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Abstract

This note expands on the Multinomial Pseudo Maximum Likelihood (MPML) grav-

ity model developed by Eaton, Kortum, and Sotelo (2012) and its relation with Poisson

PML, a widely used estimator for gravity equations in the trade literature. It exploits

the relation between Multinomial and Poisson random variables to show that (i) MPML

and Poisson PML produce the same estimates if the latter includes destination fixed

effects; (ii) MPML is easily implemented based on widely available software, and (iii)

when using PML methods to estimate gravity models, specifying the dependent vari-

able as shares or as levels amounts to assigning different weights to each importer

country. Finally, I illustrate these findings using trade data.
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∗E-mail: ssotelo@umich.edu. This is a revised version of notes dated June, 2012. I would like to thank

Andrei Levchenko, Sam Kortum, Jonathan Eaton, and Sara Heller for useful comments. All remaining errors
are my own.
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1 Introduction

Eaton, Kortum, and Sotelo (2012) – EKS, henceforth – develop a model of firm participation

in international trade which features a finite number of firms. The model in EKS delivers a

gravity-type relation for aggregate bilateral trade shares, which they estimate using a Pseudo

Maximum Likelihood estimator based on the Multinomial distribution (MPML). This note

explains three aspects of the implementation of MPML and illustrates them using trade

data. First, I show that MPML and Poisson PML, widely used in the trade literature to

model bilateral flows, provide the exact same estimates of the parameters of interest, if

the PPML specification includes a full set of destination dummies. This result is important

because, in the international trade context, including destination dummies is often the correct

specification. To show this equivalence I exploit the relation between the Multinomial and

Poisson PDFs. These relation between these two distributions is well known in the literature

but, to the best of my knowledge, it has not been used to provide this explicit link between

PPML and MPML.1

Second, building on this equivalence, I show an easy way to implement the MPML

estimator using readily available routines. When used on trade data, this implementation

boils down to using the Poisson PML estimator with trade shares as dependent variables and

including a full set of destination dummies among the regressors. The MPML estimation

routine is usually not available out of the box, while the PPML routine is. Hence, the

approach I explain here can be quite useful to practitioners. 2

Third, I argue that the difference between estimating a gravity model for trade shares (as
1Guimaraes, Figueiredo, and Woodward, 2003 establishes the equivalence between the Poisson likelihood

and the likelihood of a conditional logit (up to a constant). In a panel setting, Hausman, Hall, and Griliches,
1984 show that counts over time, for a given observation, are jointly distributed multinomial if each period
the counts are distributed Poisson. Cameron and Trivedi, 1998, using the approach I use later, show that
the Poisson model with fixed effects does not suffer from an incidental parameters problem. I thank two
anonymous referees for pointing me to this literature.

2To the best of my knowledge, MPML is not yet available in Stata or R. Poisson PML, however, can
be obtained in many ways: either using the poisson and ppml commands in Stata (see Silva and Tenreyro,
2011), or using Generalized Linear Models in Stata or R. Two recent new commands poi2hdfe (Guimaraes,
2016) and ppmlhdfe(Correia, Guimaraes, and Zylkin, 2019), offer substantial spped gains and behave well
in the presence of a large number of fixed effects.
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in EKS) and estimating it on levels (while including fixed effects) can be seen as a difference

in how observations are weighted in their contribution to the score vector. In thinking about

bilateral trade, it turns out that both estimators compute the contribution of each destination

country to the score in the same way; the difference is that a levels specification gives more

importance to large countries, while a shares specification treats them all equally. This fact

helps explain why the corresponding estimates are different in finite samples, where countries

differ substantially in their total expenditures. Finally, using trade data, I illustrate that

these different weighting schemes can lead to sizable differences in parameters of interest.

Recently, the quantitative trade literature has devoted much attention to the correct

specification of errors in gravity-type regressions and to the performance of PML estimators

compared to traditional alternatives. In part, this interest is due to an influential paper

by Santos Silva and Tenreyro (2006), who warn against log-linearizing non-linear models to

estimate them by OLS, because this approach can produce inconsistent estimates even under

relatively mild conditions. They propose the Poisson PML estimator as an alternative with

many desirable properties. Santos Silva and Tenreyro (2011) provides further evidence on

those properties. Fally (2015) shows that Poisson PML automatically satisfies the adding

up constraints imposed by general equilibrium and that, furthermore, with the fixed effects

one recovers theory-consistent multilateral further evidence on those properties. Head and

Mayer (2014) present a detailed survey of the literature on new estimation techniques for

gravity models, including MPML and other work that Santos Silva and Tenreyro spurred.

