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1 Introduction

Geographic inequality is pervasive in the U.S. labor market. Average wages, the college wage

premium, and the wage gap between white-collar and blue-collar occupations increase with

labor market size. Furthermore, different labor markets foster distinct types of work. For

example, managerial, financial, and computer occupations are over-represented in large labor

markets, and maintenance, production, and material moving occupations in smaller ones.

While economists have studied how jobs vary with market size, prior research has been

unable to fully characterize spatial differences in the nature of work. Job content anal-

ysis applied to national datasets, such as O*NET, cannot directly measure the extent to

which occupations vary across markets. This approach might be apt for some occupations:

For example, food preparation workers may perform similar activities in Ann Arbor as in

Philadelphia. But for other occupations, job tasks and technologies likely vary with the size

of the labor market. For example, financial analysts in Hastings, Nebraska may perform

fundamentally different tasks compared to those in New York City. Existing datasets do not

speak to these differences.

In this paper, we study the geography of job tasks and technology requirements in the

United States. We develop a novel approach to measurement applied to an increasingly

popular data source: the text of online job ads. We use natural language processing to

extract job tasks and technologies from job ads and provide new evidence for three mecha-

nisms behind the commuting zone (CZ) size-wage premium: interpersonal interactions and

coordination, the adoption of new technologies, and worker specialization. Our measures are

not fixed at the occupation level, and capture differences in task content within and across

regions. We find that work differs across CZs, even within occupations, and this heterogene-

ity is important for understanding both the CZ size-wage premium and the increased skill

premium in larger CZs.

We take two approaches to task measurement. The first approach, following our prior

work on newspaper job postings (Atalay et al., 2018, 2020), maps words from job ads into

task categories used in previous literature (Spitz-Oener, 2006; Autor, 2013). In our second,

novel approach, we use tools from natural language processing to define tasks as the verb-

noun pairs that appear in job descriptions. This approach yields more granular measures

and reduces the level of researcher discretion in classifying tasks. In addition, it allows us to

measure how specialized jobs are—i.e., how far apart workers are in task space, within firms

or occupations.

Our main empirical analysis introduces several facts regarding the geography of work

in the United States. We first show that analytic and interactive tasks increase steeply
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with market size: Relative to jobs in the bottom population decile, jobs in the top decile

have 0.30 standard deviations (s.d.) higher intensity of non-routine analytic tasks and 0.24

s.d. higher intensity of non-routine interactive tasks. In addition, these jobs have 0.18

s.d. lower intensity of routine manual tasks. Even after conditioning on narrowly defined

occupation (six-digit SOC) categories, about 16 percent of the gradient between largest

and smallest CZs for non-routine analytic tasks, 26 percent of the gradient for non-routine

interactive tasks, and 53 percent of the gradient for routine manual tasks remains. We

further decompose interactive tasks into those that capture interactions outside the firm

and those that capture interactions within the firm. The CZ size gradient is positive for

both external and internal interactive tasks, and these relationships are more pronounced

for jobs requiring a college degree. Our subsequent analysis using our granular task measures

echoes these findings at a much higher resolution. The verb-noun pairs with the steepest

gradients with CZ size demonstrate the importance of problem-solving (“managing projects,”

“developing strategies,”“problem-solving skills”) and communication and worker interactions

(“written communication,”“maintaining relationships”) in large CZs.

Building on our understanding of differences in job tasks across market size, we consider

whether computer software technologies are more likely to be mentioned in job descriptions

in larger markets, and how this gradient differs by whether a job requires a college degree.

We find that technology requirements increase steeply with market size, with approximately

one-and-a-half times as many mentions of technologies in the largest CZs as in the small-

est. About 12 percent of the gradient remains after conditioning on six-digit occupational

categories. Moreover, the technology gradient is present only for jobs requiring a college

degree. Technologies with the steepest gradient for college degree holders involve computer

programming (e.g., Python, JavaScript, and Linux), while those for high school diploma

holders involve data entry and word processing (e.g., Microsoft Excel, Microsoft Outlook,

Microsoft Word).1

Our paper also introduces a novel approach for measuring worker specialization, using the

content of job descriptions. We represent each job as a vector of verb-noun pairs appearing

in the text, and we then compute the average cosine similarity among the vectors associated

with a given occupation-CZ (or, alternatively, firm-CZ or industry-CZ) pair. We show that

task specialization is increasing in market size, and this relationship holds within occupations,

within firms, and between firms. These relationships are stronger for firms in the nontradable

sector.

Workers in top population decile CZs earn 31.4 log points more than those residing in

1These results complement an expanding literature on the spatial distribution of technology adoption
(Eckert et al., 2020; Bloom et al., 2020; Eeckhout et al., 2021).
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bottom decile CZs. Even within occupations, this premium is 27.4 log points. In a final step

of our analysis, we show that our new technology and specialization measures are associated

with large differences in wages and skill premia between smaller and larger labor markets.

Within-occupation heterogeneity in interactive tasks, technology usage, and specialization

account for 20 percent (5.5 log points out of a total of 27.4) of the difference in wages between

workers in top and bottom population decile commuting zones and 22 percent (8.5 log points

out of a total of 38.2) when we restrict our data to white-collar occupations. While we

interpret these regressions descriptively—since the premia on tasks and technologies may in

part reflect worker sorting on unobservable characteristics—they nevertheless show that jobs

differ between large and small labor markets in ways that have been previously unmeasured

and are reflected in wages. In addition, our evidence suggests that worker sorting is driven

in part by the particular job tasks and technologies that employers demand.

Our paper contributes to research on geographic inequality (Glaeser and Maré, 2001;

Moretti, 2013a; Diamond, 2016; Frank et al., 2018) by using job postings data to study the

geography of tasks and technologies. Worker interactions have long been pointed to as a

source of productivity gains in cities (Marshall, 1890; Jacobs, 1969), and recent research

studies worker interactions as a source of agglomeration, both theoretically (Davis and Din-

gel, 2019) and empirically (Bacolod et al., 2009b; Michaels et al., 2018; Rossi-Hansberg et al.,

2019). Prior research also shows that new patents and occupational titles are more likely to

appear in cities (Carlino et al., 2007; Lin, 2011), suggesting that innovation and technology

adoption is concentrated in larger CZs. Using the text of job vacancies, we introduce a new

approach to task measurement, which uses natural language processing and requires fewer ex

ante restrictions relative to widely used O*NET scales and categories. We show that worker

interactions and the adoption of new technologies increase in CZ size, and the gradients are

particularly strong for college-educated workers. We find substantial within-occupation het-

erogeneity that is important for explaining CZ size-wage premia and the differential returns

to work faced by white- and blue-collar workers.

We also contribute to the literature that relates productivity and the division of labor to

the extent of the market (Young, 1928; Stigler, 1951; Kim, 1989; Becker and Murphy, 1992).

Recent work finds greater occupational diversity in cities (Duranton and Jayet, 2011; Tian,

2019). Moretti (2013b) and Dauth et al. (2022) provide evidence for more efficient matching

of workers and firms in cities. Our contribution is to measure specialization directly in task

space. We show that specialization increases in CZ size and that it accounts for a substantial

portion of the CZ size-wage premium.
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2 Data and Measurement

We use a comprehensive database of online job ads posted between January 2012 and March

2017, which we purchased from Economic Modeling Specialists International (EMSI, 2017).

