this section, we find some mixed evidence

for the representativeness of New York City and Boston: The relationship between tasks

and technologies is similar for New York City and Boston compared to the rest of the U.S.

for nonroutine analytic, nonroutine interactive, and nonroutine manual tasks; significantly

stronger in New York City and Boston for routine manual tasks; and somewhat weaker in

New York City and Boston for nonroutine analytic tasks.

Within this section, we draw on a 5 percent sample of the ads which were collected by

Economic Modeling Specialists International (EMSI) between January 2012 and March 2017.

We restrict attention to the 5.4 million ads (out of the 7.6 million from the 5 percent sample)

for which we could map the posting’s job title to an SOC code. For each of these ads, we

count the number of task-related words, as well as the words related to technologies from
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our 1960 to 2000 sample.34

We examine whether the relationships between tasks and technologies are substantially

different for the Boston and New York City metro areas. We estimate regressions described

by Equation 19 below:

taskhajt = β1h · 1a∈{Boston, New York} + technologyajt ·
(
β2h + β3h · 1a∈{Boston, New York}

)
(19)

+ιjh + ιth + ιsh + εahjt.

Here, h refers to one of five task categories; taskhajt gives the number of mentions of task

h (relative to the number of words in the ad) in a, published in year t, for an occupation

j; technologyajt equals the mentions of one of the 14 technologies from footnote 34 (again

relative to the number of words in the ad); and ιjh, ιth, and ιsh respectively refer to occupation

(4-digit SOC) fixed effects, year fixed effects, and fixed effects for the job message board from

which EMSI procured the data. The coefficient of interest is β3h, characterizing the difference

in the slope of the task-technology relationship within the Boston and New York metro areas,

relative to the rest of the U.S.

Table 3 gives our regression coefficients. Consistent with a similar set of regressions we

perform in Atalay, Phongthiengtham, Sotelo, and Tannenbaum (2017) — in which we are

interested in differential task content in Boston and New York City job ads relative to those

in the rest of the U.S. — our β1h estimates suggest that Boston and New York City job ads

contain a higher frequency of nonroutine analytic, nonroutine interactive, and routine manual

task words, and fewer nonroutine manual and routine cognitive words. New to this paper,

the estimates of β3h are statistically insignificant from zero for two of the five task measures,

slightly negative for nonroutine analytic tasks, slightly positive for nonroutine manual tasks,

and substantially negative for routine manual tasks. These coefficient estimates suggest

that our benchmark estimates (estimated using newspaper data from New York City and

Boston) may be overstating the strength of the negative relationship between technologies

and routine manual tasks. In turn, such an over-estimation may be causing our Section 4.5

counterfactual exercises to overstate the increase in inequality due to the introduction of

ICTs.

34We search for mentions of 14 technologies: CAD, C++, HTML, JAVA, LAN, Microsoft Excel, Micro-
soft Power Point, Microsoft Word, SQL, Sybase, TCP, Unix, Visual Basic, and VSAM. The remaining 34
technologies in our benchmark set of calculations are essentially never mentioned in the 2010s in our online
job ads.
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Table 3: Estimates from Equation 19

Nonroutine Nonroutine Nonroutine Routine Routine
Coefficient Analytic Interactive Manual Cognitive Manual

β1h
0.159 0.202 -0.083 -0.016 0.072

(0.011) (0.011) (0.004) (0.004) (0.003)

β2h
0.186 -0.029 -0.035 0.001 -0.005

(0.001) (0.001) (0.001) (0.000) (0.000

β3h
-0.009 -0.001 0.004 0.000 -0.011
(0.004) (0.004) (0.002) (0.001) (0.001)

Notes: Each column contains coefficient estimates and standard errors, estimated from Equation
19, for a given h.

C Robustness Checks Related to Section 3

In Section 3, we interpret our βhk coefficients as evidence of complementarity between tasks

and technologies. The main concern for this interpretation is the endogeneity of technology

adoption at the ad level. In addition, our Section 3 regressions impose time invariance in the

relationship between task and technology mentions. But it is conceivable that, as technologies

mature, the complementarity or substitutability of technologies and worker-performed tasks

may evolve. In this section, we explore these two issues.

In this appendix, we consider three additional exercises related to our Section 3 investiga-

tion of the relationship between ads’ task and technology mentions. We start by reassessing

these relationships, first by controlling for increasingly detailed occupation fixed effects and

second by controlling for year-by-occupation fixed effects. Finally, we assess whether the

relationships between tasks and technologies vary over time.