As shown by Gourieroux, Monfort, and Trognon (1984), both PPML and MPML will yield

consistent estimates of the first-moment parameters, provided that the conditional expec-

tation is correctly specified. In fact, as I show in this note, they are identical for certain

specifications.
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2 How to Implement the Multinomial PML Estimator

In this section I present the well-known link between the densities of Multinomial and Poisson

random variables. I then show that, a PML estimator based on the Multinomial likelihood

will be identical to one based on the Poisson likelihood, if the latter includes a full set of

dummies. Next I show that, evaluating with trade shares the first order conditions arising

from either likelihood, one can estimate the model in EKS. This equivalence is especially

useful if the Poisson routine is readily available, and the MPML routine is not. To avoid

programming the latter directly, we instead “trick” a Poisson estimator into doing the job,

by adding destination fixed effects and treating trade shares as the dependent variable.

2.1 The Trade Model

In the EKS model, the expected share of imports in destination n from source i, conditional

on observables, is

E [sni] = ϕni∑N
k=1 ϕnk

, (1)

for a set of N countries. In equation (1), sni = Xni/Xn, i.e., imports in n from i, divided

by total spending in n; and ϕni contains observables and parameters related to the ease

with which i exports to n. This expectation considers both the randomness induced by

the existence of a finite number of exporters from i selling in n and by the unobservable

components of trade costs.

2.2 The Multinomial Likelihood Approach

Consider a vector of observations {yni}i=1,...,N , for a given destination n. If this vector were

drawn from a multinomial distribution with parameters {ϕni/
∑

k ϕnk}i=1,...,N , its density

would be:

fM ({yni}i ; {ϕni}i) = I!
yn1! . . . ynN !

N∏
i=1

(
ϕni∑
k ϕnk

)yni

(2)
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where ∑i yni = I. The temporary change in notation to yni highlights that the vector of

trade shares sni cannot be distributed as a multinomial variable, because trade shares are

not integers.3

The log-likelihood for the complete sample is

LM
(
{ϕni}n,i ; {yni}n,i

)
=

N∑
n=1

N∑
i=1

yni log
(

ϕni∑
j ϕnj

)
+ k1 (3)

where k1 is a constant that does not depend on parameters. Thus one can ignore the constant

k1 when maximizing LM to estimate the parameters contained in ϕni. Moreover, ignoring k1

one can evaluate this objective function using shares sni as a dependent variable, since the

objective function no longer restricts the data to be counts.

2.3 The Poisson Likelihood Approach

In practice, we exploit a Poisson (P) likelihood, with destination fixed effects (Dn). Suppose

we treat a single observation for n and i, yni, as drawn from a Poisson distribution with

mean Dnϕni. The probability of observing yni is

fP (yni;ϕni, Dn) = (Dnϕni)yni exp (−Dnϕni)
yni!

.

The log-likelihood for the complete sample then:

L̃P
(
{ϕni, Dn}n,i ; {yni}n,i

)
=

N∑
n=1

N∑
i=1

yni logDn +
N∑

n=1

N∑
i=1

yni logϕni −
N∑

n=1

N∑
i=1

Dnϕni + k2,

3As will become apparent later, all we actually need is that the conditional expectation of the model be
correctly specified. This is the insight in Gourieroux, Monfort, and Trognon (1984). The appendix includes
all derivations.
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where k2 is also a constant. The first order condition of the log-likelihood with respect to

the destination fixed effect yields:

D̂n = 1∑N
i=1 ϕni

.

Substituting D̂n back into the log-likelihood, we obtain the concentrated likelihood function:4

LP
(
{ϕni}n,i ; {yni}n,i

)
=

N∑
n=1

N∑
i=1

yni log
[

ϕni∑N

j=1 ϕnj

]
+ k2 (4)

A comparison of (3) and (4) makes clear that LP differs from LM only by an additive

constant, so the likelihoods are proportional. They will therefore yield the same first order

conditions for the parameters contained in ϕni. This implies a first important result: the

Multinomial PML and the Poisson PML (when the latter includes a full set of fixed effects)

produce exactly the same estimator.

