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Abstract

Two imperfectly informed experts are hired to advise a decision maker.

The experts are assumed to report their private information truthfully.

In this paper we compare the informativeness of different joint (condi-

tional on the true state) distributions of the experts’ private signals,

keeping the conditional marginal distribution of each expert’s private

signal given and fixed. Our comparisons use Blackwell’s (Blackwell,

1951) notion of informativeness. We interpret “diversity” as an ab-

sence of perfect correlation among experts’ signals. Such diversity

manifests itself in a positive probability that the experts disagree on

which state of the world is more likely the true state. We find that joint

distributions in which experts disagree more frequently often have an

advantage over distributions in which disagreement is observed rarely.

Disagreement may thus be a manifestation of beneficial diversity.
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1. Introduction

Diversity of the membership of decision making committees is often viewed as de-

sirable. There are many possible reasons for the desirability of diversity. In this paper

we focus on one particular such reason: diversity may increase the value of committee

members’ shared information. To focus on this particular reason we consider a com-

mittee the members of which have no reason to strategically misrepresent their private

information, and therefore report this information truthfully. The committee’s infor-

mation thus is the combination of all members’ private information. If committee

members’ private information is perfectly correlated, then diversity is minimized, and

also the value of the committee’s combined information is as if there was only a single

committee member. Not perfectly correlated private information, and thus some form

of diversity, will be more valuable. But which precise form of diversity increases the

informativeness of the committee members’ combined information?

To formalize this question we focus in this paper on the joint distribution of com-

mittee members’ private signals, conditional on the possible true states of the world,

and we take as given and fixed the marginal distribution of each member’s private

signals, conditional on the possible true states of the world. We use Blackwell’s

(Blackwell, 1951) order of experiments to compare different possible conditional joint

distributions of the private signals. Intuitively, we interpret lack of perfect correlation

as “diversity,” and ask which form, and how much, diversity is desirable in the sense

of leading to Blackwell more informative joint signals. Absence of perfect correlation

expresses itself in the positive probability of disagreements among experts. We ask,

in particular, when lower, or higher, probability of disagreements implies lower, or

higher, Blackwell informativeness.

We assume that there are only two possible states of the world. Blackwell compar-

isons are known to be less complex when there are only two states of the world than

when there are more than two states of the world (see e.g. Börgers, 2024). We also

focus for simplicity on the case that there are only two experts. Finally, in most parts

of the paper, we assume that each expert’s private signal has only two realizations.

This framework facilitates the definition of “agreement” and “disagreement” among

experts. By “agreement” we mean that each expert’s signal realization, by itself,

makes the same state appear more likely than it is under the prior. The opposite

corresponds to the case of “disagreement.” It turns out that understanding the case

of two realizations is a useful tool for analyzing the case of more than two realizations.
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We show how our findings for the two realization case can be used to derive related

results about the more general case.

We begin by asking whether the Blackwell worst joint distribution minimizes the

probability of disagreement. Posing the question in this way assumes, implicitly, that

there is a unique Blackwell worst joint distribution, that is, a joint distribution that is

Blackwell dominated by all other distributions. We prove that this is indeed the case.

We then show that Blackwell worst joint distributions either minimize the probability

of disagreement, or make disagreement uninformative.

We next focus on the case that signals are conditionally independent. This is

frequently assumed in the literature. We prove that conditionally independent signals

are always Blackwell dominated by other joint distributions which have a higher

probability of disagreement among experts.1 We describe some features of the upper

contour set, in the Blackwell order, of conditionally independent signals. Some of

these results apply also to joint distributions other than conditional independence.

Finally, we ask which joint signal distributions are not Blackwell dominated. We

find that the set of Blackwell undominated joint distributions is a surprisingly small

subset of the set of all joint distributions that are compatible with given marginals,

but it may contain more than one element. Specifically, we show that Blackwell

undominated joint distributions can be found by maximizing certain probabilities of

disagreements among experts.

We acknowledge that not all joint distributions may be feasible committee com-

positions. This is why our focus is not exclusively on Blackwell undominated joint

distributions, but also on upper contour sets of given distributions. These sets indi-

cate how improvements can be achieved even if undominated joint distributions are

not feasible.

We distinguish two channels by which increased frequency of disagreements among

experts may increase Blackwell informativeness. The first channel is that increased

probability of disagreements may make agreements more informative. The second

channel by contrast makes disagreements themselves informative. Sometimes, the

decision maker may find joint distributions desirable because they allow the decision

maker to learn from the way in which the experts disagree with each other.

In mathematical terms we are studying in this paper the Blackwell order on a set of

pairs of conditional probability distributions fixing the number of signal realizations.

1Getting an “independent second opinion” might not always be the best one can do.
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Many of our results are a reflection of simple and more general results in this setting.

We develop the general theme in Section 2. We also introduce in that section the

notion of “strict Blackwell dominance,” a mild refinement of Blackwell dominance,

which is simply the asymmetric part of the Blackwell dominance relation. Strict

Blackwell dominance will actually be the focus of our analysis.

We present our model of diversity and disagreement in Section 3. In Section 4 we

consider joint distributions of signals that are worst in the Blackwell order, asking

whether these distributions also minimize the probability of disagreement. In Section

5 we consider how a given joint distribution can be improved in the Blackwell order,

giving particular attention to potential improvements of conditionally independent

signals. In Section 6 we consider joint distributions that are not Blackwell dominated

by any other distributions. Section 7 considers generalizations of our results when

signals have more than two realizations, and Section 8 concludes.

Related Literature: This paper is related to Ladha (1992) who considers in

a common interest setting the likelihood that non-strategic, honest majority voting

will produce the correct choice from a set of two alternatives. Unlike traditional

formalizations of Condorcet’s Jury Theorem Ladha (1992) allows for voters’ signals

to be positively or negatively correlated, and he argues extensively for the real world

plausibility of such correlation. He demonstrates how positive correlation among votes

reduces the likelihood of the vote being correct. Majority voting is for a finite number

of voters not necessarily the best way of pooling voters’ information. By contrast, in

this paper we assume that the pooled information is used optimally.2

Hong and Page (2024) pursue a related, but different approach to collective decision

making by majority voting. They assume that individuals’ voting strategies for a

binary vote are exogenously given, and describe the likelihood of accurate decisions

as a function of the average probability that individual votes are correct, and of

a measure of diversity of individuals’ votes, where diversity is interpreted as the

likelihood of disagreements. Their results say that increased diversity may, but need

not, imply increased accuracy.3

Another applied context in which the issue of correlation among multiple signals

has been raised is the principal-agent problem. This setting differs from ours because

the unobserved true state of the world is endogenous - it is the agent’s unobserved

2See, for example, Pivato (2017) for a summary of subsequent literature on correlated information

and democratic decision making.
3Related work is Hong and Page (2009).
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action. But Rajan and Sarath (1997) obtain results some of which, as they observe,

carry over to the setting in which the state is exogenous. On can show that those

results in Rajan and Sarath (1997) that extend to the case of an exogenous state are

implications of our more general Proposition 5.

Clemen and Winkler (1985) study a model in which state and signals are jointly

normally distributed. They show for the case of positive correlation among signals

that a smaller correlation makes signals more beneficial. Their model, unlike ours,

does not allow the conditional correlation of signals to depend on the true state, and

they invoke an additional auxiliary assumption4 that rules out some effects that we

study. They mention speculatively that in some contexts negatively correlated signals

may be more valuable than independent signals. This speculation is related to our

Proposition 5.

DiTillio et al. (2021) investigate a particular form of dependence among signals,

namely that generated by selecting a few maximal signal realizations from a larger

independent sample. In comparison to independent sampling, this selection creates

not only dependence among signals, but it also modifies the marginal distributions of

signals. DiTillio et al. (2021) construct a multi-dimensional extension of the Lehmann

(1988) order of experiments and show that sample selection may increase or reduce

the Lehmann informativeness of experiments in comparison to independent sampling.

This paper is also related to Börgers et al. (2013) in which complementarity of

signals is defined. One can interpret our paper as a study of ways in which the

complementarity of two signals can be improved. By contrast, Börgers et al. (2013)

defines complementarity as a binary notion: signals are either complementary, or they

are not.

Our paper is also related to de Oliveira et al. (2023). They consider a decision maker

who has access to two signals and who knows the conditional marginal distributions of

these signals, but does not know their joint distribution. Their decision maker uses a

maxmin criterion to resolve this uncertainty, and therefore focuses on Blackwell worst

distributions. In Section 4 below we also consider Blackwell worst joint distributions.

While de Oliveira et al. (2023) already show the existence of such distributions in the

case of two states, we also prove their uniqueness and analyze some of their properties.

Brooks et al. (2024) characterize when one signal is preferred to another regardless

of the decision problem and regardless of the joint distribution of these signals and

4Their inequality (13).
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other signals that might be available to the decision maker. They obtain a condition

that is significantly more demanding than Blackwell dominance. Their objective is

thus to rank marginal distributions regardless of the joint distribution, whereas our

paper compares joint distributions for fixed marginal distributions.

2. Strict Blackwell Dominance: General Results

Suppose that there is a finite set of states of the world Ω with a full support prior

distribution. We fix a finite set S of possible signal realizations. A signal P is a

mapping:

P : Ω → ∆(S)

where ∆(S) is the set of all probability distributions over S. P can be identified

with a Markov matrix where rows correspond to states, columns correspond to signal

realizations, and each entry describes the probability of a signal realization conditional

on a state. Let P be the set of all such matrices. The set P is obviously convex.

A “finite decision problem” is a pair (A, u) where A is a finite set (the set of actions),

and u is a utility function of the form u : A × Ω → R. We write V ((A, u) , P ) for

the ex ante expected utility that the decision maker obtains when first observing

the realization s of signal P and then choosing the action that maximizes expected

utility conditional on s. A signal P Blackwell dominates a signal P ′ if V ((A, u) , P ) ≥
V ((A, u) , P ′) for all finite decision problems (A, u) (Blackwell, 1951). In this paper

we shall also use the notion of “strict Blackwell dominance.”

Definition 1. Signal P “strictly Blackwell dominates” signal P ′ if P Blackwell dom-

inates P ′ but P ′ does not Blackwell dominate P .

Thus, P strictly Blackwell dominates P ′ if V ((A, u) , P ) ≥ V ((A, u) , P ′) for all

finite decision problems (A, u), with strict inequality for at least one finite decision

problem (A, u).