In a first exercise, we adopt specifications which include occupation-level fixed effects more

detailed than those in our benchmark regressions: first, at the 6-digit SOC level (Figure 11),

second at the job title level (Figure 12), and third at the 4-digit SOC by year level (Figure

13). The coefficient estimates given in these three figures are similar to those given in Figure

3. Whereas the median estimate (across the 48 technologies) of the relationship between

technology mentions and nonroutine analytic task mentions is 0.061 when using 4-digit SOC

fixed effects, the analogous coefficient is 0.061 when using 6-digit SOC fixed effects, 0.072

when using fixed effects for each job title, and 0.075 when using fixed 4-digit SOC by year

fixed effects. (See Table 4 for comparisons for the other four task measures). That the

estimates are not diminished by adding job title fixed effects suggests that the estimates are

not driven by endogenous adoption: If, for example, job titles with the highest nonroutine

analytic task content were more likely to adopt ICTs, then controlling for job title fixed effects

would diminish our main estimates, as they would be partially driven by the composition
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Table 4: Technologies and Tasks: Sensitivity Analysis

(1) (2) (3) (4) (5) (6)
Nonroutine Analytic 0.061 0.061 0.072 0.075 0.061 0.071
Nonroutine Interactive -0.125 -0.104 -0.083 -0.127 -0.119 -0.222
Nonroutine Manual 0.004 0.002 0.004 0.006 0.005 -0.003
Routine Cognitive -0.017 -0.016 -0.011 -0.016 -0.018 -0.011
Routine Manual -0.011 -0.013 -0.010 -0.011 -0.014 -0.001
Time Period 1960-2000 1960-2000 1960-2000 1960-2000 Early Late

Fixed Effects
4-Digit
SOC

6-Digit
SOC

Job Title
4-Digit SOC
×Year

4-Digit
SOC

4-Digit
SOC

Notes: This table summarizes the coefficient estimates given in Figures 3, 11, 12, and 13. Each

cell gives the median coefficient estimate across the 48 technologies. “Early” refers to the portion

of the sample, within each technology, on or before the year at which half of the mentions of the

ICT have occurred. “Late” refers to the remainder of the sample period.

of job titles across occupations. That the estimates are not diminished by including 4-digit

SOC by year fixed effects indicate that our benchmark estimates are not spuriously reflecting

unobserved factors coincident with the introduction of new technologies.

Finally, we explore differences across time in the relationships between tasks and techno-

logies. For each technology, we begin by splitting the sample into two halves, depending on

the timing of mentions of the technology within our newspaper text. For example, half of

the mentions of Lotus Notes occurred in ads on or before 1989; the other half occurred in

ads after 1989. For FORTRAN, this median date is 1978. Given this, we estimate the rela-

tionships between task and technology mentions for Lotus Notes for 1960-89 and 1990-2000,

separately, and for 1960-1978 and 1979-2000, separately, for FORTRAN, and so on.

Figure 14 presents the result of this exercise. Two patterns emerge from these plots.

First, when looking across technologies, the relationships between tasks and technologies are

largely stable: Technologies that have a relatively strong association with a given task in

the beginning of the sample also tend to have a relatively strong association with the same

task during the latter half of the sample. Second, the association between technologies and

nonroutine analytic and interactive tasks (averaging across technologies) is larger during the

latter portion of the sample, while the relationship between technologies and routine tasks

is weaker during the second half of the sample.
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Figure 14: Relationship between Task and Technology Mentions
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D Baseline Model Derivations

D.1 Payments to Workers

We adopt the following formulation for occupation output of a worker from group g, if

working in occupation j and using κ units of technology k:

Ṽgjk (ε) = εᾱk

(
H∏
h=1

[
qhgjk (ε)

αhjk

]αhjk)
×
(

κgjk
1− ᾱjk

)1−ᾱk
,

where ε is the worker’s idiosyncratic efficiency term, which varies across occupations and

ICTs.

We solve the problem in stages. First, the firm takes pj as given and chooses the amount

of capital optimally. That is, κgjk solves the following first order condition

pj (1− ᾱk) Ṽgjk (ε) = ckκgjk.

Plugging this back in the expression above, we obtain the optimized value function Vgjk (ε)

that only depends on the worker’s time allocations:

Vgjk (ε) = εᾱk
H∏
h=1

[
qhgjk (ε)

αhjk

]αhjk (pjVgjk (ε)

ck

)1−ᾱk

⇒

Vgjk (ε) =

[
εᾱk

H∏
h=1

[
qhgjk (ε)

αhjk

]αhjk (pj
ck

)1−ᾱjk
] 1
ᾱk

= ε
H∏
h=1

[
qhgjk (ε)

αhjk

]αhjk
ᾱk

(
pj
ck

) 1−ᾱk
ᾱk

.