2.4 The First Order Conditions

Let ϕni = exp (β′zni) contain all the parameters βk and the corresponding explanatory

variables zni,k, for k = 1, . . . , K. The first order conditions obtained from either log-likelihood

(3) or (4) define the estimates of β:

N∑
n=1

In

{
N∑

i=1

[
yni

In

− ϕ̂ni∑N
k=1 ϕ̂nk

]
zni

}
= 0, (5)

where, recall, In ≡
∑N

i=1 yni, and ϕ̂ni = exp
(
β̂′zni

)
. Again, the fact that both approaches

produce the same first order conditions reveals that the estimators coincide.
4This use of the concentrated likelihood to relate the Poisson and the Multinomial likelihood is the same

as in Cameron and Trivedi (1998), Ch. 9.
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2.5 Implementation in EKS

Let us now relate these first order conditions to the EKS model. Evaluating the first order

conditions (5) at the trade shares, i.e. setting yni = sni and In = 1, we obtain:

N∑
n=1

N∑
i=1

[
sni −

ϕ̂ni∑N
k=1 ϕ̂nk

]
zni,k = 0. (6)

Inspection of equation (6) reminds us that, if the expectation given by equation (1) is

correctly specified, one can use these first order conditions – evaluated at sni – to obtain

consistent estimates for the parameters in ϕ.

In practice, EKS estimate β using a Poisson estimator, with a full set of destination

dummies, using trade shares as dependent variables, because Poisson PML routines are

readily available. But it should be clear at this point that doing so is equivalent to applying

the MPML estimator to trade shares data. Further, since the data satisfies the normalization∑
i sni = 1, one can think of the destination dummies Dn as ensuring that the import shares

of country n add up to one. The adding-up property of the Poisson estimator with fixed

effects has been studied by Fally (2015).

3 MPML and PPML as Different Weighting Schemes

In this section, we take a step back and study a general PPML estimation problem in the

presence of destination fixed effects. Doing so shows that the difference between modeling

shares and levels can be understood as a difference in weighting schemes.

Suppose now that we are interested in a random variable variable Xni ≥ 0, which we

model as

E [Xni|zni; γ] = Dnφni, (7)

where φni = exp (γ′zni). For concreteness, suppose that Xni is the imports of destination

n from source i. Note that we have included destination fixed effects, Dn. Whether they
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should be included depends on the model being estimated, but destination fixed effects arise

naturally in many trade models that deliver a structural gravity equation, capturing the

multilateral resistance terms (in the case of the destination, interpretable as a price index.

See, e.g. Head and Mayer, 2014).

There are is a tight link between this model and that of EKS. First, note that equation

(7) specializes to equation (1), with Dn = 1/∑k φnk and sni as a dependent variable. Second,

in the EKS model, by conditioning on total spending in n (as well as all other observables),

one could also compute an expectation for trade flows that has the form of equation (7),

with Dn = Xn/
∑

k φnk.5

To better understand the difference between specifying a model in shares and specifying

it in levels, suppose we estimate the model in equation (7) via PPML. The resulting first

order conditions, obtained by evaluating (5) at yni = Xni, define γ̂ and are given by6

∑
n

Xn

∑
i

sni −
φ̂ni∑
k φ̂nk

 zni,k

 = 0, (8)

where φ̂ni = exp (γ′zni).where

By comparing (6) and (8), the difference between the two estimators becomes clear. The

contribution of each importer’s observations to the score is computed in the same way in

both estimators (the expression in curly brackets in equation 8). The difference is in how

those contributions are weighted in the final calculation of the score. When applying PPML

to trade flows, Xni, the weight is the sum of the dependent variable for that importer, Xn,

whereas it is equal to one in the MPML approach. In other words, specifying the equation

on trade flows induces the estimator to try harder to fit the data for countries with larger

total spending, Xn, whereas specifying it on trade shares treats all countries equally.
5This statement clarifies footnote 24 in EKS, by showing that, in fact, their model also produces a gravity

relation for trade levels.
6To obtain these conditions we follow the concentrated log-likelihood approach as before.
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4 Application to Trade Data

In this section we draw the implications from our previous results for common empirical

specifications in trade, and provide an example with trade data. In common empirical

gravity specifications, an additional implication follows. If φni includes a destination-specific

trade impediment – i.e., a shifter that uniformly affects destination n’s costs of importing

from other countries – the MPML model will fit the home trade share perfectly.7 This form

of trade impediment is implied in Eaton and Kortum’s (2002) empirical gravity formulation.