This dataset is similar to data from Burning Glass Technologies (Burning Glass), which has

been used in recent work to study the labor market (Hershbein and Kahn, 2018; Deming and

Kahn, 2018; Modestino et al., 2020). Like Burning Glass, EMSI data are proprietary and

assembled using web crawlers that extract job vacancy postings from all major online job

boards; EMSI also removes duplicate postings that appear across boards. An advantage of

the EMSI data for our purposes is that it contains all of the original job ad text. To reduce

computational time, we use a 5 percent random sample of the data (7.2 million ads).2

In addition to the full text content of each ad, EMSI provides fields for the educational

requirement of the job, the firm name, the firm’s industry (six-digit NAICS), the occupation

code (six-digit SOC), and the job location (county FIPS code). We map FIPS codes to

commuting zones (CZs) following Autor et al. (2019). We adopt the CZ as our geographic

unit of analysis and refer to CZs throughout this paper as local labor markets. Appendix A.1

provides descriptive statistics for the CZs in the sample, including population and number

of ads by CZ decile. We exclude ads with fewer than the 1st and greater than the 95th

percentile word count.3 We make a few additional minor restrictions, which are detailed in

Appendix A.2, leaving us with a sample of 6.3 million ads for the occupational analysis and

5.6 million ads for the firm-level analysis.

For the several exercises that require wages at the occupation level and for the con-

struction of employment weights, we use the 2010-2017 American Community Survey (ACS)

(Ruggles et al., 2020), and we restrict the sample to individuals who worked at least 40 weeks

in the past year and report at least 35 usual hours worked per week. Our measure of wages

is total annual pre-tax wage and salary income (“wages” throughout the paper), which we

adjust by CPI-U to constant 2012 dollars before averaging to the four-digit SOC-by-CZ cell.

We link job ads data to the ACS by four-digit SOC and CZ; we use four-digit SOCs for our

wage analysis because of the greater number of observations per cell. In a robustness analy-

sis, we use Burning Glass data, which contains wages extracted from job ads (see Appendix

C.5).

2We prefer EMSI for our purposes because it contains each ad’s complete job description text, which
is ideal for extracting job tasks and measuring specialization. By contrast, the version of Burning Glass to
which we also have access provides a combination of tasks, skills, and technologies. As a robustness check,
we reproduce our main results using Burning Glass data and report them in Appendix C.4. Our results are
similar with this alternate data source.

3Dropping extremely short ads removes those that are unlikely to have meaningful task information,
while dropping exceedingly long ads helps reduce computation time.
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2.1 Measuring Tasks: Extraction and Classification

We extract job tasks from the job descriptions using two approaches. Following our prior

work (Atalay et al., 2018, 2020), we map keywords in the job descriptions to five task cate-

gories: non-routine interactive, non-routine analytic, non-routine manual, routine cognitive,

and routine manual, following the categorization of Spitz-Oener (2006). We also map words

into O*NET work activities, to validate our text-based task measures and to study different

types of interactive tasks. See Appendix A.5 for more details on the word mappings. For

job ad j and task category k, our measure of task intensity is the number of distinct task-

specific word mentions per 1,000 ad words.4 We standardize each task to have mean zero

and standard deviation one across all ads.

In our second, novel approach, we define tasks as verb-noun pairs. This allows us to

distinguish between different types of activities. For example, “develop relationships” is

distinct from “develop strategies,” and “lead team” is distinct from “lead customers.” This

approach also allows us to measure specialization among jobs within the same occupation,

industry, or firm.

There are two steps to the task extraction process. First, we define a task as a (verb stem, noun stem)

pair that occurs within the same sentence, and second, we vectorize ads according to tasks.

In the first step, we aim to ensure the verb-noun pairs that we extract are tasks and not

firm or worker characteristics. To do so, we isolate the section of the text that pertains to

job tasks through to the end of the ad. We search for the keywords “duties,” “summary,”

“description,” and “tasks,” which suggest a list of tasks will follow.5 Then, we use the sen-

tence tokenizer and parts-of-speech tagger available in Python’s NLTK library to extract

each verb and the noun that follows in each sentence, ignoring other parts of speech that

may appear in between. Hence, whether the job ad says, “perform commercial, residential,

and industrial electrical maintenance,” as it does in the sample ad of Table B.1, or simply

“perform maintenance,” our algorithm will record “perform maintenance” as the task. If

multiple verbs correspond to the same noun (for instance, “serve and assist customers”), our

algorithm extracts two distinct tasks: “serve customers” and “assist customers.”6 Verbs and

4We count repeated use of the same word only once. Hence, the repetitiveness of the job description does
not inflate the task intensity of the ad. The use of different task keywords, such as “analyze” and “evaluate,”
will each be counted and will increase the task intensity measure.

5This step significantly improves the precision of the task extraction. Note that not all ads will have
these keywords. Hence, an important check is whether the presence of these words varies systematically with
CZ size. Figure A.11 investigates this relationship and finds little evidence for a systematic pattern.

6We do not perform the analogous procedure when a verb is followed by a list of nouns (for instance,
“assist customers and staff”); in this situation, our algorithm extracts one task—the verb and the first noun
(“assist customers”).
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nouns are stemmed so that variation in verb and noun forms do not affect the analysis (e.g.,

“assist customers” and “assisting customers” are treated as the same task).

We use the 500 most common tasks to balance the advantage of comprehensively char-

acterizing jobs’ tasks against the costs of computational time. We reproduce the key results

using the 2,000 most common tasks (a higher resolution) and using the 300 most common

tasks (a lower resolution) in Appendices C.1 and C.3 and obtain nearly identical results. We

also show that when we aggregate granular tasks that are similar in meaning (e.g., “identifies

problems” and “resolves issue”), we get nearly identical results (Appendix C.2).

In the second step, we search through the full text of each ad for the appearance of each of

these 500 verb-noun pairs and vectorize each job ad.7 Verb-noun pairs that appear multiple

times in an ad are counted only once, meaning each element of the vector is a zero or one.

Table B.1 provides two example job ads with their full text, along with the verb-noun pairs

extracted by the algorithm.

In our main analysis, we exclude 101 verb-noun pairs that in our judgment do not corre-

spond to job tasks, such as “send resume” and “is position,” reducing the number of tasks to

399. Appendix B.1 lists these 399 verb-noun pairs and the 101 excluded pairs.8

The 10 most common tasks, from most to least frequent, are: “written communication,”

“working team,” “provide customer-service,” “provide service,” “lifting pounds,” “providing

support,”“build relationships,”“ensure compliance,”“assisting customers,” and “provide cus-

tomer.” A key strength of our approach is that it allows the text used by employers, describing

the jobs they intend to fill, to define the set of tasks.

To illustrate the value of natural language processing for extracting job tasks, Table 1

lists the most common tasks for each of four occupations: Electricians, Supervisors of Retail

Sales, Registered Nurses, and Lawyers. The tasks are broadly aligned with our prior intuition

for what workers in these different occupations do. For instance, Electricians need to “use

hands,”“ensure compliance,” and “perform maintenance,” while Supervisors of Retail Sales

must “provide customer-service,”“drive sales,” and “maintain inventory.” Registered Nurses

“provide care,”“provide service,”and“make decisions,”while Lawyers must use“written com-

munication,”“provide guidance,”“conduct research,” and “meet deadlines.” These descriptive

results lend confidence to the approach of using these tasks to study the labor market.