We shall be interested in the lower and upper contour sets in the strict Blackwell

order of given signals P . A key observation that helps to derive properties of these

sets is that for fixed finite decision problem (A, u) the value function V ((A, u) , P ) is

convex in P :

Proposition 1. For all finite decision problems (A, u), all P, P ′ ∈ P, and all λ ∈
[0, 1]:

V ((A, u) , λP + (1− λ)P ′) ≤ λV ((A, u) , P ) + (1− λ)V ((A, u) , P ′) .
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Proof. V ((A, u) , λP + (1− λ)P ′) is the expected utility that the decision maker ob-

tains when choosing conditionally optimal actions in (A, u) after observing the signal

that follows distribution P with probability λ and distribution P ′ with probability

(1− λ), and if the decision maker is not told whether the signal was generated by P

or by P ′. By contrast, λV ((A, u) , P )+(1−λ)V ((A, u) , P ′) is the expected utility in

the same situation if the decision maker is told whether the signal was generated by P

or P ′. Because the value of information for a decision maker is always non-negative,

the latter expression is at least as large as the former expression. □

The lower contour sets of a convex function are convex. The lower contour sets of

the strict Blackwell dominance relation are therefore intersections of convex sets, and

thus themselves convex. A precise statement of this observation is as follows.

Lemma 1. If P ∈ P strictly Blackwell dominates both P ′ ∈ P and P ∗ ∈ P and if

λ ∈ (0, 1), then P strictly Blackwell dominates λP ′ + (1− λ)P ∗.

Proof. The convexity of V immediately implies that P Blackwell dominates λP ′ +

(1− λ)P ∗. It remains to show that there exists a finite decision problem (A, u) such

that:

V ((A, u) , P ) > V ((A, u) , λP ′ + (1− λ)P ∗) .

Because P strictly Blackwell dominates P ′ we can find a decision problem (A, u) such

that V ((A, u) , P ) > V ((A, u) , P ′) . For this decision problem we have:

V ((A, u) , P ) > λV ((A, u) , P ′)+(1−λ)V ((A, u) , P ∗) ≥ V ((A, u) , λP ′ + (1− λ)P ∗) ,

The first inequality follows from the choice of (A, u) and the fact that P Blackwell

dominates P ∗, and the second inequality follows from the fact that V is convex. This

sequence of two inequalities implies what we had to show. □

A slightly different, but closely related result about lower contour sets is the fol-

lowing. We omit the proof.

Lemma 2. Let P, P ′ ∈ P and suppose P strictly Blackwell dominates P ′. Then for

all λ ∈ [0, 1), P strictly Blackwell dominates λP + (1− λ)P ′.

The upper contour sets of convex functions are the complements of convex sets.

The upper contour sets of the strict Blackwell order are intersections of such sets. The

following lemma states a property of the complements of convex sets that is preserved
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under intersection. If signal P ′ is in the lower contour set of a signal P then the line

segment pointing from P into the opposite direction of P ′ is in the upper contour set

of P .

Lemma 3. Let P, P ′ ∈ P and suppose P strictly Blackwell dominates P ′. If λ > 0

and P + λ(P − P ′) ∈ P then P + λ(P − P ′) strictly Blackwell dominates P .

Proof. Define P ∗ ≡ P + λ(P − P ′). Note that:

P =
λ

1 + λ
P ′ +

1

1 + λ
P ∗.

Because V is convex, for every finite decision problem (A, u):

V ((A, u) , P ) ≤ λ

1 + λ
V ((A, u) , P ′) +

1

1 + λ
V ((A, u) , P ∗) .

Because P Blackwell dominates P ′, this implies:

V ((A, u) , P ) ≤ λ

1 + λ
V ((A, u) , P ) +

1

1 + λ
V ((A, u) , P ∗) .

This is equivalent to:

V ((A, u) , P ) ≤ V ((A, u) , P ∗) .

Therefore, P ∗ Blackwell dominates P . It is easy to see that the strict Blackwell

dominance of P over P ′ implies that there exists a finite decision problem in which

the last inequality is strict, and thus P ∗ strictly Blackwell dominates P . □

A special case of Lemma 3 arises when there is a subset P̂ of P such that one

distribution in P̂ is strictly Blackwell dominated by all other distributions in P̂ . In

this case every distribution in the interior of P̂ can be strictly Blackwell improved

upon by moving away from the “Blackwell worst” distribution on a straight line that

points into the opposite direction of the worst distribution while staying within P̂ .5

This is the case with which Proposition 5 below deals.

We can extend Lemma 3 slightly to obtain the following monotonicity result.

Lemma 4. Let P, P ′ ∈ P and suppose P strictly Blackwell dominates P ′. If λ >

λ′ > 0 and P + λ(P − P ′) ∈ P, then P + λ(P − P ′) strictly Blackwell dominates

P + λ′(P − P ′).

5If the distribution itself is the “Blackwell worst” one, any movement away from it is obviously a

Blackwell improvement.



8

Proof. Define P ∗ ≡ P +λ(P −P ′) and P ◦ ≡ P +λ′(P −P ′). By Lemma 3 P ◦ strictly

Blackwell dominates P . Moreover:

P ∗ = P ◦ +
λ− λ′

λ′ (P ◦ − P ).

Therefore, applying Lemma 3 again, P ∗ strictly Blackwell dominates P ◦. □

In addition to the lower and upper contour sets of the strict Blackwell order we

shall also be interested in distributions that are not strictly Blackwell dominated.

There is often a close connection between choices that are not dominated and choices

that are optimal in some circumstances.6 Therefore it is worthwhile to record the

following observation about potential maximizers of the value function V ((A, u), P )

for given and fixed finite decision problem (A, u). The result is known as the Bauer

Maximum Principle, and we omit its proof.

Lemma 5. Let P̂ be a compact and convex subset of P. Let (A, u) be a finite decision

problem. Then there exists an extreme point P̂ of P̂ such that:

V ((A, u), P̂ ) ≥ V ((A, u), P ) for all P ∈ P̂ .

Extreme points of a set of admissible signal distributions will play a key role in our

characterization of signals that are not strictly Blackwell dominated.

Next, we shall show a simple decomposability property of Blackwell dominance.

This is relevant in the context of our paper because we focus on signals with a small

number of realizations. Decomposability of Blackwell dominance means that results

about Blackwell dominance when there is a small number of signal realizations imply

results about Blackwell dominance when there is a large number of signal realizations.

Let P ∈ P . For any Ŝ ⊆ S and ω ∈ Ω we denote by P (ω)(Ŝ) the probability that

P assigns in state ω to signal realizations in Ŝ. If P (ω)(Ŝ) > 0 for all ω ∈ Ω then

we denote by P |Ŝ the signal that has realizations in Ŝ and where for each ω ∈ Ω the

distribution P |Ŝ(ω) is the conditional distribution of P (ω) on Ŝ.

Proposition 2. Suppose P, P̂ ∈ P, and let {S1, · · · , Sn} be a partition of S. If for

all i ∈ {1, · · · , n}:

P (ω)(Si) = P̂ (ω)(Si) > 0 for all ω ∈ Ω,

6See, for example, Theorem 2 in Cheng r○ Börgers (2024). That result does not exactly apply,

however, to our setting because the set of signal distributions is infinite, and because the set of all

finite decision problems is infinite dimensional.
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and if for all i ∈ {1, · · · , n}:

P̂ |Si
Blackwell dominates P |Si

,

then P̂ Blackwell dominates P . If, in addition, there exists a j ∈ {1, · · · , n} such

that P (ω)(Sj) > 0 for some ω ∈ Ω and P̂ |Sj
strictly Blackwell dominates P |Sj

, then

P̂ strictly Blackwell dominates P .

Proof. Consider an arbitrary finite decision problem (A, u), and denote by V ((A, u), P |s)
the conditional expected utility that the decision maker obtains when choosing opti-

mally after observing signal realization s when the signal is distributed according to

P . If we denote by P (s) the probability of observing signal realization s we have:

V ((A, u) , P ) =
n∑

i=1

∑
s∈Si

P (s)V ((A, u) , P |s) .

If we define for every i = 1, 2, . . . , n the probability P (Si) =
∑

s∈Si
P (s) we can write:

V ((A, u) , P ) =
n∑

i=1

P (Si)
∑
s∈Si

P (s)

P (Si)
V ((A, u) , P |s) .

Using the analogous notation for signal P̂ , we can write:

V ((A, u), P̂ ) =
n∑

i=1

P̂ (Si)
∑
s∈Si

P̂ (s)

P̂ (Si)
V ((A, u), P̂ |s).

The assumptions of Proposition 2 imply that for every i ∈ {1, 2, . . . , n}:

P̂ (Si) = P (Si),

and ∑
s∈Si

P̂ (s)

P̂ (Si)
V
(
(A, u) , P̂ |s

)
≥
∑
s∈Si

P (s)

P (Si)
V ((A, u) , P |s) .

We thus have:

V ((A, u) , P̂ ) ≥ V ((A, u) , P ) ,

which proves the first part of Proposition 2.

To prove the second part we note that the additional condition implies that there

exists a decision problem (Â, û) such that:∑
s∈Sj

P̂ (s)

P̂ (Sj)
V ((Â, û), P̂ |s) >

∑
s∈Sj

P (s)

P (Sj)
V ((Â, û), P |s)).

Combining this with the argument in the first part of this proof we get:

V ((Â, û), P̂ ) > V ((Â, û), P ),
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which proves the second part of Proposition 2.

□

Suppose we wanted to modify a given signal P so that the modified signal strictly

Blackwell dominated the original signal. In the next sections of this paper we describe

how this can be done if there is only a small number of signal realizations. Proposition

2 shows one can obtain strict Blackwell improvements for signals with a larger number

of realizations by focusing on a small subset of all signal realizations, modifying only

the conditional probabilities of signal realizations in that subset, and leaving the

conditional probabilities of all other signal realizations unchanged. Further strict

Blackwell improvements can be obtained by iterating this approach. We shall return

to this idea in Section 7.

3. A Simple Model of Diversity and Disagreement

We consider a decision maker who consults two experts, i ∈ {A,B}, to gather

information about the state of the world. There are two possible states of the world:

ωg and ωb, where for concreteness we refer to ωg as the “good state” and to ωb as

the “bad state of the world.” Both states have prior probability 1/2. Each expert

i observes a signal si. Proposition 2 indicates that results for the case that the

number of signal realizations is small can be used to derive results for the case of

many signal realizations. Here, we assume that each signal si has just two possible

realizations: sig and sib. The probability that expert A’s signal equals sAg in state ωg

is αg, and the probability that expert A’s signal equals sAb in state ωb is αb. The

analogous probabilities for expert B are denoted by βg and βb. We assume that all

these probabilities are strictly between 0 and 1. We also assume that both signals are

not completely uninformative. It is then without loss of generality to assume that

for each expert i Bayesian updating after observing signal realization sig leads to an

updated probability of state ωg larger than 1/2, and observing signal realization sib
leads to an updated probability of state ωb larger than 1/2. This assumption holds if

and only if:

(1)
αg

1− αb

> 1 and
βg

1− βb

> 1,

which can also be written as:

(2) αg + αb > 1 and βg + βb > 1.
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With this assumption we can refer to signal realization sig as “good news,” and to

signal realization sib as “bad news.”