Taking the function Vgjk as given, the worker chooses his time allocation so as to maximize

his payoff:

max
lhgjk

ᾱkpjVgjk (ε)

subject to his unit time endowment

H∑
h=1

lhgjk = 1.
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This means that, in equilibrium, the worker allocates her time according to

lhgjk =
αhjk
ᾱk

.

Using the optimal time allocation in the program above, we get that the worker’s payment

per efficiency unit of labor, conditional on working in occupation j, is

wgjk = ᾱkpj

H∏
h=1

[
Sgh
ᾱk

]αhjk
ᾱk

(
pj
ck

) 1−ᾱk
ᾱk

= p
1
ᾱk
j (ck)

− 1−ᾱk
ᾱk

H∏
h=1

S

αhjk
ᾱk

gh .

Note that earnings are wgjkε.

D.2 Labor Supply

Using the assumption that idiosyncratic shocks are drawn from a Fréchet distribution, i.i.d.

across occupations and ICTs, the fraction of workers in group g that work in occupation j

using ICT k is

λgjk =
wθgjk∑K

k′=0

∑J
j′=1w

θ
gj′k′

.

We aggregate this labor supply at different levels, in order to match what we observe in

the data. The fraction of g workers who work in occupation j is given by the aggregation of

such workers across all ICT uses:

λgj =
K∑
k=0

λgjk =
K∑
k=0

wθgjk∑K
k′=0

∑J
j′=1 w

θ
gj′k′

.

D.3 ICT Market Clearing

The ICT use of a worker from group g in occupation j using ICT k is κgjk. We want to

calculate aggregate ICT k use, Ωgjk, over the mass of group g workers who select into j.

Since all workers in g, j use the same amount of ICT k, we can just multiply κgjk by the
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amount of workers, λgjkLg. With that, ICT markets clearing states

ckΩgjk ≡ ckκgjkλgjkLg

= (1− ᾱk)
W̄gλgjkLg

ᾱk

⇔

ckκgjk = (1− ᾱk)
W̄g

ᾱk
.

where the second line follows from the fact that ᾱk is the fraction of total payments to factors

that goes to workers.

D.4 Analytical Results for the Simple Model in Section

We simplify the environment to: (i) two occupations, with aj = 1/2; (ii) two ICTs with

ᾱ1 = ᾱ2 = ᾱ; and (iii) two types of workers (with Lg = L for each group). We assume that

parameters are such that at the baseline, W̄g = W̄ , ∀g.

Market clearing dictates that

aj

(pj
P

)1−σ
E =

1

ᾱ

G∑
g=1

2∑
k=1

W̄gλgjkLg,

which implies relative prices relate to relative supplies according to(
pj
pj′

)1−σ

=

∑G
g=1 W̄gLg

∑2
k=1 λgjk∑G

g′=1 W̄g′Lg′
∑2

k′=1 λg′j′k′
.

Optimal sorting across occupations and ICTs states

λgjk = Γ (1− 1/θ) ·

(
p

1/ᾱ
j c

(ᾱ−1)/ᾱ
k

∏H
h=1 S

(αhjk/ᾱ)
gh

)θ
W̄ θ
g

.

Substituting optimal sorting into market clearing, and using W̄g = W̄ and Lg = L, we obtain

(
pj
pj′

)1−σ

=

∑G
g=1

∑2
k=1

(
p

1/ᾱ
j c

(ᾱ−1)/ᾱ
k

∏H
h=1 S

(αhjk/ᾱ)
gh

)θ
∑G

g′=1

∑2
k′=1

(
p

1/ᾱ
j′ c

(ᾱ−1)/ᾱ
k′

∏H
h′=1 S

(αh′j′k′/ᾱ)
g′h′

)θ ,
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which finally yields equilibrium relative prices given by:

pj
pj′

=


∑G

g=1

∑2
k=1

(
c

(ᾱ−1)/ᾱ
k

∏H
h=1 S

(αhjk/ᾱ)

gh

)θ
∑G

g′=1

∑2
k′=1

(
c

(ᾱ−1)/ᾱ
k′

∏H
h′=1 S

(αh′j′k′/ᾱ)

g′h′

)θ


ᾱ
ᾱ(1−σ)−θ

.

The exponent is negative for θ > ᾱ (which we have assumed throughout), meaning that a

relative increase in output reduces relative prices unambiguously. Furthermore, this elasticity

will be larger the more complementary are the occupations, attaining its maximum at σ = 0.

Thus, when occupations are substitutable in consumption, there will be larger equilibrium

movements of workers across occupations.

