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Abstract

We study the design of mechanisms when the designer faces multiple plausible

scenarios and is uncertain about the true scenario. A mechanism is dominated

by another if the latter performs at least as well in all plausible scenarios and

strictly better in at least one. A mechanism is undominated if no other feasible

mechanism dominates it. We show how analyzing undominated mechanisms

could be useful and illustrate the tractability of characterizing such mechanisms.

This approach provides an alternative criterion for mechanism design under

non-Bayesian uncertainty, complementing existing methods.
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1 Introduction

Mechanism design has been one of the most successful areas within economic theory,
significantly advancing our understanding of incentives under private information. It
has led to numerous theoretical and methodological breakthroughs, while also greatly
influencing the design and analysis of real-world mechanisms and institutions. However,
the classical approach has notable limitations, as it typically imposes strong assumptions
about the detailed knowledge of the designer about the economic environment. As
a result, theoretical conclusions can be fragile; mechanisms optimized for specific
assumptions may perform poorly when those assumptions are not met. The Wilson
doctrine suggests that practical mechanisms should be designed without presuming
that the designer has precise knowledge of the economic environment.

The literature on robust mechanism design aims to relax the strong assumptions
about the designer’s knowledge of the environment. This often involves incorporating
non-Bayesian uncertainty about certain aspects of the economic setting, in line with
the broader goal of relaxing the assumptions about the designer’s knowledge. Typically,
the designer is modeled as a maxmin decision maker who evaluates mechanisms based
on their worst-case performance, where the worst case is taken over all scenarios that
are perceived to be plausible. While this framework has made considerable advances, it
has also drawn some criticisms. One common critique questions the need to model the
designer as a maxmin decision maker. Another concern is that the robust optimality of
certain mechanisms arises from extremely pessimistic scenarios within the uncertainty
set. After all, in the presence of uncertainty, a mechanism’s performance should be
viewed as a vector of outcomes, reflecting its effectiveness across different potential
scenarios.

To fix ideas and illustrate some of the motivations behind our analysis, consider
a situation where the designer could only choose from two mechanisms: Γ0 and Γ1.
Figure 1 depicts the performance of these mechanisms, where the x-axis represents
scenarios that are perceived to be plausible and the y-axis measures the performance of
these mechanisms. A maxmin decision maker would identify both Γ0 and Γ1 as optimal,
since their worst-case performance over all plausible scenarios are the same. However,
when examining the outcome vectors across all plausible scenarios, we observe that Γ1

performs weakly better than Γ0 in all scenarios, with strictly better performance in at
least one. This provides a compelling argument in favor of Γ1 over Γ0, a situation we
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refer to as Γ1 dominating Γ0.

environment
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Figure 1: The performance of the two mechanisms across potential scenarios

In this paper, we consider undominated mechanism as an alternative notion
in designing mechanisms when the designer has non-Bayesian uncertainty. Say that
a mechanism is dominated by another mechanism if the performance of the latter
mechanism is weakly better in all plausible scenarios and strictly better in at least one
scenario. A mechanism is undominated if there is no other feasible mechanism that
dominates it.

Example 1 below revisits the design of mechanisms within the correlation-robust
framework (see He and Li (2022)) and demonstrates that the second-price auction
with a random reserve price, which is shown to be maxmin optimal in their setting, is
dominated.

Example 1 (Maxmin approach). Consider an auctioneer who seeks to sell a single
indivisible object to two bidders. Each bidder i holds private information about his
value of the object, denoted vi. The auctioneer knows that vi ∼ U [0, 1] for i = 1, 2, but
has non-Bayesian uncertainty about the correlation structure between v1 and v2. Let
Π denote the collection of all joint distributions that are consistent with the marginals.
The auctioneer ranks mechanisms according to the revenue guarantee, that is, the
worst-case expected revenue where the worst case is taken over all π ∈ Π.