7We use the entire job ad text when vectorizing, rather than a subset of the text. The reason is that not
all ads have a section of text with keywords that indicate job tasks will follow. As a result, there is a tradeoff
between being able to vectorize all ads and reducing bias from potentially counting instances of verb-nouns
that do not refer to job tasks.

8In our robustness exercises with 2,000 tasks, we do not exclude any verb-noun pairs and confirm that
our main analysis is not sensitive to the exclusion of selected verb-noun pairs.
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2.2 Job Ads: Coverage, Representativeness, and Selection

We evaluate the coverage of job ads across geographic space and whether online job ads are a

reasonable representation of overall vacancies in Appendices A.3 and A.4. We first document

that our 5 percent sample of ads span four-digit SOC by CZ cells representing 98.3 percent

of ACS employment. We then evaluate the representativeness of our data, comparing it to

the Job Openings and Labor Turnover Survey (JOLTS) dataset. Consistent with a similar

check in Hershbein and Kahn (2018), we find broad concurrence in the industry composition

between the EMSI data and JOLTS. Finally, we use the Current Population Survey (CPS)

Computer and Internet Use Supplement to study whether the propensity of workers to find

employment through online job ads relative to other methods varies with CZ size and find

no significant relationship.

2.3 Beyond O*NET: The Usefulness of Job Ads for Studying the

Labor Market

O*NET is one of the most widely used data sources for measuring job tasks and has been a

valuable resource for research on topics ranging from the changing nature of work (Deming,

2017) to the labor market effects of technology (Acemoglu and Autor, 2011) and immigra-

tion (Peri and Sparber, 2009). However, O*NET is based on surveys with small sample

sizes—approximately 39 respondents per occupation and item (Handel, 2016)—and offers

measures at the occupation-level only.

Despite these limitations, we use O*NET as a benchmark to examine how well job ads

can approximate an O*NET-based analysis of tasks and market size. Note that job ads

represent vacancies—a flow—whereas O*NET is a survey of employed workers—a stock.

Therefore, we consider the extent to which vacancies capture information about employed

workers. We construct O*NET measures of job tasks following the selection of survey items

and categorization of Acemoglu and Autor (2011), and construct occupation-level tasks using

job ads following the Spitz-Oener (2006) categorization described above. We then study the

task gradient with market size using the two distinct occupation-level task measures (O*NET

versus job ads), where the variation in tasks across markets is due solely to variation in

employment shares. We demonstrate in Appendix A.5 that the task gradients are strikingly

similar across data sources.

Second, we extract occupation-level tasks from the text of job ads to mimic O*NET work

activities. For this exercise, we rely on words from O*NET task descriptions and construct

tasks in the job ads data based on these words. We show in Appendix A.5 that the tasks

extracted from the job ads reflect occupation-level content that is similar to the occupation-
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level content of O*NET. Of course, job ad data have additional within-occupation variation

in tasks that we are shutting down for these two validation exercises; in our main analysis,

we leverage the additional within-occupation variation.9

Finally, we show in Appendix B.6 that occupation-CZ task measures, constructed using

job ads, account for variation in average wages at the occupation-CZ level, above and beyond

what is captured by occupation fixed effects. The job ads data therefore capture occupational

characteristics beyond what is available in O*NET, and these characteristics are reflected in

market wages.

3 The Geography of Tasks and Technologies

This section presents the gradients of tasks, technologies, and worker specialization across

market size.

3.1 Job Tasks Across Space

We begin with our first approach to task measurement and study how the five task categories

(non-routine interactive, non-routine analytic, non-routine manual, routine cognitive, and

routine manual) differ across labor markets of different sizes. For each task k, we regress

task intensity t
(k)
jn of job ad j in market size decile n on indicators for market size decile.

CZs are placed in market size deciles using employment weights so that each decile n has

approximately the same number of employed workers. We estimate:

t
(k)
jn = β0 +

10∑
n=2

Djnβ
(k)
n + γ

′
xj + εj, (1)

where Djn are indicators for market size decile n, with the 1st decile serving as the reference

group, and xj represents a control for ad length and, in some specifications, six-digit SOC

fixed effects. The coefficients of interest, β
(k)
n , capture the task intensities relative to the 1st

decile market size. Standard errors are clustered at the CZ level.

Figure 1, panel I, plots the coefficients on market size decile, β
(k)
n . The primary takeaway

is that non-routine interactive and non-routine analytic tasks increase in market size, while

routine manual tasks decrease in market size. Jobs in population decile 10 have 0.24 s.d.

greater intensity of non-routine interactive tasks, 0.30 s.d. greater intensity of non-routine

9The Princeton Data Improvement Initiative (PDII) also permits within-occupation variation in measure-
ment, although with much smaller sample sizes and less granular geographic and task measures. In Appendix
A.5, we study the within-occupation correlation of tasks measured in the PDII and tasks measured in job
vacancies and find broad alignment between the two.
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analytic tasks, and 0.18 s.d. lower intensity of routine manual tasks relative to jobs in

decile 1. Panel II includes six-digit SOC fixed effects and shows that the gradients diminish.

This weaker gradient is unsurprising and indeed reassuring, since occupational categories

are designed to group jobs by their work activities. Nevertheless, even within occupations,

non-routine interactive and analytic tasks are mentioned more frequently (by 0.06 s.d. and

0.05 s.d., respectively), and routine manual tasks are mentioned less frequently (by 0.09

s.d.), in top population decile CZs relative to bottom decile CZs. Hence, while much of the

variation in job tasks across geography is captured by the composition of occupations, a

strong gradient remains even within occupations, which is missed in standard data sources

such as O*NET. Taking the ratio of the point estimate for decile 10 in Panel II relative to the

estimate for decile 10 in Panel I, about 16 percent of the gradient remains with six-digit SOC

fixed effects for non-routine analytic tasks and 26 percent remains for non-routine interactive

tasks. For routine manual tasks, about 53 percent of the gradient remains.10

Our findings deepen our knowledge of how work differs across labor markets of different

sizes, going beyond standard educational and occupational classifications. Bacolod et al.

(2009a) document that the urban wage premium is partly a premium on cognitive and

interactive skills and that there is no urban premium on physical skills. In related work,

Bacolod et al. (2009b) document that agglomeration increases the demand for interactive

skills and the opportunities for specialization. These papers use a hedonic model, worker-

level skill data, and occupation-level task data to study how the demand for tasks varies with

geography. In contrast, we directly observe how jobs themselves vary across labor markets

within occupations. We show that the extent to which occupations themselves vary across

CZs accounts for a sizable share of these premia.

In addition, Panels III through VI of Figure 1 show that jobs requiring a college degree

in large CZs are far more intensive in interactive and analytic tasks compared with those in

smaller CZs, while this gradient is flat for jobs requiring only a high school diploma. Both

within and between occupations, jobs in large CZs require different tasks of workers with

different education levels.

Finally, Figure C.1 shows that jobs that are jointly intensive in interactive and analytic

tasks represent a greater share in large markets. Jobs that are intensive in both analytic and

interactive tasks make up 12.4 percentage points more of jobs in the highest decile compared

with the lowest decile. Jobs that are intensive in only analytic tasks but not interactive

tasks make up only about 3.4 percentage points more of jobs in the highest decile. These

qualitative findings hold within occupations. In sum, the increasing importance over time of

10In Appendix C.1, we perform a decomposition to further evaluate how much of the variation in tasks
across geography is due to within- versus between-occupation variation in task content.
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jobs that are jointly analytic and interactive, as documented by Deming (2017), is mirrored

in these jobs’ overrepresentation in large labor markets.