D.5 Derivations of Hat Algebra

1. Occupational-output markets clear

(
p̂j/P̂

)1−σ
Êaj (pj/P )1−σ E =

G∑
g=1

̂̄W gW̄g

K∑
k=0

λgjkλ̂gjkL̂gLg +
G∑
g=1

K∑
k=1

ĉkΩ̂jkckΩgjk

(
p̂j/P̂

)1−σ
ÊΨj =

1

E

G∑
g=1

K∑
k=0

̂̄W gλ̂gjkL̂gW̄gλgjkLg +
1

E

G∑
g=1

K∑
k=1

ĉkκ̂jkλ̂gjkL̂gckΩgjk

(
p̂j/P̂

)1−σ
ÊΨj = Ξ

G∑
g=1

K∑
k=0

̂̄W gλ̂gjkL̂gχgjk + (1− Ξ)
G∑
g=1

K∑
k=1

ξgjkĉkκ̂gjkλ̂gjkL̂g.

where Ψj is the share of occupation j in total expenditure; Ξ is the share of labor in

aggregate payments; χgjk is the share of group g, occupation j using ICT k in total

labor payments; and ξgjk is the share of ICT k used by group g in occupation j in

total payments to ICT. The first line uses the definition x̂ ≡ x′/x, where x′ is the

counterfactual value of variable x. The second line forms expenditure shares, and the

third line collects shares.

2. ICT markets clear

ckκgjk = (1− ᾱk)
W̄g

ᾱk

ĉkκ̂gjk = ̂̄W g.

which implies

κ̂gjk = κ̂gk =
̂̄W g

ĉk
.
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Recall, too, that our definition of ck implies

ĉk = P̂ ˆ̃ck.

3. Income

E =
G∑
g=1

(
W̄gLg +

J∑
j=1

K∑
k=1

ckΩgjk

)

EÊ =
G∑
g=1

(̂̄W gL̂gW̄gLg +
J∑
j=1

K∑
k=1

ĉkκ̂gjkckΩgjk

)

Ê = Ξ
G∑
g=1

̂̄W gL̂gζg + (1− Ξ)
G∑
g=1

J∑
j=1

K∑
k=1

ĉkκ̂gjkλ̂gjkL̂gξgjk.

where ζg is the share of group g in total payments to labor (i.e., ζg ≡
∑J

j=1

∑K
k=0 χgjk).

That is, changes in income reflect changes in all factor payments.

4. Employment shares

λ̂gjkλgjk =
ŵθgjkw

θ
gjk∑J

j′=1

∑K
k′=0 ŵ

θ
gj′k′ŵ

θ
gj′k′

⇒

λ̂gjk =
ŵθgjk∑J

j′=1

∑K
k′=0 ŵ

θ
gj′k′λgj′k′

.

5. Wages per efficiency unit of labor

wgjk = p
1
ᾱk
j (ck)

− 1−ᾱk
ᾱk

H∏
h=1

S

αhjk
ᾱk

gh , and

ŵgjk = (p̂j)
1
ᾱk (ĉk)

− 1−ᾱk
ᾱk .

6. Average wages

W̄ θ
g =

J∑
j=1

K∑
k=0

wθgjk

̂̄W θ

g =
J∑
j=1

K∑
k=0

λgjkŵ
θ
gjk.
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7. Price index

P̂ =

(
J∑
j=1

Ψj p̂
1−ρ
j

) 1
1−ρ

.

8. Changes in aggregate task content

Thj ≡
G∑
g=1

K∑
k=0

αhjk
ᾱk
· Lgλgjk, and

T̂hj =

∑G
g=1

∑K
k=0

αhjk
ᾱk
· Lgλgjkλ̂gjkL̂g∑G

g=1

∑K
k=0

αhjk
ᾱk
· Lgλgjk

.

D.6 Calibration of Shares According to the Model

The primitive data for our calibration are: (i) average wages per group, W̄g, (ii) employment

shares by group and occupation, λgj =
∑K

k=0 λgjk, (iii) the fraction of adopters in occupation

j, πjk, and (iv) the estimated cost shares αhjk. We observe (i) and (ii) from the decennial

census for various decades; we observe (iii) in our newspaper data, measured as the number

of ads for occupation j that mention ICT k relative to the total number of ads for occupation

j (both in a given year); finally, we estimate (iv) αhjk using the newspaper data, as explained

in Sections 3 and 4.4.

ICT use by group of worker We start by producing figures for adoption rates that

depend on the worker group. Since we do not observe these directly in the data, we rely on

the model to fill in the gaps. Consider the fraction of group g, occupation j workers who

adopt capital k (
λgjkt
λgj0t

)1/θ

=

(
ckt
pjt

)1− 1
αk

H∏
h=1

(Sgh)
αhjk
αk
−αhj0 .