We assume that each expert reports the realization of their signal truthfully to the

decision maker. To be able to use Bayes’ law to update her beliefs about the state

after receiving both reports, the decision maker must know the joint distribution of

the two signals conditional on each state. The conditional joint distributions that are

compatible with the assumptions introduced so far are displayed in Table 1.

sBg sBb

sAg αg − dg dg

sAb (βg − αg) + dg (1− βg)− dg

ωg

sBg sBb

sAg (1− βb)− db (βb − αb) + db

sAb db αb − db

ωb

Table 1. A generic joint signal distribution.

Table 1 shows a pair of conditional joint distributions with two parameters: dg and

db. These two parameters are the probabilities of particular types of disagreements in

states ωg and ωb. The particular type of disagreement is the one that results if expert

A observes the “correct” signal realization (for example: sAg if the state is good), and

expert B observes the “incorrect” signal realization. The probability of the reverse

type of disagreement is equal to dg resp. db plus a constant that depends on the

parameters of the marginal distributions. To ensure that all probabilities in Table 1

are non-negative, the two parameters have to satisfy:

max{0, αg − βg} ≤ dg ≤ min{αg, 1− βg}, and

max{0, αb − βb} ≤ db ≤ min{αb, 1− βb} .
(3)

We denote the left hand side of the first inequality by dg, and the right hand side of

the first inequality by d̄g. We denote the left hand side of the second inequality by

db, and the right hand side of the second inequality by d̄b.

4. Minimizing the Probability of Disagreement

and Minimizing Informativeness

The benefit that the decision maker gets from observing the reports of both experts

rather than just one is obviously minimized when the experts’ reports are perfectly

correlated with each other, and thus the probability that the decision makers disagree
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with each other is zero. But this is a feasible joint distribution only if the signals

have identical marginal distributions: αg = βg and αb = βb. In this section we ask

whether minimizing the probability of disagreement minimizes the decision maker’s

potential benefit from observing the two signals also if the marginal distributions are

not identical.

One might think that the joint distribution that minimizes the decision maker’s

benefit will depend on the decision problem she faces. However, this is not the case.

There is a unique joint distribution that is strictly Blackwell dominated by all other

distributions. We call such a joint distribution “Blackwell worst.”7

That a Blackwell worst joint distribution exists is easiest to see when one signal, if

it were the only observed signal, strictly Blackwell dominates the other signal, if that

signal were the only signal. Without loss of generality let’s assume that expert A’s

signal strictly Blackwell dominates expert B’s signal. This is the case if and only if

observing sAb implies a smaller posterior probability of a good state than observing sBb ,

and observing sAg implies a larger posterior probability of a good state than observing

sBg , i.e.:

(4)
1− αg

1− αg + αb

≤ 1− βg

1− βg + βb

and
βg

βg + 1− βb

≤ αg

αg + 1− αb

and at least one inequality is strict.

Note that, of course, it may be useful to consult expert B in addition to expert

A even if A’s signal strictly Blackwell dominates B’s signal. Whether B’s signal is

useful in such a situation depends on the joint distribution of the two signals, not

just on their marginal distributions.

Proposition 3. If signal A strictly Blackwell dominates signal B, then there is a

unique joint distribution that is strictly Blackwell dominated by all other joint dis-

tributions. The probability of disagreement is not minimized by this Blackwell worst

distribution if and only if both inequalities in (4) are strict.

Proof. To prove the first sentence of the proposition we first display a joint distribution

and show that all other joint distributions Blackwell dominate this distribution. Then

we show that it is the only joint distribution with this property. This then implies

that all other joint distributions strictly Blackwell dominate this distribution.

7de Oliveira et al. (2023), Lemma 3, prove the existence of a joint distribution that is Blackwell

dominated by all other joint distributions for the case that there are only two states. We show below

that there is a unique joint distribution with this feature and characterize it.
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Because signal A strictly Blackwell dominates signal B, there is a garbling of signal

A that has the same marginal distribution conditional on each state as signal B.

Suppose that according to this garbling sAg is transformed into sBb with probability

1− ξg and sAb is transformed into sBg with probability 1− ξb. Now consider the joint

distribution displayed in Table 2. When signals follow this joint distribution, the

sBg sBb

sAg αgξg αg(1− ξg)

sAb (1− αg)(1− ξb) (1− αg)ξb

ωg

sBg sBb

sAg (1− αb)ξg (1− αb)(1− ξg)

sAb αb(1− ξb) αbξb

ωb

Table 2. The Blackwell worst joint distribution when signal A strictly

Blackwell dominates signal B.

distribution of B conditional on the realization of A is state independent. Therefore,

the decision maker does not gain anything from observing the realization of B once

she sees the realization of A. Clearly, this joint distribution is Blackwell dominated

by all other joint distributions.

We now argue that this is the unique Blackwell distribution that is Blackwell domi-

nated by all other distributions. Every such distribution must imply that the decision

maker does not learn anything new from observing sB. Therefore, the joint distribu-

tion must be derived from a garbling of signal sA that creates signal sB in the way

shown in Table 2. It therefore suffices to prove that there is only one garbling of

signal sA that creates signal sB. Using the same notation as before for garblings, this

means that we need to prove that there are unique ξg, ξb ∈ (0, 1) such that:

(5)

(
βg 1− βg

1− βb βb

)
=

(
αg 1− αg

1− αb αb

)(
ξg 1− ξg

1− ξb ξb

)
.

Observe that the determinant of the first matrix on the right hand side is αb+αg − 1

which by assumption is strictly positive. Therefore this matrix is invertible, and

therefore ξb and ξg are unique.

We prove the second sentence of Proposition 3 in Appendix A.1, but we illustrate

it in the two paragraphs following this proof. □

The second sentence of Proposition 3 says that, when both inequalities in (4) are

strict, the Blackwell worst joint distribution and the distribution that minimizes the
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probability of disagreement are not the same. In this case, in the Blackwell worst joint

distribution disagreement is uninformative. The decision maker always only learns

from signal A. But when the probability of disagreement is minimized, disagreement

is informative. As an example, we consider the case that αg > βg and αb > βb

hold, which implies (but is not equivalent to) strict inequalities in (4). In this case

disagreement is minimized when dg = αg − βg, and db = αb − βb. This corresponds to

the distribution shown in Table 3.

sBg sBb

sAg βg αg − βg

sAb 0 1− αg

ωg

sBg sBb

sAg 1− αb 0

sAb αb − βb βb

ωb

Table 3. Minimizing the probability of disagreement when αg > βg

and αb > βb and therefore signal A strictly Blackwell dominates signal

B.

Intuitively, the joint distribution in Table 3 corresponds to the case in which expert

B disagrees with expert A if and only if expert A is right. By contrast, the joint

distribution in Table 2 corresponds to the case in which expert B’s disagreement

with expert A is independent of the true state. Paradoxically, if expert B disagrees

with expert A if and only if expert A is right, then expert B adds information:

when the two experts disagree, the true state is revealed. When they agree, some

uncertainty about the true state remains.

It remains to consider the situation in which neither of the two signals strictly

Blackwell dominates the other. The case in which both signals are identical is easy to

deal with. If signals are not identical, then it is without loss of generality to consider

the case that:

(6)
1− βg

1− βg + βb

<
1− αg

1− αg + αb

and
βg

βg + 1− βb

<
αg

αg + 1− αb

.

Equivalently we can write this condition in likelihood ratios:

(7)
1− βg

βb

<
1− αg

αb

and
βg

1− βb

<
αg

1− αb

.

Intuitively, the above inequalities say that good news from expert A is stronger evi-

dence that the state is good than good news from expert B, in the sense that it moves

the belief further away from the prior, and on the other hand bad news from expert
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B is stronger evidence that the state is bad than bad news from expert A. Expert A

is specialized in good news, and expert B is specialized in bad news.

We show in Appendix A.2 that the above inequality implies that αg < βg and

αb > βb. This implies that the lower bound of dg is 0 and the lower bound of db is

αb − βb. Thus, the joint distribution that minimizes the probability of disagreement

is the one displayed in Table 4.

sBg sBb

sAg αg 0

sAb βg − αg 1− βg

ωg

sBg sBb

sAg 1− αb 0

sAb αb − βb βb

ωb

Table 4. Minimizing the probability of disagreement when neither

signal strictly Blackwell dominates the other.

In this joint distribution, it is never the case that expert B suggests the state is

bad when expert A suggests it is good, and expert A never suggests that the state

is good when expert B suggests it is bad. Intuitively, no expert ever disagrees with

the other on the state on which the other can obtain the stronger evidence. Our next

result implies that the joint distribution displayed in Table 4 is also the Blackwell

worst joint distribution.

Proposition 4. If neither of the two signals strictly Blackwell dominates the other,

then there is a unique Blackwell worst joint distribution. It minimizes the probability

of disagreement.

The proof of Proposition 4 is in Appendix A.3. To obtain some intuition note that

Table 4 shares with Table 2 the feature that the lowest and the highest posteriors that

may be derived from observing the realization of only one of the two signals are the

same as the lowest and the highest posteriors that may be derived from observing the

realizations of both signals. Observing the joint signal can never move the extreme

posteriors further to the extremes if the joint distribution is one of those shown in

Tables 2 and 4.

5. Blackwell Improvements Of Conditional Independence

In this section we derive results on Blackwell improvements of given joint distribu-

tions. Informally speaking, our first result shows that for any given joint distribution
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a strict Blackwell improvement is achieved by adjusting it “into the opposite direc-

tion” from the worst joint distribution, if such an adjustment is possible. The result

is then an immediate consequence of Lemma 3.

Proposition 5. Denote by
(
d∗g, d

∗
b

)
the parameters of the Blackwell-worst joint dis-

tribution. For any joint signal distribution corresponding to parameters (dg, db) ̸=(
d∗g, d

∗
b

)
, and for all ε > 0 such that the parameters

(d′g, d
′
b) ≡

(
dg + ε

(
dg − d∗g

)
, db + ε (db − d∗b)

)
satisfy inequality (3), the joint distribution corresponding to (d′g, d

′
b) strictly Blackwell

dominates the joint distribution corresponding to (dg, db).

An obvious but important corollary to Proposition 5 is this:

Corollary 1. Every joint distribution that corresponds to disagreement probabilities

(dg, db) ∈ (dg, d̄g)× (db, d̄b) is strictly Blackwell dominated.

The argument for this result is simple: If a joint distribution corresponds to an

interior pair (dg, db), and does not correspond to the Blackwell worst joint distribution,

then it is strictly Blackwell dominated by a distribution as described in Proposition 5 if

one chooses ε in that proposition small enough. If a joint distribution that corresponds

to an interior pair (dg, db) is, on the other hand, the Blackwell worst joint distribution

then it is strictly Blackwell dominated because it is the only Blackwell worst joint

distribution.

Corollary 1 is mathematically obvious, following Proposition 5, but it is also sur-

prising because the Blackwell order is, in general, regarded as “very incomplete.” Yet,

in our setting, almost everything is Blackwell dominated.