Interactive Tasks Inside and Outside the Firm

Having demonstrated the importance of interactive tasks in large labor markets, we assess

the importance of interactions inside the firm relative to those outside.

We use task measures that map to O*NET task categories that separately measure ex-

ternal and internal interactive tasks.11 We regress each task-intensity measure on CZ size

deciles, with controls for ad length and, where indicated, six-digit SOC fixed effects. Figure 2

plots the coefficients on market size decile. This figure shows that both external and internal

interactive tasks increase with market size. Compared with ads in the bottom population

decile, ads in the top population decile mention internal interactive tasks (by 0.21 s.d.) and

external interactive tasks (by 0.26 s.d.) more frequently. When we include six-digit SOC

fixed effects, the gradients are 0.07 for both—about 30 percent as large.

Our results indicate that both types of interactive tasks increase with market size. As

far as we are aware, this is the first exercise to separately measure the CZ size gradient of

external and internal interactions. Moreover, in Figure C.2 we show that these gradients are

largely driven by jobs requiring a college degree.

These results provide direct evidence about the micro mechanisms behind the structure

of the firm and the spatial agglomeration of economic activity. Recent work, for example,

has emphasized how productivity gains at the firm level are related to the ability to facilitate

information flows within the firm (Garicano and Rossi-Hansberg, 2015), which we show hap-

pens more intensively in large labor markets. Other work, including Arzaghi and Henderson

(2008) and Davis and Henderson (2008), argues that communication across firms—either

among firms within the same industry or between customers and suppliers—is a key source

behind agglomeration of economic activity. More broadly, we add to the evidence discussed

in Davis and Dingel (2019) about cities as loci of interaction, showing that both internal

and external interactions matter, and that skilled workers are key to these information flows.

Underpinning all this work is the idea that large markets reduce the cost of face-to-face

meetings, facilitating tacit knowledge flows across economic agents (Storper and Venables,

2004). Our empirical evidence demonstrates that both theories emphasizing information

flows between and across firm boundaries are necessary to fully characterize labor markets,

11We define external interactive tasks as O*NET activities “Selling or Influencing Others” and “Com-
municating with Persons Outside Organization,” and we define internal interactive tasks as O*NET work
activities “Guiding, Directing, and Motivating Subordinates,” “Developing and Building Teams,” “Coach-
ing and Developing Others,”“Coordinating the Work and Activities of Others,” and “Communicating with
Supervisors, Peers, or Subordinates.” We list the word mappings in Appendix A.5.
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but with the proviso that the tacit knowledge flows shared in large CZs are primarily among

college-educated workers.

A Granular Approach to Measuring Tasks

Turning to our second approach to measuring tasks, we study the verb-noun pairs extracted

from the text. We estimate equation (1) separately for each of the tasks, and collect the

coefficients β̂
(k)
10 , which we normalize by dividing by the standard deviation of the task and

sorting by magnitude. Table 2 presents the largest positive and largest negative estimates

across all tasks, both with and without SOC f.e.

Our results echo, at a much higher resolution, what we found in Figure 1. Placing little

guidance on the categorization of tasks, and using the natural language of the job ad descrip-

tions to measure tasks, this exercise reveals that non-routine and abstract tasks have the

steepest positive gradient. Examples include “managing projects,”“problem-solving skills,”

and “developing strategies.” Communication and group interactions are important, too, as

illustrated by the gradients of“written communication”and“maintaining relationships.” The

tasks with the steepest negative gradient reflect more routine activities and emphasize fol-

lowing directions, including “operate cash-register,”“greeting customers,” and “maintaining

inventory.” Table 2 also shows the steepest positive and negative gradients with six-digit

SOC fixed effects and the patterns are similar. The correlation of task rankings with and

without SOC f.e. is 0.66.12

3.2 Technology Requirements Across Space

We next explore the importance of new technologies in large CZs and study how this rela-

tionship varies with the educational requirements of jobs.

We measure the technology requirements of a job by searching for each of O*NET’s

Hot Technologies. The list is originally derived from job postings and includes 180 different

technologies.13 Figure 3 presents a job ad-level regression of the number of technologies that

12For robustness, we report the steepest positive and negative gradients with respect to a continuous
measure of log population in Table B.5. In addition, we reproduce the table measuring tasks as verbs only
(from Michaels et al., 2018); see Table B.7. Both robustness exercises reveal a similar pattern of increased
abstract tasks, personal interactions, and teamwork in large CZs.

13We list the technologies in Appendix B.3. We retrieved this list from https://www.onetonline.org/
search/hot tech/ on August 27, 2019. The O*NET Hot Technologies are periodically updated. The initial
list contains 182 technologies, but we exclude R and C from our main analysis since they are likely to lead
to false positives. We also flag and exclude false positives of social media technologies (Facebook, YouTube,
and LinkedIn) in our main analysis, since these technologies are likely to be mentioned in the context of
encouraging the job applicant to visit the firm’s social media page. We describe our criteria for identifying
false positives of social media technologies in Appendix B.3. In Appendix B.5, we reproduce our main results
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are a job requirement, on CZ size deciles, controlling for log ad length. Panel I, estimated

without any occupational controls, shows that technological requirements increase with labor

market size. Panel II includes six-digit SOC fixed effects. In both, the gradient is stronger

for jobs requiring a college degree.

The results in Figure 3 provide three main conclusions. First, technology intensity is a

dimension along which work varies greatly across labor markets: A job in population decile

10 has 0.15 more mentions of technologies relative to a job in the lowest decile, which has

a mean of 0.09 mentions per ad. Second, the gap in technology intensity between college

and non-college work becomes larger with labor market size.14 Finally, a substantial fraction

of this correlation with market size—but crucially not all—is contained in differences in

occupations. The point estimate for decile 10 is 12 percent as large in Panel II as in Panel

I, implying that 12 percent of the CZ size premium reflects within-occupation differences.

We next examine gradients of individual technologies with market size. We estimate

equation (1), replacing the dependent variable with tech
(`)
jn , an indicator for job ad j being

located in market size decile n requiring technology `. We run this regression for each of

the 180 technologies, and sort by β
(`)
10 , after normalizing the estimates by dividing by the

standard deviation of tech
(`)
jn . The results are presented in Table 3. The technologies with

the steepest positive gradient with market size are Microsoft Excel, Python, JavaScript,

Microsoft Project, and Linux. Furthermore, both more established technologies, such as

the Microsoft suite, and newer ones, such as Ajax and Git, are more prevalent in larger

CZs. Jobs requiring a college degree have the steepest gradients for technologies involving

computer programming (e.g., Python, JavaScript, Linux), while jobs requiring a high school

diploma have the steepest gradients for technologies involving data entry and word processing

(e.g., the Microsoft Office suite).15

Our results complement the findings in the literature that new patents and new occupa-

tional titles appear with greater frequency in cities (Carlino et al., 2007; Lin, 2011). Unlike

prior work, our data allow us to observe technology use at the job-level, technology-by-

technology. Importantly, while new technologies are adopted more intensively by workers in

large CZs, we find a large education gap in technology adoption between college and non-

college workers, one that widens with CZ size.16 Hence, new technologies and education are

with R and C included in our list of technologies.
14In Appendix C.1, we show that our results are virtually unchanged if we study two approximately equal

time periods, which addresses the potential concern that gradients change over time due to technological
change.