And consider the ratio of this fraction for two different demographic groups, g and g′,

which will depend exclusively on groups characteristics and task shares:(
λgjkt
λgj0t

)1/θ

(
λg′jkt
λg′j0t

)1/θ
=

H∏
h=1

(
Sgh
Sg′h

)αhjk
αk
−αhj0

(
λgjkt
λgj0t

)
(
λg′jkt
λg′j0t

) =
H∏
h=1

(
Sgh
Sg′h

)θαhjk
αk
−θαhj0

.

Because λgjkt = Pr (j, k|g, t) = Pr (j|g, t) · Pr (k|j, g, t) = λgjt · πgjkt, we can take logs and
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re-arrange to write an expression for log
(
πgjkt
π•jkt

)
, which we define as the (log) ratio of ICT

k adoption within occupation j for group g workers relative to the average ICT k adoption

rate within occupation j across all workers:

log

(
πgjkt
πgj0t

)
− log

(
πg′jkt
πg′j0t

)
= θ

H∑
h=1

[
αhjk
αk
− αhj0

]
[logSgh − logSg′h]

log

(
πgjkt
πgj0t

)
− log

(
π•jkt
π•j0t

)
= θ

H∑
h=1

[
αhjk
αk
− αhj0

][
logSgh −

G∑
g′=1

Lg′λg′jt∑G
g′′=1 Lg′′λg′′jt

logSg′h

]

log

(
πgjkt
πgj0t

)
= log

(
π•jkt
π•j0t

)
+ θ

H∑
h=1

[
αhjk
αk
− αhj0

] [
logSgh −

G∑
g′=1

Lg′λg′jt∑G
g′′=1 Lg′′λg′′jt

logSg′h

]
πgjkt
πgj0t

=
π•jkt
π•j0t

· exp

[
θ

H∑
h=1

[
αhjk
αk
− αhj0

][
logSgh −

G∑
g′=1

Lg′λg′jt∑G
g′′=1 Lg′′λg′′jt

logSg′h

]]
.

The terms on the right hand side are directly observable or estimated. The
Lg′λg′jt∑G

g′′=1 Lg′′λg′′jt

come from the decennial census, the
αhjk
αk

from our Section 3 regressions, and the logSgh

come from our Section 4.2 model estimation. We use these expressions to impute πgjk, on

the basis of πjk, which we actually observe.

Expenditure on ICT k Next we use the data to build total expenditure in ICT k, using

the market clearing equation:

ckΩgjk = (1− ᾱk)
W̄gλgjkLg

ᾱk
.

Manipulating the right-hand side, we get

ckΩgjk = (1− ᾱk)
W̄g

ᾱk
× λgjkLg

= (1− ᾱk)
W̄g

ᾱk
× λgjk∑K

k′=0 λgjk′︸ ︷︷ ︸
=πgjk

(
K∑
k=0

λgjk

)
Lg

=
(1− ᾱk)
ᾱk

W̄gLgλgjπgjk,

where we remove λgjk and instead use πgjk, a variable which we now observe. Furthermore,

the calibration of ᾱk is discussed in footnote 24. Finally, W̄gLgλgj equals the wage bill of
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group g workers in occupation j. This object is observable in the decennial census. Aggregate

expenditure

We now compute aggregate expenditure in the economy, in a manner consistent with our

framework. Our definition states that expenditure comes from the income of worker and

ICTs:

E =
G∑
g=1

{
W̄gLg +

J∑
j=1

K∑
k=1

ckΩgjk

}

=
G∑
g=1

W̄gLg +
J∑
j=1

K∑
k=1

G∑
g=1

ckΩgjk

=
G∑
g=1

W̄gLg +
J∑
j=1

K∑
k=1

(1− ᾱk)
ᾱk

G∑
g=1

πgjkW̄gLgj,

where the last expression is observable.

The share of labor in total payments, which we denote Ξ, is:

Ξ =

∑
g W̄gLg

E
,

which implies a value for 1− Ξ.

Group g’s share in labor payments Next we need to compute χgjk, the share of group

g, occupation j, using k in total labor payments

χgjk =
W̄gLgλgjk∑G
g=1 W̄gLg

=
1

ΞE
W̄gLgλgjk ×

∑K
l=1 λgjl∑K
k′=1 λgjk′

=
1

ΞE
W̄gLg

(
K∑
l=1

λgjl

)
πgjk

=
1

ΞE
W̄gLgλgjπgjk.
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Finally, we compute the share of ICT k used by group g in occupation j in total payments

to ICT

ξgjk =
ckΩgjk

(1− Ξ)E

=
(1− ᾱk) W̄gλgjkLg

ᾱk

(1− Ξ)E

=
(1− ᾱk) W̄g

ᾱk
πgjkLgλgj

(1− Ξ)E
.