To illustrate Proposition 5 we consider the case that (dg, db) corresponds to con-

ditionally independent signals. The joint distribution of signals under conditional

independence is shown in Table 5. Note that in all cases the conditionally indepen-

dent distribution is not Blackwell worst.

Consider first the case that signal A strictly Blackwell dominates signal B, so

that the Blackwell worst distribution is given by the garbling distribution in Table

2. To understand Blackwell improvements of the joint distribution under conditional

independence, we begin by comparing the joint distribution under conditional inde-

pendence in Table 5 to the garbling distribution in Table 2. We claim that agreement

of the two signals on the state is less likely under conditional independence, but that

such agreement provides stronger evidence, in the sense that it moves the decision
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sBg sBb

sAg αgβg αg(1− βg)

sAb (1− αg)βg (1− αg)(1− βg)

ωg

sBg sBb

sAg (1− αb)(1− βb) (1− αb)βb

sAb αb(1− βb) αbβb

ωb

Table 5. Conditionally independent signals.

maker’s belief more, than under conditional independence. To show these claims note

that the ex ante probability that the signal combination (sAg , s
B
g ) is observed under

the garbling distribution is:

1

2
αgξg +

1

2
(1− αb)ξg.

Under conditional independence the probability of observing (sAg , s
B
g ) is:

1

2
αgβg +

1

2
(1− αb)(1− βb).

An explicit formula for ξg is in Appendix A.1. An elementary calculation shows that

βg < ξg. Because by assumption 1 − βb < βg, this implies that 1 − βb < ξg. It is

thus obvious that with conditionally independent signals it is less likely that the two

signals agree on a good state than it is when signal B is obtained by garbling signal

A. An analogous observation is true for the probability that the two signals agree on

a bad state.

To show that, when signals agree under conditional independence the decision

maker’s belief is moved by more than when signals agree under garbling we compare

the likelihood ratios. We have to show that:

αgβg

(1− αb)(1− βb)
>

αgξg
(1− αb)ξg

.

But this follows directly from βg > 1− βb.

A Blackwell improvement of conditionally independent signals that is based on

Proposition 5 will reduce the probability of agreement, but will make such agreement

stronger evidence. We illustrate this with Example 1. Suppose αg = αb = 0.8 and

βg = βb = 0.6. Then under conditional independence the joint distribution of signals

is shown in red in Table 6, and the Blackwell worst joint distribution, i.e. the garbling

distribution, is shown in green in Table 6. In Table 7 we then show a Blackwell

improvement of the conditionally independent distribution that is constructed as

indicated in Proposition 5, setting ε = 1. The improved joint distribution makes
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agreement an “almost revealing” signal. The improved distribution is shown in blue

in Table 7 and the distribution under conditional independence is shown in red.

sBg sBb

sAg 0.48 0.53 0.32 0.27

sAb 0.12 0.07 0.08 0.13

ωg

sBg sBb

sAg 0.08 0.13 0.12 0.07

sAb 0.32 0.27 0.48 0.53

ωb

Table 6. Conditional independence and garbling in Example 1:

αg = αb = 0.8 and βg = βb = 0.6.

sBg sBb

sAg 0.43 0.48 0.37 0.32

sAb 0.17 0.12 0.03 0.08

ωg

sBg sBb

sAg 0.03 0.08 0.17 0.12

sAb 0.37 0.32 0.43 0.48

ωb

Table 7. Blackwell improving on conditional independence in Exam-

ple 1: αg = αb = 0.8 and βg = βb = 0.6.

We turn next to the implications of Proposition 5 in the case that neither of the

two signals strictly Blackwell dominates the other. Without loss of generality we

focus on the case that the Blackwell worst distribution is the joint distribution in

Table 4. We again first compare conditionally independent signals to those following

the joint distribution in Table 4. It is obvious that conditionally independent signals

will imply a higher probability of disagreement than the joint distribution in Table

4. This is because the joint distribution in Table 4, by Proposition 4, is not only

Blackwell worst, but also minimizes the probability of disagreement. It is also easy

to see that with conditionally independent signals, the evidence provided when the

two experts agree, is stronger than it is in the Blackwell worst case. This is because

in the Blackwell worst case, for every form of agreement there is an expert such

that the agreement provides as much information as the signal realization observed

by this one expert. By contrast, in the conditionally independent case, agreement

provides stronger evidence than the signal realization observed by either of the two

agents. These observations also imply that, as in the previous case, improvement of

conditionally independent signals along the lines of Proposition 5 will imply a further
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increase in the likelihood of disagreement, and a further increase in the strength of

the evidence provided by agreement.

We illustrate using Example 2. Suppose αg = 0.6, αb = 0.7, βg = 0.7 and

βb = 0.6. Then under conditional independence the joint distribution of signals is

shown in red in Table 8, and the Blackwell worst joint distribution is shown in green

in Table 8. In Table 9 we then show a Blackwell improvement of the conditionally

independent distribution that is constructed as indicated in Proposition 5, setting

ε = 0.5. The improved distribution is shown in blue and the distribution under

conditional independence is shown in red in Table 9. As in Example 1 the improved

joint distribution makes agreement an “almost revealing” signal.

sBg sBb

sAg 0.42 0.6 0.18 0.0

sAb 0.28 0.1 0.12 0.3

ωg

sBg sBb

sAg 0.12 0.3 0.18 0.0

sAb 0.28 0.1 0.42 0.6

ωb

Table 8. Conditionally independent and Blackwell worst joint distri-

butions in Example 2: αg = 0.6, αb = 0.7, βg = 0.7, βb = 0.6.

sBg sBb

sAg 0.33 0.42 0.27 0.18

sAb 0.37 0.28 0.03 0.12

ωg

sBg sBb

sAg 0.03 0.12 0.27 0.18

sAb 0.37 0.28 0.33 0.42

ωb

Table 9. Blackwell improving on conditional independence in

Example 2: αg = 0.6, αb = 0.7, βg = 0.7, βb = 0.6.

Proposition 5 describes only a subset of the joint distributions that may strictly

Blackwell dominate any given distribution, i.e. of the upper contour set of a given

distribution in the strict Blackwell order. To proceed, we display next the upper

contour sets for the conditionally independent distribution in Examples 1 and 2.

We determined these upper contour sets numerically. InExample 1 the disagreement

probabilities (dg, db) must be contained in the square [0.2, 0.4]2. In Figure 1 we show

the parameter pair that corresponds to conditional independence as a red dot. The

upper contour set for the conditionally independent distribution is indicated in blue.
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The Blackwell worst distribution is indicated in green. A green line indicates all

those joint distributions that Blackwell dominate conditional independence according

to Proposition 5. Figure 2 is the same diagram for Example 2.

0.2 0.4

0.
2

0.
4

dg

d b

Figure 1. Upper contour set of conditional independence in Exam-

ple 1.

Figures 1 and 2 indicate that joint distributions characterized by disagreement

probabilities in the bottom right and top left corner of the parameter space strictly

Blackwell dominate conditionally independent signals. To obtain intuition for this,

we now display the joint distribution that corresponds to the bottom right corner

when αg = αb = βg = βb = 0.5, that is, when signals A and B, each by itself, are

uninformative.8 The bottom right corner of the parameter space then corresponds

to the disagreement probabilities dg = 0.5 and db = 0. The corresponding joint

distribution of signals is in Table 10.

In Table 10 the joint signal is completely informative, i.e. after observing the

realization of the joint signal the decision maker knows the true state with certainty,

even though each of the two signals by itself is uninformative. Specifically, if the two

8We find this case useful as an illustrative example even though it violates inequality (1).
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0.0 0.3

0.
1

0.
4

dg

d b

Figure 2. Upper contour set of conditional independence in Exam-

ple 2.

sBg sBb

sAg 0 0.5

sAb 0.5 0

ωg

sBg sBb

sAg 0.5 0

sAb 0 0.5

ωb

Table 10. Learning from disagreement.

signals disagree, then the decision maker knows that the state is ωg whereas if the

two signals agree, then the decision maker knows that the state is ωb.
9

In the general case in which the marginal signals are informative the joint distribu-

tions that correspond to the top left and bottom right corners of the parameter space

share with the example in Table 10 that the decision maker arrives at probability one

beliefs after observing certain agreements or disagreements among the signals. For

example, if dg has its maximal value, i.e. dg = min{αg, 1 − βg}, then both types of

disagreement have strictly positive probability in state ωg, and if db has its minimal

9Table 10 is an example of what is known in cryptography as a “secret sharing algorithm” (see

e.g. Shamir, 1979).
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value, i.e. db = max{0, αb − βb}, then at least one type of disagreement has probabil-

ity zero in state ωb. Therefore, at least one type of disagreement leads the decision

maker to be certain that the state is ωg. Similarly, for these parameters, at least one

type of agreement leads the decision maker to be certain that the state is ωb. The

case that dg has its minimal value and that db has its maximal value is symmetric.

The reason why joint distributions that correspond to parameter values in the top

left and bottom right corners potentially strictly Blackwell dominate conditionally

independent signals thus contrasts with the reason why joint distributions referred

to in Proposition 5 strictly Blackwell dominate conditionally independent signals:

In Proposition 5 frequent disagreement raised Blackwell informativeness because it

made agreement induce larger changes in the decision maker’s beliefs, but not because

disagreement itself carried more information (see Examples 1 and 2 in Tables 6 -

9). By contrast, when considering joint distributions related to the one in Table 10,

we find that strict Blackwell improvements occur because the decision maker learns

from whether or not the experts disagree more than the decision maker learns from

the content of their advice.

We generalize these observations in the following proposition that says that if sig-

nals are by themselves sufficiently uninformative, then the joint signal that corre-

sponds to the case that one disagreement probability is close to its upper bound

whereas the other is close to its lower bound strictly Blackwell dominates the sig-

nal obtained from conditional independence. For simplicity we state the proposition

only for the case that dg is close to its upper bound and db is close to its lower

bound. Proposition 6 demonstrates the robustness of the example displayed in Table

10. The examples in Figures 1 and 2 show that the marginal signals don’t have to

be “extremely uninformative,” and the disagreement probabilities don’t have to be

“extremely” close to their bounds.