15Table 3 omits technologies with the steepest negative gradient because the estimates are small in mag-
nitude and the vast majority are statistically insignificant.

16Spitz-Oener (2008) and Atalay et al. (2018) find that new technologies tend to complement analytic
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complements, and more so in large CZs.

3.3 Specialization in Tasks Across Space

In this section, exploiting our granular task measures, we provide a new and more detailed

measure of worker specialization: the dissimilarity in tasks that workers perform relative to

their peers within the same firm-market, industry-market, or occupation-market. We then

demonstrate that this measure of specialization increases with market size.

We first define distance between jobs in task space. We characterize each job j as a

vector of tasks, Tj, with each element corresponding to a distinct task. Each element takes

a value of one if job ad j’s description contains the corresponding task, and zero otherwise.

We normalize the task vectors to have unit length: Vj =
Tj√
Tj ·Tj

. The normalization ensures

that our measures of specialization are unaffected by job ad length.

The inner product between two task vectors is their cosine similarity, which takes a value

between zero and one. Intuitively, if two jobs have perfect overlap in tasks, their similarity

is one, and if they have no tasks in common, their similarity is zero. We define the task

dissimilarity between job ads j and j
′

as one minus their cosine similarity: djj′ = 1−Vj ·Vj′ .
We define specialization within a firm-market as the average task dissimilarity between

job ad j and other ads in the firm-market pair. For this analysis, we denote a firm f as a firm

name × six-digit industry NAICS code.17 Define djfm = 1 − Vjfm · V (−j)fm, where V (−j)fm

is the vector of task content in firm-market fm, averaged over all ads in the firm-market

excluding job ad j. If the term djfm is larger, job ad j has less overlap in task content

with other ads in the firm-market fm. At the firm level, the degree of specialization is

dfm = 1
nfm

∑
j∈fm djfm, where nfm is the number of job ads in the firm-market.18

Note that we can define task dissimilarity more generally, djcm = 1−Vjcm ·V (−j)cm, where

c may represent job ad j’s firm or its occupation. Below, we explore dissimilarity along these

two dimensions. We estimate the following regression:

dcm = α0 +
10∑
n=2

Dmnαn + x
′

cmδ + εcm, (2)

tasks. To the extent that analytic tasks are more intensive for college workers (compared to non-college
workers) we uncover here that these complementarities are stronger with CZ size.

17Cases where the same firm appears in two industries are rare, and therefore our results are essentially
unchanged when grouping by firm name only.

18In constructing the firm-market sample, we drop ads that contain zero tasks—approximately 15 percent
of ads—and ads that are singletons in the firm-market cell, another 4 percent. In constructing the occupation-
market sample, the respective numbers are 17 percent and 0.11 percent. The average number of job ads in
a firm-market cell is 8.3, and the median is 5.
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where dcm is the mean task dissimilarity in group c and market m (where c refers to either

firm or occupation), Dmn is an indicator that market m is in size decile n, and xcm are

our main controls averaged to the group-market cell. In specifications in which c refers to

occupation, xcm may also include occupation fixed effects.19

Figure 4 plots the estimates for αn. Panels I and II illustrate that task dissimilarity

within firms increases in market size, with a steeper gradient for nontradable sector firms,

which supports the classic theoretical point that the degree of specialization is limited by the

extent of the market. Since the market for tradable sector firms extends beyond their CZs,

the gradient of specialization with respect to local market size will be flatter for workers in

these sectors. Panels III and IV show that specialization within occupations is also increasing

in market size.

We perform several checks on the measurement of worker specialization and reexamine

the gradient in Appendix C.2. First, we note that some tasks are intuitively similar, such

as “provide feedback” and “provide recommendations.” We aggregate tasks with similar

meaning, using a modeling approach from natural language processing to group tasks, and

demonstrate the robustness of our results on specialization and CZ size. Within the same

appendix, we apply three exercises to investigate whether the sampling of job postings may

lead to measurement error in specialization measures, since small markets may have fewer

job ads in an occupation-market or firm-market cell.20

So far, we have demonstrated that workers are more specialized, within their firm or

occupation, in larger markets. The same is true for firms: The distance in task space among

firms within the same (six-digit NAICS) industry increases in market size. To see this, first

define the dissimilarity between firm f in industry i and market m and other firms in the

industry-market as dfim = 1−V fim ·V (−f)im. In this equation, V fim is the vector of average

tasks for the firm-industry-market, and V (−f)im is the vector of average tasks for all firms

other than f in the industry-market. For each industry-market pair, the average across-firm

specialization is dim = 1
nim

∑
f,m dfim; here, nim is the number of firms in industry i and

market m.

19In our analysis of specialization within occupations, we use four-digit (rather than six-digit) SOCs as
our unit of analysis, to have more job ads in cells with which to calculate task dissimilarity.

20First, we confirm that the patterns in Figure 4 are robust to controlling for the number of ads in the
cell (Figure C.11). Second, we reproduce Figure 4, panel A, for firm-markets with above the median number
of postings and for those with below the median number of postings (Figure C.12). The results for the two
groups look quite similar. Third, we do a placebo-type analysis of national chains and show that these chains
have a flattened specialization gradient, as we might expect given the relative homogeneous organizational
structure of national chains across space (see Figure C.13).
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We compare market size and between-firm specialization using the following regression:

dim = α0 +
10∑
n=2

Dmnαn + x
′

imδ + εim. (3)

Here, dim is the mean task dissimilarity in industry i and market m, Dmn is an indicator

that market m is in size decile n, and xim includes controls for the average (log) length among

ads posted by industry i firms in market m. In certain specifications, xim also includes

industry fixed effects. These industry-market regressions are weighted by the number of

firms in the cell.

Figure 5 presents our estimates. Firms are located further apart in task space in larger

markets, especially in nontradable industries.

These results together reveal that, as market size grows, so does within- and between-

firm task specialization. Our approach to measuring specialization has several advantages.

It is comprehensive, allowing us to go beyond case studies that focus on specific occupations

(e.g., Baumgardner, 1988; Garicano and Hubbard, 2009). We also complement the literature

that measures specialization as occupational diversity (Bacolod et al., 2009b; Duranton and

Jayet, 2011; Tian, 2019) in that we construct specialization measures based directly on job

tasks and are thus able to speak about specialization in tasks themselves.21 As we show in

Section 3.5, these differences have implications for wages.

3.4 Elasticities with Respect to Log Population

Our main figures present the intensity of tasks, technologies, and the degree of specialization

by market size deciles. Researchers may be interested in a single number that summarizes

the elasticity of each of these outcomes with respect to log population. We next present

elasticities of tasks with respect to a continuous measure of log population, following a two-

step procedure (Combes and Gobillon, 2015).

The first step is an ad-level regression of task intensity t
(k)
jn (or technology intensity, or

the degree of specialization) on controls (ad length and, where indicated, six-digit SOC fixed

effects) and CZ indicators. In the second step, we regress the CZ effects on log CZ population,

weighted by the number of ads in the cell. Table 4 reports the estimates resulting from this

second step. Most elasticities diminish with the inclusion of occupation fixed effects, but

important differences remain: About 29 percent of the elasticity for non-routine interactive

21In Appendix C.2, we show that a greater number of distinct job titles are present in larger labor
markets, and that “rare” job titles and occupation codes are over-represented in larger markets, reproducing
the findings of Duranton and Jayet (2011) and Tian (2019) in our data.
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tasks remains with SOC fixed effects, and about 15 percent of the elasticity for non-routine

analytic tasks remains. The elasticity for occupation-market specialization does not diminish

with SOC fixed effects.