Occupational shares Now we compute shares related to the importance of each occupa-

tion.

Recall that the total payment to occupation j firms that employ group g workers is

K∑
k=0

W̄gλgjkLg +
K∑
k=1

ckκgjkλgjkLg.

The average payment per firm (since the number of workers equals the number of firms) is

∑K
k=0 W̄gλgjkLg∑K
k=0 λgjkLg

+

∑K
k=1 ckκgjkλgjkLg∑K

k=0 λgjkLg
= W̄g +

∑K
k=1 (1− ᾱk) W̄g

ᾱk
πgjkLgλgj∑K

k=0 λgjkLg

= W̄g + W̄g

K∑
k=1

(1− ᾱk)
ᾱk

πgjk.

Total payments to occupation j (both workers and ICT) is given by the following expression,

where we use Λgj to denote the number of workers from group g who work in occupation j

ψj =
G∑
g=1

Λgj × average payment to occupation j, group g

=
G∑
g=1

Λgj

{
W̄g + W̄g

K∑
k=1

(1− ᾱk)
ᾱk

πgjk

}

=
G∑
g=1

ΛgjW̄g

{
1 +

K∑
k=1

(1− ᾱk)
ᾱk

πgjk

}

The share we are looking for is

Ψj = ψj/

J∑
j′=1

ψj′ .
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To calibrate this share, note that ΛgjW̄g equals the wage bill of group g workers in

occupation j, which is observable in the decennial census. The (1−ᾱk)
ᾱk

πgjk terms can be

computed using calculations we have described above.

E Model Extension I: Fixed Occupational-ICT Shares

The idea is to start from the data as an equilibrium of the model with fully flexible labor

supply, and then compute changes in the reaction to shocks if occupation-ICT shares , λgjk,

are fixed at their original equilibrium values. We start with the equations that describe the

new equilibrium.

E.1 Equilibrium

1. Occupational output markets clear

aj

(pj
P

)1−ρ
E =

G∑
g=1

K∑
k=0

W̄gjkλ̄gjkLg +
G∑
g=1

K∑
k=1

ckκgjkλ̄gjkLg,

where now W̄gjk is the average wage of workers who were sorted in cell g, j, k in the

baseline equilibrium, under the new prices.

2. ICT markets clear

κgjk =
1− ᾱk
ᾱk

W̄gjk

ck
.

3. Income definition

E =
J∑
j=1

G∑
g=1

K∑
k=0

W̄gjkλ̄gjkLg +
G∑
g=1

K∑
k=1

ckκgjkλ̄gjkLg.

4. Efficiency wages

wgjk = p
1
ᾱk
j c

− 1−ᾱk
ᾱk

k

H∏
h=1

S

αhjk
ᾱk

gh .
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5. Average wages

W̄gjk =

∫
wgjkεgjkdG

(
εgjk|εgjkw̃gjk = max

j′,k′
{εgj′k′w̃gjk}

)
⇒

W̄gjk =
wgjk
w̃gjk

· W̄g (w̃gjk) ,

where tildes denote the baseline equilibrium, and where

W̄g (w̃gjk) = Γ (1− 1/θ) ·

(
J∑
j=1

K∑
k=0

w̃θgjk

)1/θ

.

6. Price index

P =

(
J∑
j=1

ajp
1−ρ
j

) 1
1−ρ

.

In this system, the endogenous variables are {pj}Jj=1, {κgjk}g,j,k , E,{wgjk}g,j,k,
{
W̄gjk

}
g,j,k

,

P . Note that as opposed to only G average wages (as in the fully flexible model), we instead

have G ·J ·K average wages, reflecting that, given that quantities cannot adjust, wages must.

E.2 Derivations of hat algebra

1. Occupational-output markets clear

(
p̂j/P̂

)1−σ
ÊΨj = Ξ

K∑
k=0

G∑
g=1

̂̄W gjkχgjkL̂g + (1− Ξ)
K∑
k=1

G∑
g=1

ĉkκ̂gjkξgjkL̂g.

2. ICT markets clear

κ̂gjk = ̂̄W gjk/ĉk,

with

ĉk = P̂ ˆ̃ck.