The reason is that, as shown in the Appendix, such an impediment will also make the

model fit perfectly the partial sum of purchases, excluding home purchases, ∑i 6=n Xni. In

the presence of destination dummies Dn, which ensure that the model fits ∑i Xni perfectly,

the implication is that the model fits the home purchases, Xnn, perfectly. In this case, as

gleaned from equation (6), the home observation does not contribute to the identification of

bilateral trade barriers.

Next, consider a model that includes both destination and source dummies, Dn and Si,

as in

E [Xni|zni; γ] = DnSiφni.

In this setup, including a destination-specific import cost or including a source-specific export

cost8 will yield numerically identical estimates for the coefficients on bilateral covariates.

Both specifications will also yield the exact same predicted values for all observations. The

reason is that, in both specifications, the model will fit exactly: (i) total sales and purchases

of each country, and (ii) the home sales observation. Hence, both formulations produce

equivalent first order conditions, for the identification of coefficients on bilateral impediments.

Appendix B provides details on this equivalence. However, as shown by Waugh (2010),

the formulation that includes source-specific exporting costs is preferable because it better

accounts for differences in the costs of living between rich and poor countries.
7In the formulation above, if φni = mn exp (γ′zni) if n 6= i and φni = exp (γ′zni) if n = i.
8The exporter-cost formulation is given by: φni = ki exp (γ′zni) if n 6= i and φni = ki exp (γ′zni) if n = i.
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Table 1: Comparison of Estimators

(1) (2) (3)
Levels Shares Shares w/ source barrier

Distance -0.562∗∗∗ -0.735∗∗∗ -1.072∗∗∗
(-9.45) (-16.74) (-20.99)

Lack of contiguity -1.042∗∗∗ -0.736∗∗∗ -0.370∗∗
(-4.44) (-4.55) (-2.72)

lack of common language -0.114 -0.300∗∗ -0.511∗∗∗
(-0.87) (-3.13) (-4.82)

Lack of common legal origin -0.0626 -0.222∗∗ -0.133
(-0.56) (-3.16) (-1.85)

Lack of common colonizer 1.389∗∗∗ 1.688∗∗∗ -0.306
(3.52) (5.65) (-1.50)

Lack of colonial ties -0.331∗ -0.861∗∗∗ -0.953∗∗∗
(-2.57) (-6.06) (-6.84)

N 8464 8464 8464
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 1 illustrates these findings, using the same data as EKS. All specifications contain

source and destination fixed effects, and variables are defined to ensure that trade of a

country with itself is unimpeded.9 Column (1) presents the coefficients for some usual

gravity variables, estimated on trade flow levels. Next, Column (2) estimates the model on

trade shares. Focusing on the first row, we see the effect of scaling down large countries is to

increase the distance elasticity, by close to 0.2. Column (3) repeats the shares specification,

this time including source-specific trade barriers, which further increases this elasticity to

close to 1.10

5 Conclusion

Provided that the model specification of the conditional expectation is correct, specifying a

gravity equation in levels or in shares will both yield consistent estimates. But the MPML

estimator in EKS focuses on trade shares, not levels. Relative to a levels specification,

it down-weights the observations belonging to destinations with large overall purchases,

reducing their influence in the estimation. This fact helps explain why, when applied on

the same sample in EKS, levels and shares specifications yield quite different results, for

example, for the elasticity of trade with respect to distance.
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A Appendix

A.1 Obtaining the Multinomial Log-Likelihood

In general, a multinomial r.v. counts the number of successes in each of N categories, after

I independent trials. If pn is the probability of success and yn is the number of successes in

category n, the probability of observing {yn}N
n=1 is I!

y1!...yN !p
y1
1 . . . pyN

N , where ∑n pn = 1 and∑
n yn = In.

If we treated all import shares for destination n as one observation, distributed like a

Multinomial (M) r.v., the probability of observing the counts {yni}i is:

fM
n ({yni}i ; pn) = In!

yn1! . . . ynN !

N∏
i=1

pyni
ni .

The likelihood for our complete sample, {yni}n,i, is

fM
(
{yni}n,i ; p

)
=

N∏
n=1

fM
n ({yni}i ; pn) =

N∏
n=1

In!
yn1! . . . ynN !