3.5 Tasks, Technologies, and Wages

In previous sections, we have documented that interactive tasks, technology use, and worker

specialization all increase with CZ size.22 In this section, we demonstrate that earnings are

positively associated with these three factors and, as a result, help explain differences in

earnings observed between large and small CZs.

We estimate:

log(wage)om = γ0 + γ1tom + γ2techom + γ3dom + γ4baom + ξo + εom. (4)

In equation (4), tom is the occupation-market sum of internal and external interactive

tasks, normalized to have mean zero and standard deviation one across jobs; techom is the

mean number of technological requirements in the occupation-CZ pair; dom is the mean task

dissimilarity within each occupation-CZ; and baom is the fraction of employed workers in

the occupation-CZ with a four-year college degree (henceforth, BA) or above (computed in

the ACS). Finally, we include four-digit occupation fixed effects, ξo, in some specifications

to highlight the role of tasks and technologies in accounting for within-occupation wage

differences across markets.23

One should be cautious in interpreting the γ coefficients as causal, since, for example,

workers may sort endogenously into occupations by unobservables in local labor markets that

may correlate with wages. However, to the extent that these parameters are statistically and

economically significant, they convey suggestive evidence that job tasks and technologies are

a mechanism behind the CZ size premium. In addition, they demonstrate the value of using

job ad text to measure job characteristics beyond occupational categories.

Table 5 reports the results. Column 1 shows that a one-standard-deviation increase in

interactive tasks is associated with an increase in wages by approximately 12.5 percent, while

22We have also documented that analytic tasks increase with CZ size. In what follows, we only focus on
three key channels— interactive tasks, technologies, and specialization—motivated by the theories we have
discussed earlier in the paper and to have a parsimonious accounting of the wage premium.

23Our preferred specification excludes CZ fixed effects, since our aim is to account for differences in wages
across CZs of different sizes, an exercise that the inclusion of CZ fixed effects would preclude. Nevertheless,
Appendix C.3 presents the results with CZ fixed effects, showing that, consistent with Adam Smith’s theory,
which works through market size, the relationship between specialization and wages is diminished, although it
remains significant for white-collar occupations. Technology intensity remains significantly positively related
to occupation-CZ wages.
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a 0.1 increase in the number of technology mentions increases wages by 3.8 percent. A one-

standard-deviation increase in task dissimilarity is associated with an increase in wages by

2.6 percent. Adding SOC fixed effects (in column 2) and controls for education (in column

3) each weaken the coefficients on interactive tasks and technologies, but these estimates

remain economically and statistically significant. These results emphasize the importance

of measurement within occupational categories for understanding wage inequality across

geography.

Columns 4-7 re-estimate equation (4) separately by occupational category. We classify

workers into white-collar and blue-collar workers by two-digit SOC, as described in the

table note.24 Within-occupation differences in interactive tasks play an important role in

accounting for the wage premium, particularly for white-collar occupations. Similarly, white-

collar workers have a within-occupation premium for technological requirements, while blue-

collar workers do not. Lastly, within occupation-CZ task dissimilarity is associated with a

wage premium for white-collar occupations, but is not for blue-collar occupations.25

We use these coefficient estimates to gauge the importance of interactive tasks, technolo-

gies, and worker specialization in accounting for the market size premium. After controlling

for occupation fixed effects, workers in the top population decile have wages that are 27.4 log

points higher than those in the bottom decile. The intensity of the interactive task measure,

aggregating internal and external interactions, is approximately 0.15 standard deviations

higher in top relative to bottom decile CZs. Hence, column 2 of Table 5 indicates that inter-

active tasks account for 0.48 (≈ 0.15 ·0.032) log points of the within-occupation difference in

wages for workers living in top and bottom population deciles. Specialization in top decile

CZs is 1.30 standard deviations greater than in bottom decile CZs (Figure 4, panel IV). Our

specialization measure accounts for 4.0 (≈ 1.30 · 0.031) log points of the difference in wages

for workers living in top and bottom population deciles (Table 5, column 2). The technology

measures account for an additional 0.98 (≈ 0.03 · 0.328) log points, where the 0.03 comes

from the estimate reported in Figure 3, panel II. Together, the three variables account for

20 percent (≈ 5.5/27.4) of the CZ size-wage premium. Furthermore, using the coefficient

estimates from column 4, the three measures account for 22 percent (8.5 log points) of the

38.2 log point CZ size-wage premium in white-collar occupations.26 In sum, our interactive

24We analyze white- and blue-collar occupations to study two occupation groups that have, respectively,
higher-educated and lower-educated workers. This analysis relies on subgroups at the occupation level (and
not according to education), since specialization measures are defined at the occupation-market level.

25Wages are available only in a subsample of job ads in the Burning Glass data. We discuss the selection
of job ads with posted wages in Appendix C.5. Despite these selection concerns, we reproduce Table 5 using
wage data from Burning Glass in Table C.12 and find similar estimates.

26Between top and bottom population deciles, the white-collar interactive task gap is 0.20 standard
deviations, the technology gap is 0.045 mentions, the task dissimilarity gap is 1.06 standard deviations, and
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task, technology, and specialization measures account for a substantial portion of the CZ

size-wage premium as well as the steeper CZ size-wage premium for highly skilled workers

that exists within occupations.27

4 Interpretation of Our Results

Our main result is that jobs are fundamentally different in large CZs. They involve more

human-to-human interaction, greater use of information and communication technologies,

and increased worker specialization. Moreover, these differences are more pronounced for

higher-educated workers, and their association with wages are larger for higher-skilled, white-

collar occupations.

An ongoing debate in the labor literature is whether the market size premium primarily

reflects the sorting of workers (Card et al., 2021) or the productivity benefits of workers’

locations (De la Roca and Puga, 2017), with significant implications for the effectiveness

of place-based versus worker-based policies (Kline and Moretti, 2014). A key limitation of

existing research is that even the best administrative datasets in the U.S., such as the Longi-

tudinal Employer-Household Dynamics program used in Card et al. (2021), lack information

on the content of work activities. Our paper adds to this debate: Jobs themselves differ, and

the CZ size-wage premium is not just a reflection of workers’ unobservable characteristics.

To the extent that the selection of workers is important—e.g., workers with communication

skills or greater facility with new technologies may sort into large CZs—our paper provides

evidence that this sorting is a response to demand.28

Our results offer insight not only into the sources of the CZ size gradient, but also into

why the gradient differs according to workers’ education. There is limited evidence on the

mechanisms behind the college-non-college gap in the CZ size premium because existing data

sources do not allow researchers to comprehensively measure the content of jobs separately by

worker education. We show that while college workers have a positive gradient for interactive

tasks and the adoption of new technologies, these gradients are flat for non-college workers.

the wage gap is 38.2 log points. Thus, using the estimates from Table 5, the three components account for
(0.20 · 0.047 + 0.045 · 0.35 + 1.06 · 0.056)/0.382 ≈ 22.2% of the wage gap between bottom and top population
decile CZs.

27The corresponding calculations conditional on education (Table 5, columns 3 and 5) imply that in-
teractive tasks, technologies, and specialization measures account for 16.1 percent of the 16.7 log point
conditional CZ size-wage premium, and 16.6 percent of the 24.4 log point conditional CZ size-wage premium
for white-collar workers.