3. Income

Ê = Ξ
K∑
k=0

G∑
g=1

J∑
j=1

̂̄W gjkχgjkL̂g + (1− Ξ)
K∑
k=1

G∑
g=1

J∑
j=1

̂̄W gjkξgjkL̂g.
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4. Efficiency wages

ŵgjk = p̂
1
ᾱk
j ĉ

− 1−ᾱk
ᾱk

k .

5. Average wages

̂̄W gjk = ŵgjk.

6. Price index

P̂ =

(
J∑
j=1

Ψj p̂
1−ρ
j

) 1
1−ρ

.

Here, the endogenous variables are the changes of the endogenous variables defined above.

In addition, we exploit the following formulas for changes in task content quantity and

value:

T̂hj =

∑K
k=0

∑G
g=1

αhjk
ᾱk
· Lgλ̄gjkL̂g∑K

k=0

∑G
g=1

αhjk
ᾱk
· Lgλ̄gjk

.

V̂ T hj =

∑K
k=0

∑G
g=1

αhjk
ᾱk
· ̂̄W gL̂gW̄gλ̄gjkLg∑K

k=0

∑G
g=1

αhjk
ᾱk
· W̄gλ̄gjkLg

.

E.3 Results

In Section 5.2, we present the main results of the exercise wherein ICT-occupation shares are

held fixed in response to a decline in ICT prices. There, we explored shifts in groups’ earnings

and in occupations’ task content, contrasting our benchmark analysis with the equilibrium

in which demographic groups are fixed in their ICT-occupation choice.

Building on this analysis, we present an additional comparison in Figure 15. We contrast

changes in occupations’ task value (incorporating both changes in the quantity of tasks per-

formed by workers and the price associated with these tasks) in our extension (with fixed

allocations across ICT-occupation pairs) and in our benchmark specification. The main take-

away from this figure is that changes in the value of tasks performed within each occupation

is substantially less dispersed (across occupations) when workers do not reallocate.
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Figure 15: Counterfactual Changes in Occupations’ Task Content
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Notes: For each of the five task measures, the panels plot the relationship between changes in task
value in the benchmark specification (x-axis) against changes in task value when workers do not
reallocate across ICT-occupation pairs (y-axis).
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F Model Extension II: Non-employment Margin

F.1 Model

We now allow for a non-market occupation. We still denote market occupations by j =

1, . . . , J , and, when convenient, we denote non-employment by occupation j = 0.

We assume that non-employment generates a non-market benefit bg, which we do not ob-

serve directly, and which rationalizes the fraction of people of each group in non-employment.

To retain as much as possible from our original framework, we assume that the reward to

non-employment is also proportional to efficiency units and is expressed in units of the nu-

meraire, but does not depend directly on ICT availability. Hence, the worker unobserved

efficiency vector has now dimension J ·K + 1, where we denote the new element by εg0.

Most results will carry, after appropriately redefining our variables. As before, let Wg (ε)

denote a random variable which is the total compensation (or earnings) that a person from

group g, with draws ε obtains from market occupations :

Wg (ε) = max
j,k
{wgjkεgjk} .

We knowWg is a Fréchet random variable with mean E [Wg (ε)] = Γ (1− 1/θ)·
(∑K

k=0

∑J
j=1w

θ
gjk

)1/θ

,

and shape parameter θ.

Employment and non-employment shares To capture the non-employment margin,

start by defining Zg (ε) ≡ max {Wg (ε) , bgεg0}. Since Wg and bgεg0 are Fréchet random

variables, so is Zg (ε). It follows that the fraction of people in group g in non-employment is

given by:

ηg0 =
bθg∑K

k′=0

∑J
j′=1w

θ
gj′k′ + bθg

.

Letting all people in group g – i.e., both employed and not, be Ng, the mass of workers from

group g, which we denote by Lg as before, is now Lg = (1− ηg)Ng. In turn, the fraction of

all people (not only workers) in group g that sort into market cell j, k is

ηgjk ≡
wθgjk∑J

j′=1

∑K
k′=0 w

θ
gj′k′ + bθg

,

=
wθgjk∑J

j′=1

∑K
k′=0 w

θ
gj′k′

×
∑J

j′=1

∑K
k′=0w

θ
gj′k′∑J

j′=1

∑K
k′=0 w

θ
gj′k′ + bθg

.
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Note for future reference that we can also write ηgjk = λgjk (1− ηg0), where λgjk is, as before,

the fraction of g employed workers that sort into cell j, k; and ηg0 is the fraction of individual

in group g who are not employed.

Market compensation We now obtain an expression for observed market earnings. Our

data on W̄g corresponds to the average market compensation, conditional on individuals

being on the market. By properties of the Fréchet distributions, we know that E [Wg|Wg > εbbg] =

E [Zg], so we conclude that

W̄g = Γ (1− 1/θ) ·

(
J∑
j=1

K∑
k=0

wθgjk + bθg

)1/θ

.