N∏
i=1

pyni
ni .

Finally, the log-likelihood is

LM
(
{yni}n,i ; π

)
=

N∑
n=1

N∑
i=1

yni log pni + k1,

where k1 is a constant that does not depend on p. Letting pni = ϕni/
∑

j ϕnj we obtain the

log-likelihood in the main text.

A.2 Obtaining the Poisson Log-Likelihood

The likelihood of one count yni will be

fP
ni = (Dnϕni)yni exp (−Dnϕni)

yni!
.
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The likelihood for the complete sample is

fP =
N∏

n=1

N∏
i=1

(Dnϕni)yni exp (−Dnϕni)
yni!

and the corresponding log-likelihood is

LP =
N∑

n=1

N∑
i=1

yni logDn +
N∑

n=1

N∑
i=1

yni logϕni −
N∑

n=1

N∑
i=1

Dnϕni + k̃2,

where k̃2 does not depend on D or ϕ.

The first order condition of the log-likelihood with respect to the destination fixed effect

is

∂LP

∂Dn

=
N∑

i=1

yni

Dn

−
N∑

i=1
ϕni = 0⇒

N∑
i=1

yni = Dn

N∑
i=1

ϕni ⇒ D̂n =
∑N

i=1 yni∑N
i=1 ϕni

.

Letting Yn ≡
∑

i yni and substituting D̂n back into the log-likelihood, we get the concentrated

likelihood function:

LP =
N∑

n=1

N∑
i=1

yni log
(

Yn∑N
j=1 ϕnj

)
+

N∑
n=1

N∑
i=1

yni logϕni −
N∑

n=1

N∑
i=1

(
Yn∑N

j=1 ϕnj

)
ϕni + k̃2

=
N∑

n=1

N∑
i=1

yni log
(

ϕni∑N
j=1 ϕnj

)
+−

N∑
n=1

Yn

(∑N
i=1 ϕni∑N
j=1 ϕnj

)
+ k̃2

=
N∑

n=1

N∑
i=1

yni log
(

ϕni∑N
j=1 ϕnj

)
+ k2,

where k2 is a constant again. This is the expression in the main text.
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A.3 Derivation of the First Order Conditions

Letting ϕni = exp (β′zni), β contain all the parameters we estimate and z the corresponding

explanatory variables, the first order conditions that define the estimates of β are

∂LM

∂β
= ∂

∂β

N∑
n=1

N∑
i=1

yni log ϕni∑N
k=1 ϕnk

= 0

⇔
N∑

n=1

N∑
i=1

ynizni −
N∑

n=1

N∑
i=1

yni∑N
k=1 ϕnk

N∑
l=1

ϕnlznl = 0

⇔
N∑

n=1

N∑
i=1

ynizni −
N∑

n=1

∑N
l=1 ϕnlznl∑N

k=1 ϕnk

Yn = 0

⇔
N∑

n=1

{
N∑

i=1
ynizni − Yn

∑N
i=1 ϕnizni∑N

k=1 ϕnk

}
= 0

⇔
N∑

n=1
Yn

{
N∑

i=1

[
yni

Yn

− ϕni∑N
k=1 ϕnk

]
zni

}
= 0.

If we evaluate these first order conditions at yni = sni, we obtain the first order conditions

in the main text
N∑

n=1

N∑
i=1

[
sni −

ϕni∑N
k=1 ϕnk

]
zni = 0,

since ∑i sni = 1.11

A.4 Proof that MPML fits the home trade share exactly

Without loss of generality, consider the following simple model, without bilateral covariates

E [sni] = ϕni∑
k ϕnk

where ϕni = Sikn if i 6= n and ϕni = Si if i = n.
11Note that, because

∑
i sni = 1, we can rewrite the last set of equations as

N∑
n=1

N∑
i=1

[
sni −

s̄n

ϕ̄n
ϕni

]
zni = 0.

This way of writing the equations that define the estimator coincide exactly with those derived by Cameron
and Trivedi (1998).
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The first order conditions from the Poisson likelihood L̃P are

1. With respect to Dn

∂L̃P

∂Dn

=
∑

i

sni
1
Dn

−
∑

i

ϕni = 0

⇒ Dn = 1∑
k ϕnk

.