28While employers undoubtedly respond to supply conditions, and the job description content may reflect
these conditions, the fact that employers explicitly mention interactive tasks and technologies suggests that
employers demand these types of workers.
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In addition, our wage regressions show that these three mechanisms are far more important

for white-collar occupations than for blue-collar occupations.

Lastly, our results provide the most direct empirical evidence to date that the degree of

worker specialization increases with market size and is an important component of the CZ

size-wage premium. While the relation between specialization and productivity is one of the

oldest ideas in economics, direct measurement of specialization has remained elusive. The

state-of-the-art method is to count the number of distinct, or rare, occupations in a market

without directly using information on tasks. Our approach provides finer measures and

allows us to measure within- and between-firm specialization using a common methodology.

Our empirical evidence shows that both coordination within firms and worker specialization

increase together with market size, lending empirical support to the theoretical insight of

Becker and Murphy (1992).

5 Conclusion

By applying tools from natural language processing to rich textual data from online job

ads, we examine in detail the differential task and technology content of jobs between large

and small commuting zones. We also characterize the relationship between market size and

specialization. We have shown that the task content of occupations is critical to understand-

ing why average wages and the skill premium rise with CZ size. Application of the type

of fine-grained analysis we develop in this paper can shed light on a large set of economic

phenomena, ranging from the limits to human capital mobility across regions to the design

of policies aimed at enhancing labor market fluidity.
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Figures and Tables

Figure 1: Tasks and Market Size

I. All Ads without SOC f.e. II. All Ads with SOC f.e.

III. BA or Above without SOC f.e. IV. BA or Above with SOC f.e.

V. HS Only without SOC f.e. VI. HS Only with SOC f.e.

This figure presents estimates of equation (1). We control for log total ad words and, in the right panels,

six-digit SOC fixed effects. The dependent variable is task intensity. Standard errors are clustered at the

CZ level.
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Figure 2: O*NET Interactive Tasks Gradient

I. Without SOC f.e. II. With SOC f.e.

This figure presents estimates of equation (1). We control for log total ad words and, in the right panel,

six-digit SOC fixed effects. The dependent variable is task intensity. Standard errors are clustered at the

CZ level.

Figure 3: The Technology Gradient

I. Without SOC f.e. II. With SOC f.e.

The dependent variable is the number of O*NET Hot Technologies mentioned in the ad, which is regressed

on a vector of deciles for CZ size. For reference, the 1st population decile mean is 0.09 across all job ads,

0.25 for BA or above, and 0.08 for HS only. We control for log total ad words. Panel II includes six-digit

SOC fixed effects. Standard errors are clustered at the CZ level.
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Figure 4: Specialization Gradient: Task Dissimilarity Within Firms and Occupations

A. Firms
I. All II. Tradable Versus Nontradable

B. Occupations

III. Without SOC f.e. IV. With SOC f.e.

The figure presents estimates of equation (2) and studies how task dissimilarity within the firm (panel A)

and within the occupation (panel B) vary with market size. Panel A uses the firm-market sample, and the

dependent variable is the mean task dissimilarity in the firm-market, while panel B uses the occupation-

market sample, and the dependent variable is mean task dissimilarity in the occupation-market. We control

for log total ad words, which is averaged at the cell level. Firm-market regressions are weighted by number

of ads in the cell; occupation-market regressions are weighted by ACS employment in the cell. Standard

errors are clustered at the CZ level. For reference, the 1st population decile mean for the top left panel is

-0.52; for the top right panel, it is -0.55 for the nontradable sample, and it is -0.06 for the tradable sample.

The 1st population decile mean for the bottom two panels is -1.03. We define tradable by two-digit NAICS

code: agriculture, forestry, fishing and hunting (11), mining, quarrying, and oil and gas extraction (21), and

manufacturing (31-33).

27



Figure 5: Specialization Gradient: Task Dissimilarity Across Firms

I. All II. Tradable Versus Nontradable

III. All with NAICS f.e. IV. Tradable Versus Nontradable with NAICS f.e.

The figure presents estimates of equation (3). The panels above use the industry-market sample, and the

dependent variable is the mean task dissimilarity in the industry-market. We control for log total ad words,

which is averaged at the cell level. The industry-market regressions are weighted by number of firms in the

cell. Standard errors are clustered at the CZ level.
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Table 1: Most Common Tasks for Selected Occupations

Electricians Supervisors of Retail Sales Registered Nurses Lawyers

Rank Task Mean Task Mean Task Mean Task Mean

1 use hands 0.1230 provide customer service 0.2973 providing care 0.1564 written communication 0.1497

2 build relationships 0.0990 assist store 0.2082 continuing education 0.0858 providing support 0.0928

3 written communication 0.0940 written communication 0.1643 written communication 0.0682 working team 0.0665

4 ensure compliance 0.0933 ensure stores 0.1483 provides quality 0.0597 meet requirements 0.0580

5 perform maintenance 0.0787 maintain store 0.1435 demonstrate knowledge 0.0462 provide service 0.0517

6 lift lbs 0.0571 driving sales 0.1269 working team 0.0411 writing skills 0.0463

7 work shift 0.0518 closes store 0.1258 provide service 0.0408 provide guidance 0.0451

8 preferred ability 0.0429 assisting customers 0.1251 develop planning 0.0393 ensure compliance 0.0417

9 lifting pounds 0.0417 maintaining inventory 0.1243 establish policies 0.0358 conducting research 0.0365

10 provides leadership 0.0383 lifting pounds 0.1048 making decisions 0.0338 meet deadlines 0.0306

N 8,073 320,882 241,859 14,400

The table above lists the most common verb-noun pairs and their mean frequency per ad for each of four

occupations: Electricians (47-2111), Supervisors of Retail Sales (41-1011), Registered Nurses (29-1141), and

Lawyers (23-1011). The number of job ads for each occupation is reported in the bottom row.
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Table 2: Tasks with the Steepest Gradient: Extracting Tasks Directly from Ads

Positive Gradient

No SOC f.e. SOC f.e.

Task β̂10 Task β̂10

written communication 0.1619 achieving sales 0.0712

managing projects 0.1170 ensure safety 0.0699

meet deadlines 0.1077 written skills 0.0585

providing support 0.0973 driving sales 0.0579

maintaining relationships 0.0959 stand walk 0.0575

written skills 0.0931 exceed sales 0.0554

problem solving skills 0.0893 providing environment 0.0536

working relationships 0.0864 providing coaching 0.0510

develop business 0.0834 prioritize tasks 0.0510

developing strategies 0.0759 working relationships 0.0506

identify opportunities 0.0758 according company 0.0503

prioritize tasks 0.0751 handle tasks 0.0492

develop relationship 0.0737 using eye 0.0474

make recommendations 0.0733 including nights 0.0452

support business 0.0730 meet sales 0.0450

Negative gradient

No SOC f.e. SOC f.e.

Task β̂10 Task β̂10

maintain store -0.1767 maximizes profitability -0.1607

maximizes profitability -0.1703 protect company -0.1504

operating cash register -0.1654 maintain store -0.1340

protect company -0.1646 operating cash register -0.1252

make changes -0.1417 make changes -0.1233

provide customer service -0.1393 greeting customers -0.1093

preventing trafficking -0.1383 procedures cash -0.1077

greeting customers -0.1346 skating carhop -0.1064

skating carhop -0.1337 ensure employees -0.1035

procedures cash -0.1260 unloading trucks -0.1017

maintaining inventory -0.1235 drive in employees -0.0984

assist store -0.1210 maintaining inventory -0.0948

unloading trucks -0.1206 assigned store -0.0862

ensure employees -0.1136 working store -0.0856

drive in employees -0.1108 provide customer service -0.0840

We estimate equation (1) separately for each task, without any controls, and again with six-digit SOC f.e.