Proposition 6. There exist an ε̄ > 0 such that for every ε with 0 < ε < ε̄ there

exists a δ̄ such that for every δ with 0 < δ < δ̄ the following is true. If:

(αg, αb, βg, βb) ∈ [0.5− ε, 0.5 + ε]4,

and if:

(dg, db) ∈ (d̄g − δ, d̄g)× (db, db + δ),

then the joint distribution corresponding to (dg, db) strictly Blackwell dominates the

joint distribution corresponding to conditional independence.
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The proof of this result is in Appendix B.1. The proof uses Proposition 5 in Börgers

(2024). According to this result, it is sufficient to prove that there is an interval con-

tained in [0, 1] such that all posterior beliefs that have positive probabilities when

signals are conditionally independent are contained in that interval, whereas all pos-

terior beliefs that have positive probabilities when (dg, db) satisfies the condition in

Proposition 6 fall outside of this interval. To apply this proposition we show that, if

the parameters αg, αb, βg, and βb satisfy the assumption of Proposition 6, then poste-

rior beliefs that have positive probabilities under independence are all contained in an

interval around 0.5 that becomes small as ε becomes small. On the other hand, when

dg and db satisfy the conditions in Proposition 6, and ε and δ are small, then the pos-

terior beliefs that have positive probabilities are either close to 0 or close to 1. These

observations allow us to use Proposition 5 in Börgers (2024) to prove Proposition 6.

6. Strictly Blackwell Undominated Joint Distributions

We say that a joint signal distribution is “strictly Blackwell undominated” if it is

not strictly Blackwell dominated by any other joint signal distribution. In this section

we provide results about joint signal distributions that are strictly Blackwell undom-

inated. Whereas, as we showed in Section 4, there is always a unique Blackwell worst

distribution there may be typically multiple strictly Blackwell undominated joint dis-

tributions. We give an example illustrating multiplicity in part (ii) of Proposition 9

below.

Corollary 1 implies that only the sides of the rectangle of admissible parameters are

candidates for the Blackwell undominated joint signal distributions. This means that

the joint conditional distributions of signals have to assign probability zero to at least

one pair of signal realizations in at least one state. If this pair of signal realizations

has strictly positive probability in the other state then it follows that this pair of

signal induces the decision maker to have posterior belief of either 0 or 1. We shall

say that such a joint signal realization “reveals the state.” The following result gives

sufficient conditions for at least one joint signal realization to reveal the state in any

joint distribution that is strictly Blackwell undominated.

Proposition 7. For every strictly Blackwell undominated joint distribution of signals

if:

(i) signal A strictly Blackwell dominates signal B, αg > βg, αb > βb, and

(αg, αb, βg, βb) ∈ (0.5, 1)4, or if:
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(ii) neither of the two signal strictly Blackwell dominates the other, αg + βg ≥ 1,

αb + βb ≥ 1, and at least one of these inequalities is strict,

then there is at least one joint signal realization that reveals the state.

We provide the proof of Proposition 7 only at the end of this section because it

builds on some of the results in this section.

We focus first in this section on the question when joint distributions in which

the disagreement probabilities are maximal or minimal, and that thus correspond

to one of the four corners of the admissible parameter space, are strictly Blackwell

undominated. One motivation for the focus on these joint distributions is that they

form extreme points of the set of admissible joint distributions, and thus, by Lemma 5,

for any given finite decision problem (A, u) one of the four extreme points is optimal

if any point in the admissible parameter space can be chosen. This result is even

relevant when the decision maker is uncertain about which finite decision problem is

the one that she will encounter, because, if the decision maker’s belief over possible

finite decision problems (A, u) has finite support, it is equivalent to a point belief

attaching probability 1 to a larger finite decision problem. Thus, even for a decision

maker with finite support beliefs it is without loss of generality to restrict attention

to extreme points in the parameter space.

The distribution in which both disagreement probabilities are maximized is not

always strictly Blackwell undominated. Consider the extreme example where αg =

αb = βg = βb = 0.5. In this example, if disagreement probabilities are maximized,

disagreement occurs with probability 1 in both states, but disagreement is uninforma-

tive, because both types of disagreement occur with equal probability in both states.

This joint signal probability distribution is clearly strictly Blackwell dominated. This

will remain true when each signal by itself is informative, but moves beliefs only by

very little. When signals are very informative, however, then the joint distribution

which maximizes disagreement probabilities is generically strictly Blackwell undomi-

nated. The proof of the following proposition is in Appendix C.1.

Proposition 8. If

(αg, αb, βg, βb) ∈ (2/3, 1)4,

and

(αg − βg) (αb − βb) ̸= 0,

then the joint distribution with parameters dg = d̄g and db = d̄b is strictly Blackwell

undominated.
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The condition in the proposition implies that d̄g = 1−βg and d̄b = 1−βb. Therefore,

the joint distribution which maximizes the probability of disagreement in both states

is the distribution in Table 11. Table 11 shows that agreement reveals the state. This

reinforces the theme that we have mentioned earlier: maximizing the probability of

disagreement maximizes the informativeness of agreement.

sBg sBb

sAg αg + βg − 1 1− βg

sAb 1− αg 0

ωg

sBg sBb

sAg 0 1− αb

sAb 1− βb αb + βb − 1

ωb

Table 11. The joint distribution corresponding to dg = d̄g and db = d̄b
when αg + βg > 1 and αb + βb > 1.

We consider next joint distributions where one disagreement probability is maxi-

mized and the other one is minimized. Part (i) of the following proposition shows

that regardless of parameter values at least one of these joint distributions is strictly

Blackwell undominated. We also provide in part (ii) of the proposition sufficient con-

ditions for both joint distributions to be strictly Blackwell undominated. We focus for

simplicity on the case that the probabilities of “correct” signals are sufficiently high:

αg, βg, αb, βb > 0.5. In this case generically both joint distributions are Blackwell

undominated. The proof of the next result is in Appendix C.2.

Proposition 9. (i) At least one of the two joint signal distributions corresponding

to dg = dg and db = d̄b and corresponding to dg = d̄g and db = db is strictly Blackwell

undominated.

(ii) If

(αg, αb, βg, βb) ∈ (0.5, 1)4 ,

and

(αg − βg) (αb − βb) ̸= 0,

then the two joint signal distributions corresponding to dg = dg and db = d̄b and

corresponding to dg = d̄g and db = db are both strictly Blackwell undominated.

Finally, we consider the joint distribution where both disagreement probabilities

are minimized. When neither of the two signals strictly Blackwell dominates the

other, we know from Proposition 4 that this joint distribution is strictly Blackwell

dominated. It remains to ask whether it is also strictly Blackwell dominated when one
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of the two signals, say signal A, strictly Blackwell dominates the other. Proposition

10 shows under some additional assumptions that allow a particularly simple proof

that the joint distribution minimizing both disagreement probabilities is also strictly

Blackwell dominated in this case. This result is proved in Appendix C.3.

Proposition 10. If

(αg, αb, βg, βb) ∈ (0.5, 1)4 ,

and

αg > βg and αb > βb,

then the joint signal distribution corresponding to dg = dg and db = db is strictly

Blackwell dominated by the joint distribution corresponding to dg = d̄g and db = d̄b.

We conclude this section by providing the proof of Proposition 7.

Proof of Proposition 7. We observed at the beginning of this section that if a joint

distribution is not strictly Blackwell dominated, there must be at least one pair of

signal realizations that has probability zero in one of the two states. It thus only

remains to show that it cannot be that a pair of signal realizations has zero probability

in both states. Inspection of Table 1 shows that this requires that either dg = dg and

db = db or that dg = d̄g and db = d̄b.

Proposition 10 shows that under condition (i) the joint distribution corresponding

to dg = dg and db = db is strictly Blackwell dominated. Proposition 4 shows that

under condition (ii) the joint distribution corresponding to dg = dg and db = db is

strictly Blackwell dominated. Both conditions imply that for dg = d̄g and db = d̄b the

joint signal distribution is the one displayed in Table 11. In this joint distribution

agreement on the good state reveals the good state and agreement on the bad state

reveals the bad state. □

7. Extensions

We now consider the generalization of our model to the case that every expert

i ∈ {A,B} observes a signal si with realizations in a finite set Si with at least two

elements. We maintain the assumption that there are only two states of the world:

Ω = {ωg, ωb}. The reason why we maintain the assumption that there are only

two states is that we want to combine results about the model in Section 3 with

Proposition 2 in Section 2 to obtain results about the generalized model, and the

model in Section 3 has only two states.
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The marginal distributions of each signal conditional on each state are exogenously

given. For simplicity we assume that all these marginal conditional distributions have

full support. We are again interested in the strict Blackwell order of joint distributions

that are compatible with the given marginal distributions. We denote the set of all

such joint distributions by D and we denote its elements by P , in analogy to the

notation in Section 2.

The existence of a joint distribution in D that is Blackwell dominated by all other

distributions in D follows from the proof of Lemma 3 in de Oliveira et al. (2023).

The assumption that there are only two states of the world is crucial for this result.

If this distribution is unique, then the analog of Proposition 5 follows directly from

Lemma 3: moving away from the Blackwell worst distribution on a straight line is

strictly Blackwell improving.

However, the uniqueness is not guaranteed in general. In Section 4 we proved for

the case that there are only two realizations per signal that uniqueness holds. In

Proposition 3 we showed this result for the case that one of the two signals strictly

Blackwell dominates the other. Our proof of uniqueness relied on the invertibility

of the Markov matrix that described the Blackwell dominating signal, and on the

fact that the two signals had equal numbers of realizations. If the straightforward

analogs of these assumptions in the case of multiple realizations are not satisfied, the

uniqueness is not guaranteed. Similarly, the argument that we used in the proof of

Proposition 4 to show the uniqueness when neither of the two signals strictly Blackwell

dominates the other does not have a straightforward extension to the case in which

at least one signal has more than two signal realizations. If uniqueness does not hold,

a perhaps less interesting version of Proposition 5 with strict Blackwell dominance

replaced by Blackwell dominance holds.10

A straightforward extension of our results to signals with more than two realizations

follows, however, from Proposition 2 in Section 2.

Corollary 2. Suppose P, P̂ ∈ D, and suppose sA1 , s
A
2 ∈ SA with sA1 ̸= sA2 and sB1 , s

B
2 ∈

SB with sB1 ̸= sB2 . If

(i) P (ω)({sA1 , sA2 } × {sB1 , sB2 }) = P̂ (ω)({sA1 , sA2 } × {sB1 , sB2 }) > 0 for all ω ∈ Ω,

(ii) P (ω)(sAi , s
B
j ) = P̂ (ω)(sAi , s

B
j ) for all (s

A
i , s

B
j ) ∈

(
SA × SB

)
\
(
{sA1 , sA2 } × {sB1 , sB2 }

)
and all ω ∈ Ω,

10This can be shown by an obvious modification of the proof of Lemma 3 which is the lemma on

which the proof of Proposition 5 relies.
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(iii) P̂ |{sA1 ,sA2 }×{sB1 ,sB2 } strictly Blackwell dominates P |{sA1 ,sA2 }×{sB1 ,sB2 },

then P̂ strictly Blackwell dominates P .

This result says that a strict Blackwell improvement of a given distribution P can

be found if we focus on two different elements of SA and two different elements of

SB, and apply the results of this paper to the conditional joint distributions of the

four corresponding joint signal realizations, leaving the conditional distributions of

all other signal realizations unchanged.

Building on this observation, and using the results of Sections 4 and 5, we obtain

the following result that is an extension of Corollary 1.