He and Li (2022, Theorem 3) show that a second-price auction with a random
reserve price generates the highest revenue guarantee among all standard dominant
strategy mechanisms, where the random reserve price follows the distribution G(r) = 4

3r

with support [0, 3
4 ]. Let (q, t) denote this auction, REV (v) the ex post revenue of
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this auction under the valuation profile v, and REV (π) the expected revenue of this
auction under the joint distribution π. In what follows, we explicitly construct another
dominant strategy mechanism (qA, tA) such that

REV A(π) ≥ REV (π), ∀π ∈ Π and REV A(π̃) > REV (π̃) for some π̃ ∈ Π,

where REV A(π) denotes the expected revenue of the mechanism (qA, tA) under the
joint distribution π. Also let REV A(v) denotes the ex post revenue of the mechanism
(qA, tA) under the valuation profile v.

We construct the mechanism (qA, tA) by modifying the mechanism (q, t) for the
valuation profiles v where v1 = v2 ∈ [0, 3

4 ]. For these profiles, since the two bidders’
values are the same, conditional on the object being allocated, the reserve price plays
no role in determining the ex post revenue to the auctioneer. Thus, the auctioneer
could potentially generate higher revenue by increasing the allocation probability
for such profiles. The auctioneer, however, may not be able to arbitrarily increase
the allocation probability, as that might distort the agents’ incentive to report their
values truthfully. The mechanism (qA, tA) exploits this observation by increasing the
allocation probability for these valuation profiles while preserving the bidders’ incentive
constraints. Specifically, if both bidders have a value of x ∈ [0, 3

4 ], let

qA
i (x, x) = min {G(x), 1

2} and tA
i (x, x) = xqA

i (x, x), ∀i = 1, 2,

where the term G(x) ensures that the modified mechanism remains a dominant strategy
mechanism, and the term 1

2 guarantees feasibility. For any other v, the allocation rule
and the payment rule remain unchanged.

It is straightforward to verify that qA(·) is ex post monotone and that (qA, tA)
is a dominant strategy mechanism. Next, we compare the performance of the two
mechanisms (q, t) and (qA, tA). If both bidders have a value of x ∈ (0, 3

4), then

REV A(v) = 2x min {G(x), 1
2} > xG(x) = REV (v).

Clearly, REV A(v) = REV (v) for any other v. It follows that REV A(π) ≥ REV (π) for
all correlation structures π consistent with the marginals, and there exist correlation
structures π̃ consistent with marginals under which REV A(π̃) > REV (π̃). Thus,
(qA, tA) dominates (q, t) in the correlation-robust framework.
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Example 1 highlights how the undominated mechanism approach could be useful
in guiding the design of mechanisms. While certain mechanisms may be optimal
according to a specific criterion, they could still be dominated. Though we have
focused on the maxmin approach so far, this idea applies equally to other frameworks,
such as the regret minimization approach. For instance, Zhang (2022a) examines an
auctioneer who knows only the upper bound of each bidder’s value without further
distributional information. The author shows that a regret-minimizing auctioneer
would select a second-price auction with a random reserve price. A similar analysis as
in Example 1 also shows that this regret-minimizing auction is dominated. Naturally,
if a mechanism is optimal according to a specific criterion but is dominated, the
dominating mechanism must also be optimal under that criterion. Thus, the concept of
undominated mechanisms can help a designer filter out some undesirable mechanisms
when multiple mechanisms are optimal and thus cannot be distinguished under other
approaches.

From a practical standpoint, being dominated is a compelling reason to reject a
mechanism. By definition, if a mechanism is dominated, there exists some mechanism
that performs weakly better in every plausible scenario and strictly better in at least
one scenario. This makes it easy to provide a straightforward and convincing argument
for avoiding dominated mechanisms, without needing to rely on extreme or highly
unlikely scenarios. This offers a robust justification for not using such mechanisms,
reinforcing the practicality and reliability of the undominated mechanism approach.