We normalize the estimates by dividing by the standard deviation of the task. The table above presents

the tasks with the steepest positive and negative gradients with respect to market size, as captured by β̂10,

which reflects the difference between the 10th and 1st decile market size. All coefficients are statistically

significant at the 1 percent level. The correlation between the task rankings, with and without SOC f.e., is

0.66.
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Table 3: Technologies with the Steepest Gradient

All

Technology β̂10

Microsoft Excel 0.1147

Python 0.0863

Javascript 0.0853

Microsoft Project 0.0805

Linux 0.0803

Microsoft Word 0.0761

Microsoft Office 0.0742

SAP 0.0709

Microsoft Access 0.0697

Microsoft Powerpoint 0.0691

Microsoft Outlook 0.0645

MySQL 0.0610

Unix 0.0605

SAS 0.0592

Geographic Information System (GIS) 0.0584

College

Technology β̂10

Python 0.1050

Geographic Information System (GIS) 0.1043

Microsoft Excel 0.0924

Javascript 0.0875

Linux 0.0757

Microsoft Project 0.0743

SAS 0.0726

Git 0.0691

Microsoft Access 0.0680

MySQL 0.0627

Microsoft Powerpoint 0.0624

Unix 0.0587

Microsoft Office 0.0586

Ruby 0.0579

Tax Software 0.0566

High School

Technology β̂10

Microsoft Excel 0.0717

Microsoft Outlook 0.0536

Microsoft Word 0.0450

Microsoft Office 0.0431

React 0.0297

Microsoft Access 0.0242

Microsoft Powerpoint 0.0237

Objective C 0.0216

Tax Software 0.0212

Facebook 0.0210

Youtube 0.0209

Swift 0.0191

Python 0.0186

Epic Systems 0.0174

Yardi 0.0167

We estimate equation (1) where the dependent variable is a specific technology requirement, excluding

controls. We estimate this regression separately for each O*NET technology. All coefficients are normalized

by dividing by the standard deviation of the technology. We report the technologies with the steepest positive

gradient with respect to market size, β̂10, which reflects the 10th decile technology intensity relative to the

1st decile. All estimates are statistically significant at the 5 percent level, with the following exceptions in

the High School column: React (p = 0.45) and Swift (p = 0.38).
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Table 4: Coefficients with Respect to Log Population

All BA or above HS only

No SOC f.e. SOC f.e. No SOC f.e. SOC f.e. No SOC f.e. SOC f.e.

Non-routine analytic 0.086 0.013 0.069 0.012 0.004 0.001
(0.003) (0.001) (0.003) (0.002) (0.001) (0.001)

Non-routine interactive 0.051 0.015 0.048 0.017 -0.004 -0.000
(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)

Non-routine manual -0.010 -0.003 -0.024 -0.011 -0.001 0.005
(0.001) (0.001) (0.002) (0.002) (0.002) (0.002)

Routine cognitive 0.012 -0.004 0.013 -0.001 -0.011 -0.017
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001)

Routine manual -0.044 -0.021 -0.030 -0.022 -0.047 -0.027
(0.002) (0.001) (0.002) (0.001) (0.002) (0.001)

O*NET Internal Interactive 0.048 0.015 0.020 0.003 0.006 0.009
(0.001) (0.001) (0.002) (0.002) (0.001) (0.001)

O*NET External Interactive 0.059 0.019 0.059 0.014 0.015 0.012
(0.001) (0.001) (0.002) (0.002) (0.001) (0.001)

Technologies 0.053 0.008 0.076 0.013 0.010 0.004
(0.002) (0.001) (0.004) (0.001) (0.001) (0.000)

Specialization (SOC-CZ) 0.238 0.248
(0.006) (0.007)

Non-Tradable Tradable

Specialization (Firm-CZ) 0.174 0.164
(0.004) (0.007)

This table presents elasticities of tasks, technologies, and the degree of specialization with respect to log

population. We adopt a two-step procedure, in which the first step is an ad-level regression of task intensity

t
(k)
jn (or technology intensity, or the degree of specialization) on controls (ad length and, where indicated,

six-digit SOC fixed effects) and CZ indicators. In the second step, we regress the CZ fixed effects on log CZ

population, weighting by the number of job ads in the CZ. We report the slope estimate in the second step

along with the standard error (in parentheses). Each coefficient is a separate regression.
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Table 5: Task Dissimilarity, Technologies, Interactive Tasks, and Wages

All White-collar Blue-collar

(1) (2) (3) (4) (5) (6) (7)

Interactive 0.125∗∗∗ 0.032∗∗∗ 0.007∗∗ 0.047∗∗∗ 0.006 0.026∗∗∗ 0.021∗∗∗

tasks (0.007) (0.006) (0.003) (0.010) (0.005) (0.005) (0.004)

Technology 0.381∗∗∗ 0.328∗∗∗ 0.108∗∗∗ 0.353∗∗∗ 0.106∗∗∗ 0.017 0.004
requirements (0.013) (0.040) (0.018) (0.045) (0.021) (0.023) (0.022)

Task 0.026∗∗∗ 0.031∗∗∗ 0.018∗∗∗ 0.056∗∗∗ 0.033∗∗∗ 0.003 0.000
dissimilarity (0.003) (0.003) (0.002) (0.005) (0.003) (0.003) (0.003)

BA or above 1.452∗∗∗ 1.476∗∗∗ 0.988∗∗∗

(0.087) (0.088) (0.135)

SOC f.e. No Yes Yes Yes Yes Yes Yes
Number of observations 45,889 45,889 45,889 24,720 24,720 11,465 11,465
R2 0.261 0.883 0.927 0.845 0.918 0.724 0.745
Mean of dependent var. 10.793 10.793 10.793 10.989 10.989 10.585 10.585
Mean task dissimilarity 0.000 0.000 0.000 0.152 0.152 -0.179 -0.179
Mean technology requirements 0.157 0.157 0.157 0.224 0.224 0.043 0.043
Mean interactive tasks 0.000 0.000 0.000 0.435 0.435 -0.919 -0.919
Mean BA or above 0.363 0.363 0.363 0.518 0.518 0.075 0.075

The unit of observation is the occupation-market. The dependent variable is log wages, regressed on the sum

of external and internal tasks (normalized to have mean zero and standard deviation one across jobs), mean

number of technologies, occupation-market task dissimilarity (normalized to have mean zero and standard

deviation one across jobs), the fraction of workers with a BA or above, a control for log total ad words, and,

where indicated, four-digit SOC fixed effects. Regressions are weighted by employment. Standard errors

are clustered at the CZ level. Occupations are classified into blue-collar and white-collar by two-digit SOC

as follows. Blue-collar: farming, fishing and forestry (45); construction and extraction (47); installation,

maintenance and repair (49); production (51); and transportation and material moving (53). White-collar:

management, business, and finance (11–13); professional (15–29); sales (41); and office and administrative

support (43). *** indicates a p-value less than 1%, ** a p-value between 1% and 5%, and * a p-value between

5% and 10%.
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