Corollary 3. Every signal P ∈ D for which there are sA1 , s
A
2 ∈ SA with sA1 ̸= sA2 and

sB1 , s
B
2 ∈ SB with sB1 ̸= sB2 such that

P (ω)(sAi , s
B
j ) > 0 for all i, j ∈ {1, 2} and all ω ∈ Ω

is strictly Blackwell dominated.

This result shows that all joint distributions that are not strictly Blackwell domi-

nated must be characterized by “sparse” Markov matrices, that is, Markov matrices

for which many joint signal realizations have zero probability conditional on at least

one of the two states. If conditional joint distributions of pairs of signal realizations

satisfy the assumption of Proposition 7 some of these joint signal realizations induce

the decision maker to hold beliefs that attach probability 1 to one of the two states.

8. Conclusion

We have focused on a model with only two states of the world. This setting re-

duced the technical complexity of our analysis, and it also made it natural to interpret

combinations of signal realizations as “agreement” or “disagreement.” However, the

project of comparing different conditional joint distributions with the same condi-

tional marginal distributions can, of course, be conducted in general. Recall that the

methodology that we developed in Section 2 is valid with an arbitrary finite number

of states. The methodology would also apply when there are more than two experts.

We leave these extensions for future work.

In this paper we have assumed that experts have no reason not to be truthful. If

experts cannot be trusted to report their information truthfully, then important new

issues arise. For example, while in the context of this paper, experts with perfectly
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correlated signals were not a good choice of committee members, when incentive

issues are important the opposite may be true. Experts with perfectly correlated

signals may monitor each others’ truth telling. Incentive issues are therefore also an

important additional avenue of investigation.
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Appendix A. Proofs for Section 4

A.1. Proof of the Second Sentence of Proposition 3.

To prove the second sentence of the proposition note that the probability of dis-

agreement is not minimized by the Blackwell worst joint distribution if and only if at

least one of the following two inequalities is strict:

αg(1− ξg) ≥ max{0, αg − βg}

αb(1− ξb) ≥ max{0, αb − βb}.

This can be seen from inequality (3) and Table 2. We can re-write these inequalities

as:

αg(1− ξg) ≥ 0

αg(1− ξg)− (αg − βg) ≥ 0

αb(1− ξb) ≥ 0

αb(1− ξb)− (αb − βb) ≥ 0

The probability of disagreement is not minimized if and only the first two inequalities

are strict, or the last two inequalities are strict, or both of these statements hold.

To re-write these four inequalities, we use (5) to calculate ξg and ξb. We obtain:

ξg =
αbβg − (1− αg) (1− βb)

αg + αb − 1

ξb =
αgβb − (1− αb) (1− βg)

αg + αb − 1
.

Plugging this in, our four inequalities can be re-written as:
αg

αg + αb − 1
[αb (1− βg)− (1− αg) βb] ≥ 0

1− αg

αg + αb − 1
[αg (1− βb)− (1− αb) βg] ≥ 0

αb

αg + αb − 1
[αg (1− βb)− (1− αb) βg] ≥ 0

1− αb

αg + αb − 1
[αb (1− βg)− (1− αg) βb] ≥ 0.
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The first two inequalities are strict if and only if:

αg (1− βb)− (1− αb) βg > 0 and αb (1− βg)− (1− αg) βb > 0

Note that this is also necessary and sufficient for the second pair of inequalities to be

strict. We can re-write these inequalities as:

1− αg

1− αg + αb

<
1− βg

1− βg + βb

and
βg

βg + 1− βb

<
αg

αg + 1− αb

.

Thus, it is necessary and sufficient for minimization of the probability of disagreement

in the Blackwell worst joint distribution that both inequalities in (4) hold as strict

inequalities.

A.2. Proof that (7) implies αg < βg and αb > βb.

We repeat (7):

1− βg

βb

<
1− αg

αb

and
βg

1− βb

<
αg

1− αb

.

This is equivalent to:

βb >
αb(1− βg)

1− αg

and 1− βb >
βg(1− αb)

αg

.

Adding up these two inequalities, and re-arranging, yields:

(αg − βg)(1− αg − αb) > 0.

Now recall that by assumption αg +αb > 1. Therefore, we obtain: αg < βg. But then

it follows immediately from the second inequality in (7) that we must have: αb > βb.

A.3. Proof of Proposition 4.

When signals A and B have identical marginal distributions it is obvious that the

joint distribution where the two signals are perfectly correlated is Blackwell dominated

by all other joint distributions. One can prove that it is the only distribution with

this property using the same argument as in the proof of Proposition 3. We therefore

focus in this proof on the case that the signals are not identical, and, without loss of

generality, that (6) holds.

In this proof we shall use Blackwell’s original definition (Blackwell, 1951)11 accord-

ing to which one signal Blackwell dominates another if the set of feasible mappings

11Blackwell himself attributed this version of the definition to Bohnenblust et al. (1949).
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of states into action distributions that the former signal makes possible contains the

set of feasible such mappings made possible by the latter signal. We begin by making

this definition of Blackwell dominance, which Blackwell showed to be equivalent to

several other well-known characterizations, precise in our setting.

For any signal s denote by P the Markov matrix where rows correspond to states,

columns correspond to signal realizations, and each entry describes the probability of

a signal realization conditional on a state. Now suppose that a finite set of possible

actions A is given. It is well-known that, because we are considering a model with two

states only, it is sufficient to restrict attention to sets A with two elements, say A =

{a, b}.12 The decision maker’s payoff is determined by the mapping ρ that maps the

set of possible states of the world into probability distributions over A. In our setting:

ρ : {ωg, ωb} → [0, 1] where we interpret ρ(ω) as the probability that action a is taken

in state ω. We can obviously re-interpret ρ as the vector: ρ = (ρ(ωg), ρ(ωb)) ∈ [0, 1]2.

A decision maker who has access to signal s can implement a mapping ρ if and only if

there is a strategy σ : S → [0, 1] such that ρ = Pσ. Let Z be the set of all mappings

ρ that can be implemented by signal s, and let Z ′ be the analogous set for a signal

s′. Signal s Blackwell dominates signal s′ if and only if Z ⊇ Z ′.

In our setting we denote for any signal si by P i the corresponding Markov matrix,

and by Zi the corresponding set of implementable mappings ρ. Let the analogous

matrix that corresponds to the joint distribution in Table 4 be denoted by P ∗:

P ∗ =

( sAg s
B
g sAb s

B
g sAb s

B
b

ωg αg βg − αg 1− βg

ωb 1− αb αb − βb βb

)
.

We denote by Z∗ the set of ρ mappings that can be implemented using P ∗.

In Step 1 of the proof of Proposition 4 we shall prove that the joint distribution

displayed in Table 4 is Blackwell dominated by all other joint distributions by showing

that:

(8) Z∗ ⊆ co(ZA ∪ ZB),

where “co” denotes the convex hull. This is sufficient because the set Z corresponding

to any joint distribution of sA and sB must contain the set co(ZA ∪ ZB). This is

so because, by definition, the sets Z are convex, and because the set for any joint

distribution must include ZA (because the decision maker can ignore the realization

12See, for example, Proposition 2 in Börgers (2024).
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of sB) and ZB (because the decision maker can ignore the realization of sA). In Step

2 we will show that for any other joint distribution we will have that:

(9) Z \ co(ZA ∪ ZB) ̸= ∅.

Step 1: We shall use the fact that that Z∗ is the convex hull of the set:

Z◦ ≡ {ρ|∃σ ∈ {0, 1}3 such that ρ = P ∗σ},

that is, the convex hull of the set of all mappings ρ that can be implemented using

pure strategies. To prove (8) it is then sufficient to prove:

Z◦ ⊆ co(ZA ∪ ZB).

We enumerate Z◦:

Z◦ = {(0, 0), (αg, 1− αb), (1− αg, αb), (βg, 1− βb), (1− βg, βb), (1, 1)}

∪ {(βg − αg, αb − βb), (1− βg + αg, 1− αb + βb)}.

It is obvious that (0, 0) and (1, 1) are elements both of ZA and ZB, and it is also

relatively obvious that the other four vectors listed in the first line are elements of

either ZA or ZB. For example, (αg, 1 − αb) ∈ ZA because (αg, 1 − αb) = PA · (1, 0).
It thus remains to show that:

(βg − αg, αb − βb) ∈ co(ZA ∪ ZB) and (1− βg + αg, 1− αb + βb) ∈ co(ZA ∪ ZB).

To show (βg − αg, αb − βb) ∈ co(ZA ∪ ZB), note that with

λ1 =
αg (1− βb)− βg (1− αb)

αbβg − (1− αg) (1− βb)

λ2 =
(1− αg) βb − αb (1− βg)

αbβg − (1− αg) (1− βb)

1− λ1 − λ2 =
αgβb − (1− αb) (1− βg)

αbβg − (1− αg) (1− βb)

we have

(βg − αg, αb − βb) = λ1 (1− αg, αb) + λ2 (βg, 1− βb) + (1− λ1 − λ2) (0, 0) .

Given (1−αg, αb) ∈ ZA, (βg, 1−βb) ∈ ZB, and (0, 0) ∈ ZA (of course also (0, 0) ∈ ZB),

we just need to show all the coefficients are non-negative. First note that their
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denominators are positive:

αbβg − (1− αg) (1− βb) > 0 ⇔
αb

1− αg

>
1− βb

βg

which is true because (2) implies αb

1−αg
> 1 and 1−βb

βg
< 1. Next we show that the

numerator of λ1 is positive:

αg (1− βb)− βg (1− αb) > 0 ⇔
αg

1− αb

>
βg

1− βb

which is assumed in (7). Next we show that the numerator of λ2 is positive:

(1− αg) βb − αb (1− βg) > 0 ⇔
1− αg

αb

>
1− βg

βb

which is also assumed in (7). Finally we show that the numerator of 1 − λ1 − λ2 is

positive:

αgβb − (1− αb) (1− βg) > 0 ⇔
αg

1− αb

>
1− βg

βb

which is true because (2) implies αg

1−αb
> 1 and 1−βg

βb
< 1.

To prove (1− βg + αg, 1− αb + βb) ∈ co(ZA ∪ ZB) note that:

(1− βg + αg, 1− αb + βb)

= (1, 1)− (βg − αg, αb − βb)

= λ1[(1, 1)− (1− αg, αb)] + λ2[(1, 1)− (βg, 1− βb)] + (1− λ1 − λ2) [(1, 1)− (0, 0)]

= λ1 (αg, 1− αb) + λ2 (1− βg, βb) + (1− λ1 − λ2) (1, 1)

where we use in the third line our result for (βg − αg, αb − βb). The last line shows

that (1−βg+αg, 1−αb+βb) ∈ co(ZA∪ZB) because (αg, 1−αb) ∈ ZA, (1−βg, βb) ∈ ZB,

and (1, 1) ∈ ZA (of course also (1, 1) ∈ ZB).