2. With respect to kn

∂L̃P

∂kn

=
∑
i 6=n

sni
1
kn

−
∑
i 6=n

DnSi = 0

⇒
∑
i 6=n

sni
1
kn

=
∑
i 6=n

DnSi∑
i 6=n sni∑
i 6=n Si

= knDn.

Using the previous first order condition

∑
i 6=n

sni =
∑

i 6=n ϕni∑
k ϕnk

,

and in our case with ∑i sni = 1, this implies

snn = ϕnn∑
k ϕnk

.

A.5 Derivations for the general Poisson approach

Suppose now that we are interested in a general model for variableXni ≥ 0, whose conditional

expectation is given by Dnφni, with φni = exp (β′zni).

The likelihood for the complete sample is

fP
(
{Xni}n,i ;D,φ

)
=

N∏
n=1

N∏
i=1

(Dnφni)Xni exp (−Dnφni)
Xni!

.
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We start by eliminating Dn from the log-likelihood, which requires setting ∂LP

∂Dn
= 0 for each

n.

LP =
N∑

n=1

N∑
i=1

Xni logDn +
N∑

n=1

N∑
i=1

Xni log φni −
N∑

n=1

N∑
i=1

Dnφni −
N∑

n=1

N∑
i=1

log (Xni!)⇒

∂LP

∂Dn

=
N∑

i=1

Xni

Dn

−
N∑

i=1
φni = 0⇒

N∑
i=1

Xni = Dn

N∑
i=1

φni ⇒ D̂n = Xn∑N
i=1 φni

,

where we define Xn = ∑
i Xni. Substituting D̂n back into the likelihood, we get the concen-

trated likelihood function:

LP =
N∑

n=1

N∑
i=1

Xni logDn +
N∑

n=1

N∑
i=1

Xni log φni −
N∑

n=1

N∑
i=1

Dnφni −
N∑

n=1

N∑
i=1

log (Xni!)

=
N∑

n=1

N∑
i=1

Xni log Xn∑N
i′=1 φni′

+
N∑

n=1

N∑
i=1

Xni log φni −
N∑

n=1

N∑
i=1

Xn∑N
i′=1 φni′

φni −
N∑

n=1

N∑
i=1

log (Xni!)

=
N∑

n=1

N∑
i=1

Xni

[
log Xn∑N

i′=1 φni′
+ logϕni

]
−

N∑
n=1

Xn

∑N
i=1 ϕni∑N

i′=1 ϕni′
−

N∑
n=1

N∑
i=1

log (Xni!)

=
N∑

n=1

N∑
i=1

Xni

[
log Xnφni∑N

i′=1 φni′

]
−

N∑
n=1

Xn −
N∑

n=1

N∑
i=1

log (Xni!)

=
N∑

n=1

N∑
i=1

Xni

[
log φni∑N

i′=1 φni′

]
+

N∑
n=1

Xn logXn −
N∑

n=1
Xn −

N∑
n=1

N∑
i=1

log (Xni!)

We can simplify this expression by using sniXn = Xni :

LP =
N∑

n=1

N∑
i=1

sniXn

[
log φni∑N

i′=1 φni′

]
+

N∑
n=1

Xn logXn −
N∑

n=1
Xn −

N∑
n=1

N∑
i=1

log (Xni!)

=
N∑

n=1
Xn

N∑
i=1

sni

[
log φni∑N

i′=1 φni′

]
+

N∑
n=1

Xn logXn −
N∑

n=1
Xn −

N∑
n=1

N∑
i=1

log (Xni!) .

Taking the derivative with respect to parameters, we obtain the equations that define the
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estimator

∂LP

∂β
=

∑
n

∑
i

sniXnzni −
∑

n

∑
i

Xnsni∑
k φnk

∑
l

φnlznl

=
∑

n

Xn

∑
i

snizni −
∑

n

Xn

∑
l

φnlznl

∑
i

sni∑
k φnk

=
∑

n

Xn

∑
i

snizni −
∑

n

Xn

∑
i φnizni∑

k φnk

=
∑

n

Xn

{∑
i

[
sni −

φni∑
k φnk

]
zni

}
= 0

B Equivalence between the exporter- and importer-

barrier formulations

Suppose now that we are interested in a model for Xni ≥ 0, whose conditional expectation

is given by DnSiφni. The likelihood for the complete sample is

fP
(
{Xni}n,i ;D,S, φ

)
=

N∏
n=1

N∏
i=1

(DnSiφni)Xni exp (−DnSiφni)
Xni!