Evidently, the undominated mechanism approach could be adopted in various
design settings and under various assumptions about the designer’s knowledge about
the environment. As a proof of concept, in this paper, we focus on the screening
environment and the single-unit auction environments, assuming that the designer
has minimal information about the environment. This is arguably the most standard
design environment. While the assumed knowledge of the designer is rather extreme,
this is a natural starting point. Given the information assumption, the definition of
dominance relation between two mechanisms reduces to a dominance relation where
the performance meausre is the ex post revenue to the auctioneer under each value
profile.

Section 2 characterizes the set of undominated mechanisms in the screening
environment. Some preliminary observations indicate that for a mechanism to be
undominated, it must be that the lowest type has no rent, the allocation rule must be
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weakly increasing and right-continuous in the buyer’s value, and there is full efficiency
at the top. These observations imply that for a mechanism to be undominated, it must
be a random posted-price mechanism. A more involved analysis show that the converse
is also true: any random posted-price mechanism is undominated.

Section 3 studies undominated mechanisms in the single-unit auction setting.
The analysis is more subtle in this environment given the fact that a higher ex post
revenue to the auctioneer does not neessary mean that the payment from each bidder
is higher. We focus on the class of second-price auctions with deterministic or random
reserve prices in this environment. Theorem 2 shows that a deterministic reserve price
is undominated, providing a undominance foundation for its use if it were optimal
under other criterion. Rather surprisingly, Theorem 3 shows that any (non-degenerate)
random reserve price is dominated. And we explicitly construct a mechanism that
dominates it. This construction generalizes the logic in Example 1 to an arbitrary
random reserve price. This is in sharp contrast with the screening environment, when
there is a single buyer. Furthermore, Theorem 4 shows that the superior mechanism
that we construct is itself undominated. Thus, we provide a concrete recommendation
when the second-price auction with a random reserve price is optimal under other
criterion.

Section 4 introduces an alternative notion of dominance which we call strong
dominance. Loosely speaking, strong dominance is a more demanding notion as it
requires the superior mechanism to generate a strictly better preformance over a set
of scenarios with positive Lebesgue measure (while leading to no worse outcome for
all scenarios). We highlight the contrasting effects of applying each notion, using the
screening environment as a case study. Section 4 also discusses how variations in the
designer’s knowledge of the environment affect the set of undominated mechanisms.

Our findings imply that the set of undominated mechanisms is rather large. Section
5 concludes the paper with reflections on this issue and provides some directions for
future research.

1.1 Related literature

This paper contributes to the theory of robust mechanism design that addresses the
design of mechanisms when the designer has non-Bayesian uncertainty about the design
environment; see Carroll (2019) for a recent survey. While typical papers establish
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the robust optimility of certain mechanisms using either the maxmin approach or the
minimax approach, the approach of undominated mechanisms differs in that it directly
compares the vector outcomes of the mechanisms without imposing any assumptions
on the decision-making procedure of the designer.

In environments in which the designer has an estimate of the distribution of the
agents’ payoff types but does not have any reliable information about the agents’ beliefs,
Chung and Ely (2007) and Chen and Li (2018) show that under certain condition,
the use of dominant strategy mechanisms has a maxmin foundation. Börgers (2017)
shows that in these environments, all dominant strategy mechanisms are actually
dominated, exploiting the possibility of side bets when the agents’ beliefs are not
derived from common priors. Li and Dworczak (2021) study dominance relations
among mechanisms when the designer faces agents that are unsophisticated. Curello
and Sinander (2024) study undominated and optimal mechanisms in a dynamic agency
problem of incentivizing prompt disclosure of productive information. Mishra and
Patil (2024) study undominated mechanisms for regulating a monopolist who privately
observes the marginal cost of production.

Manelli and Vincent (2007) consider a multiple-good monopoly pricing problem.
The authors show that if a mechanism is undominated, then the mechanism is Bayesian
optimal for some distribution over values of the buyer.