Step 2: To prove that (9) holds any joint signal distribution that is different

from the one in Table 4, we note first that any such joint distribution corresponds to

disagreement probabilities dg = ∆g and db = αb − βb +∆b where both ∆g and ∆b are
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non-negative and at least one of them is strictly positive. The corresponding Markov

matrix is:

P∆ =

( sAg s
B
g sAg s

B
b sAb s

B
g sAb s

B
b

ωg αg −∆g ∆g βg − αg +∆g 1− βg −∆g

ωb 1− αb −∆b ∆b αb − βb +∆b βb −∆b

)
.

If we multiply P∆ by the strategy σ̃ = (1, 0, 0, 0) we obtain the vector:

ρ̃ = (αg −∆g, 1− αb −∆b) .

If we multiply P∆ by the strategy σ̂ = (0, 0, 0, 1), we obtain:

ρ̂ = (1− βg −∆g, βb −∆b) .

Our proof strategy is to show that ρ̃ ∈ co(ZA ∪ ZB) and ρ̂ ∈ co(ZA ∪ ZB) leads to a

contradiction.

By the first part of this proof co(ZA ∪ZB) = Z∗. Thus, our hypothesis can also be

written as: ρ̃ ∈ Z∗ and ρ̂ ∈ Z∗. We begin by showing that for all ρ ∈ Z∗:

(10) ρ · ((1− αb) ,−αg) ≤ 0 and ρ · (−βb, (1− βg)) ≤ 0.

Intuitively: if signals follow the joint distribution given by P ∗, then no observation

provides strong enough evidence for the good state to make a bet that pays (1− αb)

in the good state and that pays −αg in the bad state attractive, and no observation

provides strong enough evidence of the bad state to make a bet that pays −βb in the

good state and 1− βg in the bad state attractive relative to not betting. Mathemat-

ically, the proof of (10) is based on the observation that for every ρ ∈ Z∗ there is a

strategy σ = (σ1, σ2, σ3) ∈ [0, 1]3 such that

ρ = (ρg, ρb) = σ1 (αg, 1− αb) + σ2 (βg − αg, αb − βb) + σ3 (1− βg, βb) .

Therefore:

ρ · ((1− αb) ,−αg)

= (σ1 (αg, 1− αb) + σ2 (βg − αg, αb − βb) + σ3 (1− βg, βb)) · ((1− αb) ,−αg)

= σ2 ((1− αb)βg − αg(1− βb)) + σ3 ((1− αb)(1− βg)− αgβb) .

Inequality (7) implies that the first term on the right hand side is not positive, and

inequality (1) implies that the second term on the right hand side is not positive.
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Likewise:

ρ · (−βb, (1− βg))

= (σ1(αg, 1− αb) + σ2(βg − αg, αb − βb) + σ3(1− βg, βb)) · (−βb, (1− βg))

= σ1 ((1− αb)(1− βg)− αgβb)) + σ2 (αb(1− βg)− βb(1− αg)) .

Inequality (1) implies that the first term on the right hand side is not positive, and

inequality (7) implies that the second term on the right hand side is not positive.

Now, using the first inequality in (10), we obtain that ρ̃ ∈ Z∗ implies:

ρ̃ · ((1− αb) ,−αg) ≤ 0 ⇔

(αg −∆g, 1− αb −∆b) · ((1− αb) ,−αg) ≤ 0 ⇔

αg∆b − (1− αb)∆g ≤ 0 ⇔

∆g ≥ αg

1− αb

∆b.(11)

Using the second inequality in (10), we obtain that ρ̂ ∈ Z∗ implies:

ρ̂ · (−βb, (1− βg)) ≤ 0 ⇔

(1− βg −∆g, βb −∆b) · (−βb, (1− βg)) ≤ 0 ⇔

βb∆g − (1− βg)∆b ≤ 0 ⇔

∆g ≤ 1− βg

βb

∆b.(12)

If ∆b = 0, then (12) implies ∆g = 0, which contradicts our assumption that at

least one of ∆g and ∆b is strictly positive. But If ∆b > 0, then by (2):

αg

1− αb

∆b >
1− βg

βb

∆b,

and (11) and (12) cannot hold simultaneously.

Appendix B. Proofs for Section 5

B.1. Proof of Proposition 6.

When

(αg, αb, βg, βb) ∈ [0.5− ε, 0.5 + ε]4
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then the lowest posterior probabilities of ωg that the decision maker may have after

observing the realizations of conditionally independent signals is:

(0.5− ε)2

(0.5− ε)2 + (0.5 + ε)2
.

A simple lower bound for this probability can be found as follows:

(0.5− ε)2

(0.5− ε)2 + (0.5 + ε)2
=

0.25 + ε2 − ε

0.5 + 2ε2
= 0.5− ε

0.5 + 2ε2
≥ 0.5− 2ε

A symmetric calculation applies to the largest posterior probabilities of ωg that the

decision maker may have after observing the realizations of conditionally independent

signals, and thus we may conclude that the posterior provabilities of ωg that have

positive probabilities when signals are conditionally independent are contained in the

interval:

[0.5− 2ε, 0.5 + 2ε].

Proposition 5 in Börgers (2024) implies that (dg, db) Blackwell dominates condi-

tionally independent signals if the following four inequalities hold:

αg − dg
αg − dg + (1− βb)− db

< 0.5− 2ε,
(1− βg)− dg

(1− βg)− dg + αb − db
< 0.5− 2ε,

dg
dg + (βb − αb) + db

> 0.5 + 2ε,
(βg − αg) + dg

(βg − αg) + dg + db
> 0.5 + 2ε.

The left hand sides of these four inequalities are the four posterior probabilities that

can arise under any joint distribution of sA and sB.

Consider the first two inequalities. We begin by deriving an upper bound for

(αg − dg) and (1 − βg − dg). For αg − dg such an upper bound can be obtained as

follows:

αg − dg ≤ αg − (min{αg, 1− βg} − δ) = max{0, 1− αg − βg}+ δ ≤ 2ε+ δ.

A symmetric argument obtains an identical upper bound for (1−βg−dg). We conclude

that our two inequalities are implied by:

2ε+ δ

2ε+ δ + (1− βb)− db
< 0.5− 2ε and

2ε+ δ

2ε+ δ + αb − db
< 0.5− 2ε.

Next, we derive a lower bound for (αb − db) and (1 − βb − db). For (αb − db) such a

lower bound can be obtained as follows:

αb − db ≥ αb − (max{0, αb − βb)}+ δ) = min{αb, βb} − δ ≥ 0.5− ε− δ.
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A symmetric argument obtains an identical upper bound for (1−βb−db). We conclude

that our two inequalities are implied by:

2ε+ δ

2ε+ δ + 0.5− ε− δ
< 0.5− 2ε ⇔

2ε+ δ

0.5 + ε
< 0.5− 2ε ⇔

δ < 0.25− 2.5ε− 2ε2

We next turn to the third and fourth inequalities that imply Blackwell dominance.

We begin by deriving lower bounds for dg and (αg − βg + dg). For dg such a lower

bound can be obtained as follows:

dg ≥ min{αb, 1− βb} − δ ≥ 0.5− ε− δ.

A symmetric calculation shows that the same lower bound also holds for (αg−βg+dg).

We can therefore conclude that our two inequalities are implied by:

0.5− ε− δ

0.5− ε− δ + (βb − αb) + db
> 0.5 + 2ε and

0.5− ε− δ

0.5− ε− δ + db
> 0.5 + 2ε.

Next, we obtain upper bounds for db and (βb −αb + db). For db such an upper bound

can be obtained as follows:

db ≤ max{0, αb − βb}+ δ ≤ 2ε+ δ.

A symmetric calculation shows that the same lower bound also holds for (βb−αb+db).

We conclude that our two inequalities are implied by:

0.5− ε− δ

0.5− ε− δ + 2ε+ δ
> 0.5 + 2ε ⇔

0.5− ε− δ

0.5 + ε
> 0.5 + 2ε ⇔

δ < 0.25− 2.5ε− 2ε2,(13)

which is the same inequality as we obtained before.

We can now choose ε̄ so that ε < ε̄ implies that the right hand side of (13) is

strictly positive, and then, for given ε < ε̄, choose δ̄ to be the minimum of the right

hand side of (13), d̄g − dg and d̄b − db.
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Appendix C. Proofs for Section 6

C.1. Proof of Proposition 8.

Table 11 shows that under the conditions of the proposition agreement reveals the

state, and that the good state is revealed with probability (αg + βg − 1)/2 and the

bad state is revealed with probability (αb + βb − 1)/2. If (αg, αb, βg, βb) ∈ (2/3, 1)4,

then a lower bound for both probabilities is 1/6.

By Corollary 1, if there is a distribution with interior parameters (dg, db) that

strictly Blackwell dominates the distribution with parameters (d̄g, d̄b) then it is also

strictly dominated by a distribution with boundary parameters (dg, db). We prove

that no distribution on the boundary that is different from (d̄g, d̄b) strictly dominates

(d̄g, d̄b).

Because any strictly Blackwell dominating distribution must imply a posterior dis-

tribution that is a mean preserving spread of the posterior distribution implied by

(d̄g, d̄b), any strictly Blackwell dominating distribution must imply probabilities of at

least 1/6 for the posteriors 0 and 1 each.

If one of the two disagreement parameters is neither equal to its maximal nor to its

minimal value, then all joint signal realizations have strictly positive probability in the

corresponding state. But then only this state can receive posterior probability 1 with

positive probability. It is impossible for the other state. Therefore, for posteriors 0 and

1 to be attached strictly positive probability, it is necessary that both disagreement

probabilities equal either their maximum or their minimum values.

It remains to consider the joint distributions corresponding to (dg, db), (d̄g, db), and

(dg, d̄b). The joint distribution corresponding to (dg, db) is shown in Table 12 which

is the general version of Tables 3 and 4. Table 12 shows that agreement will not

imply a posterior of 0 or 1 in this case. Therefore, for posterior 0 and posterior 1

to have positive probabilities, one of the two types of disagreement must only occur

in state ωg and reveal ωg and the other type of disagreement must only occur in

state ωb and reveal ωb. This is the case if and only if either αg > βg and αb > βb

or αg < βg and αb < βb. In the first case, the probabilities of the two types of

disagreement are (αg − βg)/2 and (αb − βb)/2, which, under the assumption of the

proposition, are both strictly less than 1/6. The second case is similar. Thus, the

posteriors 0 and 1 can only occur with a probability that is smaller than their value

if disagreement probabilities are maximal, and the joint distribution with minimal
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disagreement probabilities does not strictly Blackwell dominate the joint probability

distribution with maximum disagreement probabilities.

sBg sBb

sAg min{αg, βg} max{0, αg − βg}
sAb max{βg − αg, 0} min{1− βg, 1− αg}

ωg

sBg sBb

sAg min{1− βb, 1− αb} max{βb − αb, 0}
sAb max{0, αb − βb} min{αb, βb}

ωb

Table 12. The joint distribution corresponding to dg = dg and db =

db.