F.2 Estimation

We take the stance that we can estimate our parameters using the same moments as before

λ̃gj =
K∑
k=0

[
wθgjk (Θ)∑J

j=1

∑K
k′=0w

θ
gj′k′ (Θ)

]
,

π̃jk =
G∑
g=1

λgjk (Θ) L̃gj∑G
g′=1 L̃g′j

, and

˜̄Wg = Γ (1− 1/θ) ·

(
J∑
j=1

K∑
k=0

wθgjk (Θ) + bθg

)1/θ

.

This would amount to choosing parameters bg for each decade as to perfectly fit the data on

the non-employment margin, summarized by a new set of G moments

η̃g0 =
bθg∑K

k′=0

∑J
j′=1 w

θ
gj′k′ (Θ) + bθg

.

By doing so, we retain our original Ŝgh estimates. For the purposes of counterfactual

calculations, as we show below, all the information about bg is contained in the perfectly

observable non-employment shares, ηg0.
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F.3 Simulation

With this formulation, we can retain most of our previous hat algebra equations:

(
p̂j/P̂

)1−σ
ÊΨj = Ξ

G∑
g=1

K∑
k=0

̂̄W gλ̂gjkL̂gχgjk + (1− Ξ)
G∑
g=1

K∑
k=1

ξgjkĉkκ̂gjkλ̂gjk,

κ̂gjk = ̂̄W g/ĉk,

ĉk = P̂ ˆ̃ck,

Ê = Ξ
G∑
g=1

̂̄W gL̂gζg + (1− Ξ)
G∑
g=1

J∑
j=1

K∑
k=1

ξgjkĉkκ̂gjkλ̂gjk,

λ̂gjk =
ŵθgjk∑J

j′=1

∑K
k′=0 ŵ

θ
gj′k′λgj′k′

, and

ŵgjk = (p̂j)
1
ᾱk (ĉk)

− 1−ᾱk
ᾱk .

But we need to modify our equation for observed wages:

̂̄W g =

(
J∑
j=1

K∑
k=0

ηgjkŵ
θ
gjk + ηg0b̂

θ
g

)1/θ

,

=

(
(1− ηg0)

J∑
j=1

K∑
k=0

λgjkŵ
θ
gjk + ηg0b̂

θ
g

)1/θ

.

Since we assume bg is expressed in units of the final good, we must add the equation

b̂θg = P̂ .

And we must also explicitly account for the non-employment margin

L̂g = ̂(1− ηg0)N̂g,
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where35

̂(1− ηg0) =
J∑
j=1

K∑
k=0

η̂gjkλgjk,

and

η̂gjk =
ŵθgjk∑J

j′=1

∑K
k′=0 ŵ

θ
gj′k′ηgjk + ηg0b̂θg

.

F.4 Results

In this section, we compare our baseline results of removing all ICTs to those we obtain

when we add an additional extensive margin. The left panel of Figure 16 shows, as we assert

in the main body of the paper, that low income groups transition more frequently into non-

employment in response to the shock. In fact the model generates quite sizable proportional

transitions for the lowest income groups. However, as we have explained before, the model

builds in a very strong force for this to happen, based on selection. To assess the strength

of earnings falling less for low income workers, the right panel of Figure 16 plots the results

of the same simulation, this time assuming (counterfactually) that the baseline year-2000

employment share in each group is the same and equal to 0.1. The simulation shows that,

because low earning workers’ returns from working in the market fall less in response to a

removal of ICTs, they move less frequently into non-employment. In sum, the arrival of ICTs

imposes a strong force pushing low income workers into non-employment.

35To see why, note that

̂(1− ηg0) =
1− η′g0
1− ηg0

=

∑J
j=1

∑K
k=0 η

′
gjk

1− ηg0
.

Since
η′gjk = η̂gjkηgjk,

we conclude that

̂(1− ηg0) =

J∑
j=1

K∑
k=0

η̂gjk
ηgjk

1− ηg0

=

J∑
j=1

K∑
k=0

η̂gjkλgjk.
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Figure 16: The Impact of All 48 ICTs on Occupations’ Tasks and Groups’ Earnings (Active
Non-employment Margin)
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Notes: Each panel plots the relationship between groups’ baseline equilibrium earnings (x-axis) and
the counterfactual percentage point change in employment rates (y-axis). The left panel incorpor-
ates observed employment rates. In the right panel, the baseline equilibrium employment for all 40
g groups is set to the same level.
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