Viewed as a theory of dominance among choices, our paper is related to the strict
or weak dominance among strategies in games; see for example Bernheim (1984) and
Pearce (1984). Cheng and Börgers (2023) provide a general theory of dominance among
choices that includes strict and weak dominance among strategies in games, Blackwell
dominance among experiments, and first or second-order stochastic dominance among
lotteries as special cases.

2 Screening

In this section, we study undominated mechanisms in the screening environment.
Section 2.1 presents the model, and Section 2.2 provides a complete characterization of
undominated mechanisms in this environment.
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2.1 Model

A seller (she) seeks to sell a single indivisible object to a potential buyer (he). The
buyer has a value v, his willingness to pay for the object, belonging to a closed interval
V = [v, 1] where v > 0. The value v is private information to the buyer. The seller has
only minimal information about the buyer’s value of the object—the only information
she has is that v ∈ V .

A mechanism consists of a set M of messages for the buyer, an allocation rule
q : M → [0, 1], and a transfer rule t : M → R. The buyer will select a message from
the set M , and based on the message m, the buyer gets the object with probability
q(m) and makes a transfer t(m) to the seller. By the revelation principle, it is without
loss to focus on direct mechanisms.

Definition 1. A direct mechanism (q, t) is incentive compatible (IC) if

vq(v) − t(v) ≥ vq(v′) − t(v′) for all v, v′ ∈ V,

and is individually rational (IR) if

vq(v) − t(v) ≥ 0 for all v ∈ V.

Lemma 1 below is a standard result that characterizes incentive compatibility
and individual rationality for the screening environment; see for example Börgers (2015,
Section 2.2).

Lemma 1. A direct mechanism (q, t) is IC if and only if

• q(v) is weakly increasing in v, and

• for all v ∈ V , we have

t(v) = vq(v) −
∫ v

v
q(x) dx −

(
vq(v) − t(v)

)
.

An IC direct mechanism is IR if and only if vq(v) − t(v) ≥ 0.

We focus on mechanisms that are undominated in the following sense.

Definition 2. An IC and IR mechanism (q, t) is dominated by another IC and IR
mechanism (q′, t′) if
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(1) t′(v) ≥ t(v) for all v ∈ V , and

(2) there exists some ṽ ∈ V such that t′(ṽ) > t(ṽ).

An IC and IR mechanism is undominated if there is no IC and IR mechanism
that dominates it.

2.2 Undominated mechanisms

In this section, we fully characterize the class of undominated mechanisms in the
screening environment. We first present several straightforward necessary conditions
for a mechanism to be undominated.

First, consider any IC and IR mechanism (q, t) where the lowest possible type has
positive rent, that is, vq(v) − t(v) > 0. We construct a new mechanism (q′, t′) where
for all v ∈ V ,

q′(v) = q(v) and t′(v) = t(v) +
(
vq(v) − t(v)

)
> t(v).

Obviously, the mechanism (q′, t′) is IC, IR, and dominates (q, t).

Observation 1. If an IC and IR mechanism (q, t) is undominated, then

vq(v) − t(v) = 0.

Second, consider any IC and IR mechanism (q, t) where the allocation rule q

is not right-continuous at some v̂ ∈ V , that is, q(v̂) < q(v̂+).1 We consider another
mechanism (q′, t′) where

q′(v̂) = q(v̂+) > q(v̂),

q′(v) = q(v), ∀v ̸= v̂,

t′(v) = vq′(v) −
∫ v

v
q′(x) dx −

(
vq(v) − t(v)

)
, ∀v ∈ V.

Here, we only modify the allocation probability for type v̂ and keep the allocation
probabilities for the other types unchanged. Clearly, q′(v) is weakly increasing in v,
and the mechanism (q′, t′) is IC and IR. Since q′(v̂) > q(v̂) and q′(v) = q(v) for any

1q(v̂+) = limv→v̂+ q(v) is the right-hand limit of q(v) at v̂.
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v ̸= v̂, we have

t′(v̂) = v̂q′(v̂) −
∫ v̂

v
q′(x) dx −

(
vq(v) − t(v)

)
> v̂q(v̂) −

∫ v̂

v
q(x) dx −

(
vq(v) − t(v)

)
= t(v̂).