Finally consider the joint distributions corresponding to (d̄g, db). The case of the

joint distribution corresponding to (dg, d̄b) is analogous. When the probability of dis-

agreement is maximal in state ωg but minimal in state ωb, then the joint distribution

of signals in state ωg is the one shown in Table 11 on the left, and the joint distri-

bution of the two signals in state ωb is the one shown in the bottom part of Table

12. These tables show that the good state is revealed only by disagreement, and the

probability of revealing disagreement is at (1 − αg)/2 or (1 − βg)/2. But if αg and

βg are contained in (2/3, 1) this expression is strictly less than 1/6. Therefore, the

state ωg is revealed less frequently than it is when both disagreement probabilities

are maximized, and the joint distribution with maximal disagreement probabilities is

not strictly Blackwell dominated by the distribution with parameters (d̄g, db).

C.2. Proof of Proposition 9.

(i) We prove that, if the joint signal distribution corresponding to dg = d̄g and

db = db is strictly Blackwell dominated, then it is strictly Blackwell dominated by the

joint signal distribution corresponding to dg = dg and db = d̄b. The converse to this

statement also holds but we omit the proof because it is symmetric to the proof that

we present. The proposition then follows because the two joint distributions cannot

strictly Blackwell dominate each other, and hence at least one of them is strictly

Blackwell undominated.
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By Corollary 1, if there is a distribution with interior parameters (dg, db) that

strictly Blackwell dominates the distribution with parameters (d̄g, db) then it is also

strictly dominated by a distribution with boundary parameters (dg, db). We prove

that no distribution on the boundary that is different from (dg, d̄b) strictly dominates

(d̄g, db).

sBg sBb

sAg max{0, αg + βg − 1} min{αg, 1− βg}
sAb min{βg, 1− αg} max{1− αg − βg, 0}

ωg

sBg sBb

sAg min{1− βb, 1− αb} max{βb − αb, 0}
sAb max{0, αb − βb} min{αb, βb}

ωb

Table 13. The joint distribution corresponding to dg = d̄g and db =

db.

Table 13 indicates that the joint distribution with (d̄g, db) leads with positive prob-

ability to posteriors 0 and 1 because at least one type of agreement occurs with

probability 0 in state ωg, and at least one type of disagreement occurs with probabil-

ity 0 in state ωb. Because any strictly Blackwell dominating distribution must result

from a mean preserving spread of the posterior distribution, also any strictly Black-

well dominating distribution must imply a positive probability that the posterior is 0

and a positive probability that the posterior is 1.

If one of the two disagreement parameters is neither equal to its maximal nor to its

minimal value, then all joint signal realizations have strictly positive probability in

the corresponding state. But then this state only can receive posterior probability 1

with positive probability. It is impossible for the other state. Therefore, for posteriors

0 and 1 to have strictly positive probability, it is necessary that both disagreement

probabilities equal either their maximum or their minimum.

It remains to consider the joint distributions corresponding to (dg, db) and (d̄g, d̄b).

The joint distribution corresponding to (dg, db) was shown in Table 12. It is easily seen

in this table that agreement cannot reveal the state because agreement occurs with

positive probability in both states. Therefore, for posteriors 0 and 1 to have positive
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probabilities, one of the two types of disagreement must only occur in state ωg and

reveal ωg and the other type of disagreement must only occur in state ωb and reveal

ωb. The disagreement that reveals ωg occurs with probability zero in state ωb, and

therefore it also occurs with probability zero in state ωb under the signal distribution

(d̄g, db), but under this signal distribution the disagreement occurs more frequently

in state ωg, because in that state disagreement probabilities are maximal rather than

minimal. Therefore, the posterior belief 1 is induced with higher probability by

(d̄g, db), and therefore (dg, db) does not strictly Blackwell dominate (d̄g, db).

Finally, consider the joint distribution corresponding to (d̄g, d̄b). In this case dis-

agreement cannot reveal the state, because both types of disagreement occur with

positive probability in both states, as can be seen from Table 1 and inequality (3).

Therefore, for posteriors 0 and 1 to have positive probabilities, it must be that one

of the two types of agreement only occurs in state ωg and reveals ωg and the other

type of agreement only occurs in state ωb and reveals ωb. The type of agreement that

reveals ωb occurs with probability 0 in state ωg, but with positive probability in state

ωb. It will also occur with zero probability in state ωg under the distribution (d̄g, db).

But it will occur with higher probability under the distribution (d̄g, db) in state ωb

than under the distribution (d̄g, d̄b) because the former distribution maximizes the

probability of agreement in state ωb. Therefore, the posterior belief 0 is induced

with higher probability by (d̄g, db), and therefore (d̄g, d̄b) does not strictly Blackwell

dominate (d̄g, db).

(ii) Note that under the assumptions of the proposition:

αg + βg > 1 and αb + βb > 1.

Recall also that the proposition assumes:

(αg − βg) (αb − βb) ̸= 0.

We now consider two cases: (ii.a) αg > βg and αb < βb; (ii.b) αg > βg and αb > βb.

Other cases are symmetric.

First consider case (ii.a). We display the two joint signal distributions referred to

in the proposition in Tables 14 and 15.
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sBg sBb

sAg βg αg − βg

sAb 0 1− αg

ωg

sBg sBb

sAg 0 1− αb

sAb 1− βb αb + βb − 1

ωb

Table 14. The joint distribution corresponding to dg = dg and db = d̄b

when αg + βg > 1, αb + βb > 1, αg > βg, and βb > αb.

sBg sBb

sAg αg + βg − 1 1− βg

sAb 1− αg 0

ωg

sBg sBb

sAg 1− βb βb − αb

sAb 0 αb

ωb

Table 15. The joint distribution corresponding to dg = d̄g and db = db
when αg + βg > 1, αb + βb > 1, αg > βg, and βb > αb.

In Table 14 the posterior probability of of ωg equals 1 with probability βg/2 whereas

in Table 15 it equals 1 with the lower probability (1− αg)/2. On the other hand, in

Table 14 the posterior probability of ωg equals 0 with probability (1− βb)/2 whereas

in Table 15 it equals 0 with the higher probability αb/2. It follows that neither

distribution can be a mean-preserving spread of the other, and therefore neither of

the two joint distributions strictly Blackwell dominates the other. By the result in

part (i) of the proposition, the claim follows.

Next consider case (ii.b). The joint distribution corresponding to dg = dg and

db = d̄b is the same as case (ii.a). The joint distribution corresponding to dg = d̄g

and db = db is shown in Table 16.

sBg sBb

sAg αg + βg − 1 1− βg

sAb 1− αg 0

ωg

sBg sBb

sAg 1− αb 0

sAb αb − βb βb

ωb

Table 16. The joint distribution corresponding to dg = d̄g and db = db
when αg + βg > 1, αb + βb > 1, αg > βg, and αb > βb.
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In Table 14 the posterior probability of of ωg equals 1 with probability βg/2 whereas

in Table 16 it equals 1 with the lower probability (1− βg)/2. On the other hand, in

Table 14 the posterior probability of ωg equals 0 with probability (1− βb)/2 whereas

in Table 16 it equals 0 with the higher probability βb/2. It follows that neither

distribution can be a mean-preserving spread of the other, and therefore neither of

the two joint distributions strictly Blackwell dominates the other. By the result in

part (i) of the Proposition, the claim follows.

C.3. Proof of Proposition 10.

The joint signal distribution corresponding to
(
dg, db

)
is shown in Table 3 and the

joint signal distribution corresponding to
(
d̄g, d̄b

)
is shown in Table 11. We are going

to use Proposition 2 to prove that the joint distribution in Table 11 strictly Blackwell

dominates the joint distribution in Table 3. We take the partition of signal realizations

to which Proposition 2 refers to consist of the two sets: S1 =
{
(sAg , s

B
g ), (s

A
g , s

B
b )
}

and S2 =
{
(sAb , s

B
g ), (s

A
b , s

B
b )
}
. We prove that with this definition the two sufficient

conditions for strict Blackwell dominance in Proposition 2 hold. First we note that

the probability that the signal realizations are in S1 is, under both joint distributions,

equal to αg in state ωg and equal to 1−αb in state ωb. Similarly, the probability that

the signal realizations are in S2 is, under both joint distributions, equal to 1− αg in

state ωg and equal to αb in state ωb. These probabilities are both strictly positive.

Therefore the assertion follows from Proposition 2 if we can prove the strict Blackwell

dominance of both conditional signals.

Both conditional signals have just two signal realizations, and therefore generate

posterior distributions with two elements in their support. This allows us to use

Theorem 2 in Wu (2023) to establish strict Blackwell dominance. According to this

theorem, applied to the case that there are only two states and that the supports of

the posterior distributions have only two elements, one signal Blackwell dominates

another signal if and only if the lower posterior in the support is weakly lower for the

dominating signal than it is for the dominated signal, and the higher posterior in the

support is weakly higher for the dominating signal than it is for the dominated signal.

The Blackwell dominance is strict if and only if at least one of these inequalities is

strict.
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Conditional on S1, if the joint signal distribution is parametrized by
(
dg, db

)
, the

posterior probability of ωg corresponding to signal realization (sAg , s
B
g ) is

βg

βg + αg

and the posterior probability of ωg corresponding to signal realization
(
sAg , s

B
b

)
is 1. If

the joint signal distribution is parameterized by
(
d̄g, d̄b

)
, the corresponding posterior

probability for (sAg , s
B
b ) is:

1− βg

1− βg + αg

.

and, for (sAg , s
B
g ) it is 1. Now βg > 0.5 implies:

1− βg

1− βg + αg

<
βg

βg + αg

.

Therefore, we can infer from Theorem 2 in Wu (2023) that conditional on S1 the

joint signal distribution corresponding to
(
d̄g, d̄b

)
strictly Blackwell dominates the

joint signal distribution corresponding to
(
dg, db

)
.

Conditional on S2, if the joint signal distribution is parametrized by
(
dg, db

)
, the

posterior probability of ωg corresponding to signal realization
(
sAb , s

B
g

)
is 0 and the

posterior probability corresponding to signal realization (sAb , s
B
b ) is:

αb

αb + βb

.

If the joint signal distribution is parameterized by
(
d̄g, d̄b

)
, the posterior probability

for (sAb , s
B
b ) is 0 and for (sAb , s

B
g ) it is:

αb

αb + 1− βb

.

Now βb > 0.5 implies:
αb

αb + 1− βb

>
αb

αb + βb

.

Therefore, we can infer from Theorem 2 in Wu (2023) that conditional on S2 the

joint signal distribution corresponding to
(
d̄g, d̄b

)
strictly Blackwell dominates the

joint signal distribution corresponding to
(
dg, db

)
. Putting together what we have

shown and applying Proposition 2 we obtain the assertion.
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