.

The log-likelihood is

L̃P =
N∑

n=1

N∑
i=1

Xni logDn +
N∑

n=1

N∑
i=1

Xni logSi +
N∑

n=1

N∑
i=1

Xni log φni

−
N∑

n=1

N∑
i=1

DnSiφni −
N∑

n=1

N∑
i=1

log (Xni!) .

We start by finding the first order conditions associated with Dn and Si ∀i, n:

∂L̃P

∂Dn

=
N∑

i=1

Xni

Dn

−
N∑

i=1
Siφni = 0

⇒ D̂n = Xn∑N
i=1 Siφni
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and

∂L̃P

∂Si

=
N∑

n=1

Xni

Si

−
N∑

n=1
Dnφni = 0

⇒ Ŝi = Yi∑N
n=1 Dnφni

.

where we define Yi ≡
∑N

n=1 Xni. Alternatively, these two first order conditions mean that

N∑
i=1

DnSiφni = Xn (9)

and
N∑

n=1
DnSiφni = Yi (10)

so the model fits total purchases and total sales of country i perfectly.

B.1 Symmetry between kn and mi formulations

Case 1 Suppose that φni = miexp (β′zni) if n 6= i and φni = exp (β′zni) if n = i. In that

case, the first order conditions are

∂L̃P

∂mj

=
N∑

n6=j

Xnj/mj −
N∑

n6=j

(DnSj)
φnj

mj

= 0

⇒
N∑

n6=j

Xnj =
N∑

n 6=j

DnSjφnj (11)

Using the fact that the total sales are fit perfectly with equation (11) yields

Xii = φiiDiSi (12)
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so the home observation is fit perfectly. However, having included destination fixed effects,

total purchases of each country are fit exactly, and so we obtain, for each n

∑
i 6=n

Xni =
∑
i 6=n

SiDnφni, (13)

which is the set of equations we would obtain if we included destination specific import costs

(see Case 2 below).

Two further implications are that the home trade share in purchases and in sales are fit

perfectly.

Case 2 Suppose that φni = knexp (β′zni) if n 6= i and φni = exp (β′zni) if n = i. By

analogy, we the first order conditions with respect to kn imply that

∑
i 6=n

Xni =
∑
i 6=n

DnSiφnj.

Using the fact that the model fits purchases perfectly, we obtain again that

Xnn = φnnDnSn. (14)

Furthermore, since the model also fits sales perfectly, using this last equation we obtain for

each i ∑
n6=i

Xni =
∑
n6=i

DnSiφni,

which is the set of equations that we would obtain with source specific export costs (see

equation 11, above)
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Cases 1 and 2 yield the same β Now consider again the first order condition for β for

Case 1:

N∑
n=1

N∑
i=1

[Xni −DnSiφni] zni,k = 0,

for each k, which after using the fact that the home sales are fit perfectly, becomes:

N∑
i=1

∑
n 6=i

[Xni −DnQi exp (β′zni)] zni,k = 0.

where Qi ≡ Simi, because after eliminating the observations for which n 6= i, the previous

equation cannot separately identify Si and mi, which work as an exporter shifter. The rest

of the equations in the system are obtained by rewriting (11) and (13)

N∑
n 6=i

Xni =
N∑

n6=i

DnQi exp (β′zni)

∑
i 6=n

Xni =
∑
i 6=n

DnQi exp (β′zni)

together with (12),

Xnn = exp (β′znn)DnQn/mn,

which provides a system for β,D,Q,m.

The first order conditions for β in Case 2 are

N∑
n=1

N∑
i=1

[Xni −DnSiφni] zni,k = 0,

which after eliminating the home observation can be written as

N∑
i=1

∑
n6=i

[Xni −WnSi exp (β′zni)] zni,k = 0
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with Wn ≡ Dnmn. Next, we rewrite (11) and (13) as

N∑
n6=i

Xni =
N∑

n6=i

WnSi exp (β′zni)

∑
i 6=n

Xni =
∑
i 6=n

WnSi exp (β′zni)

with (12)

Xnn = exp (β′znn)WnSn/mn

which is identical to the system of equations above, for β,W, S,m.

This does not mean, however, that the underlying Sn and Dn will be the same in the two

specifications.
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