It is easy to verify that t′(v) = t(v) for any v ̸= v̂. Therefore, (q, t) is dominated.

Observation 2. If an IC and IR mechanism (q, t) is undominated, then the allocation
rule q(v) must be right-continuous.

Third, consider any IC and IR mechanism (q, t) where the allocation is not efficient
at the top, that is, q(1) < 1. We consider another mechanism (q′, t′) where

q′(1) = 1 > q(1),

q′(v) = q(v), ∀v ̸= 1,

t′(1) = t(1) + (1 − q(1)) > t(1),

t′(v) = t(v), ∀v ̸= 1.

Here, we only modify the allocation probability for the highest possible type 1 and
keep the allocation probabilities for the other types unchanged. It is straightforward to
verify that (q′, t′) is IC, IR, and dominates (q, t).

Observation 3. If an IC and IR mechanism (q, t) is undominated, then q(1) = 1.

We summarize the above observations in the following lemma.

Lemma 2. If an IC and IR mechanism (q, t) is undominated, then we must have

• vq(v) − t(v) = 0,

• q(v) is weakly increasing and right-continuous, and

• q(1) = 1.

Say that a mechanism is a random posted-price mechanism if for some distribution
G ∈ ∆[v, 1] we have

q(v) = G(v) and t(v) =
∫ v

v
p dG(p), ∀v ∈ V.
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In words, the seller posts a (random) price p that follows the distribution G and the
buyer buys the object if and only if the buyer’s value is weakly higher than the posted
price. Consider any mechanism (q, t) that satisifies the conditions in Lemma 2. Since
vq(v) − t(v) = 0, q(·) is weakly increasing and right-continuous, and q(1) = 1, the
mechanism (q, t) is the random posted-price mechanism where the posted price follows
the distribution q. Lemma 2 states that if an IC and IR mechanism is undominated,
then it must be a random posted-price mechanism. Thus, in our quest to characterize
undominated mechanisms, it is without loss of generality to focus on random posted-
price mechanisms.

Before we present our main result for the screening environment, we consider
some special cases of random posted-price mechanisms, where the arguments are
particularly easy to follow. We first consider the class of posted-price mechanisms
with a deterministic price. The allocation rule and the payment scheme for such a
mechanism with a deterministic price p are given as follows:

q(v) =

 0 if v ∈ [v, p),
1 if v ∈ [p, 1].

and t(v) =

 0 if v ∈ [v, p),
p if v ∈ [p, 1].

Proposition 1. Any posted-price mechnaism with a deterministic price p ∈ [v, 1] is
undominated.

Proof. Fix any p ∈ [v, 1], and let (q, t) denote the posted-price mechanism with price
p. Consider any IC and IR mechanism (q′, t′) such that t′(v) ≥ t(v) for all v ∈ V . In
what follows, we show that t′(v) = t(v) for all v ∈ V . This then implies that (q, t) is
undominated.

Case 1. We first consider the case in which v = p.

Suppose that t′(p) > t(p). Clearly, t′(p) > t(p) = p. Note that the seller is
extracting more than the buyer’s value of the object in the mechanism (q′, t′). This is
not possible without violating the IR constraint of type p. We have a contradiction.
Thus, we must have t′(p) = t(p) = p. Furthermore, since in the mechanism (q′, t′) the
seller is extracting the full surplus from type p, it must be that q′(p) = 1.

Case 2. Next, we consider the case in which v > p.

We claim that in the mechanism (q′, t′) the seller can never extract more than p

from the buyer of any type. This is because, following our analysis in Case 1 above,
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the buyer of any type can always mimick type p, paying only p to get the object with
probability 1. Thus, for any v > p,

t′(v) ≤ p = t(v) ≤ t′(v) =⇒ t′(v) = t(v).

Case 3. Last, we consider the case in which v < p.

Suppose that there exists some ṽ ∈ [v, p) such that t′(ṽ) > t(ṽ). Clearly, t′(ṽ) >

t(ṽ) = 0. It follows from the IR constraint of type ṽ that q′(ṽ) > 0. It follows from the
IC constraint of type p (mimicking type ṽ) and the IR constraint of type ṽ that

pq′(p) − t′(p) ≥ pq′(ṽ) − t′(ṽ) = (p − ṽ)q′(ṽ) + ṽq′(ṽ) − t′(ṽ) > 0.

In words, type p has a strictly positive rent in the mechanism (q′, t′) because type p

can always mimic the lower type ṽ that gets the good with positive probability. We
arrive at a contradiction. This is because, as argued in Case 1 above, the seller extracts
full surplus from type p and does not leave any rent for type p in the mechanism (q′, t′).
We conclude that t′(v) = t(v) = 0 for all v < p.

Next, we consider any random posted-price mechanism where G ∈ ∆V has finite
support.

Proposition 2. Any random posted-price mechanism where G ∈ ∆V has finite support
is undominated.

Proof. Fix any G ∈ ∆V with finite support, and denote the support of G by {pi}K
i=1,

where v ≤ p1 < p2 < · · · < pK ≤ 1. Denote the probability of the seller posting the
price pk by λk, k = 1, 2, . . . , K. The allocation rule and the payment scheme for this
posted-price mechanism are given as follows:

qG(v) =


0 if v ∈ [v, p1),∑k

i=1 λi if v ∈ [pk, pk+1), ∀k = 1, 2, . . . , K − 1,

1 if v ∈ [pK , 1].

tG(v) =


0 if v ∈ [v, p1),∑k

i=1 λipi if v ∈ [pk, pk+1), ∀k = 1, 2, . . . , K − 1,∑K
i=1 λipi if v ∈ [pK , 1].
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Consider any IC and IR mechanism (q, t) that satisfies t(v) ≥ tG(v) for all v ∈ V .
Step 1 shows that q(v) ≥ qG(v) for all v ∈ V . This uses an induction argument. Step
2 shows that q(v) = qG(v) for all v ∈ V , which further implies that t(v) = tG(v) for
all v ∈ V . Thus, there does not exist a type ṽ such that t(ṽ) > tG(ṽ), and (qG, tG) is
undominated.

Step 1. We show that q(v) ≥ qG(v), ∀v ∈ V .

For any v ∈ [v, p1), since qG(v) = 0, we immediately have q(v) ≥ qG(v).

For v = p1, since p1q(p1) ≥ t(p1) ≥ tG(p1) = λ1p1, we have q(p1) ≥ λ1. Since q(v)
is weakly increasing and qG(v) is constant on [p1, p2), we have q(v) ≥ qG(v) for any
v ∈ [p1, p2).

Suppose that q(v) ≥ qG(v) for all v < pk for some k = 2, 3, . . . , K − 1, we show
that q(v) ≥ qG(v) for all v < pk+1. For v = pk, we can show that both the payment and
the buyer’s rent in the mechanism (q, t) are weakly higher than those in the mechanism
(qG, tG), which further implies that the allocation probability for type pk must also be
weakly higher in the mechanism (q, t). Formally, t(pk) ≥ tG(pk), and

pkq(pk) − t(pk) =
(
vq(v) − t(v)

)
+

∫ pk

v
q(x) dx

≥
∫ pk

v
q(x) dx

≥
∫ pk

v
qG(x) dx

= pkqG(pk) − tG(pk).

It follows that
pkq(pk) ≥ pkqG(pk) =⇒ q(pk) ≥ qG(pk).

Since q(v) is weakly increasing and qG(v) is constant on [pk, pk+1), we have q(v) ≥ qG(v)
for any v < pk+1.

The induction analysis shows that q(v) ≥ qG(v) for any v < pK . Using similar
arguments, one can further show that q(pK) ≥ qG(pK) and q(v) ≥ qG(v) for any v ∈ V .

Step 2. We show that q(v) = qG(v), ∀v ∈ V .

Suppose this is not true. Since q(v) ≥ qG(v) for all v ∈ V , there exists some v∗ ∈ V

such that q(v∗) > qG(v∗). Clearly, v∗ < pK . Let k∗ be the smallest k ∈ {1, 2, . . . , K}
such that v∗ < pk∗ . Since q(v) is weakly increasing and qG(v) is constant on [v∗, pk∗),
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we have q(v) > qG(v) for any v ∈ [v∗, pk∗). Thus,

pKq(pK) − t(pK) =
(
vq(v) − t(v)

)
+

∫ pK

v
q(x) dx

≥
∫ pK

v
q(x) dx

>
∫ pK

v
qG(x) dx

= pKqG(pK) − tG(pK).

Since t(pK) ≥ tG(pK), we have

pKq(pK) > pKqG(pK) =⇒ q(pK) > qG(pK) = 1.

We arrive at a contradiction. Thus, q(v) = qG(v) for all v ∈ V .

Since q(v) = qG(v) and t(v) ≥ tG(v) for all v ∈ V , we must have vq(v) − t(v) =
0 and t(v) = tG(v) for all v ∈ V . We conclude that the mechanism (qG, tG) is
undominated.

Theorem 1 below provides a complete characterization of undominated mecha-
nisms. The proof is conceptually similar to that of Proposition 2, but involves some
continuity arguments to handle all random posted-price mechanisms. The proof can be
found in Appendix A.

Theorem 1. An IC and IR mechanism is undominated if and only if it is a random
posted-price mechanism.

Remark 1. Proposition 1 shows that any posted-price mechanism with a deterministic
price is undominated. Thus, a random posted-price mechanism is a randomization over
undominated mechanisms. The readers might wonder whether the set of undominated
mechanisms is convex. If this property holds, then the characterization of undominated
mechanisms could be seen as a straightforward corollary of Proposition 1. Since
Theorem 1 gives a complete characterization of undominated mechanisms, this result
confirms that this is the case in the screening environment.2 However, this property
does not hold more generally. In the single-unit auction environment, we show that
while the second-price auction with any deterministic reserve price is undominated, the
second-price auction with any (non-degenerate) random reserve price is dominated.

2It is not clear to us how to show the convexity of the set of undominated mechanisms in the
screening environment without first characterizing the set of undominated mechanisms.
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Remark 2. In contract to Bayesian environments in which it is without loss of
optimility to focus on posted-price mechanisms with a deterministic price, we show
that random posted-price mechanisms are undominated when the seller has minimal
information about the screening environment. This highlights the hedging benefits of
randomization. With a single price p, the seller has a revenue of zero when the buyer’s
value is less than p. If the seller were to simply lower the deterministic price to some
p′ < p, she would miss the chance of extracting revenue from higher valuation types. A
randomized price provides hedging benefits against these various scenarios.

3 Single-unit auction

In this section, we study undominated mechanisms in the single-unit auction setting.
Here, we focus on the class of second-price auctions, an important class of auction
formats that are both theoretically appealing and widely adopted in practice. Section
3.1 introduces the auction environment, Section 3.2 studies second-price auctions with
a deterministic reserve price, and Section 3.3 studies second-price auctions with a
(non-degenerate) random reserve price.

3.1 Model

A seller seeks to sell a single indivisible object. There are n ≥ 2 bidders competing for
the object. We denote by N = {1, 2, . . . , n} the set of bidders and i a generic bidder.
Each bidder i holds private information about his valuation of the object, denoted
vi, belonging to a closed interval Vi = [v, 1] where v > 0. The set of value profiles is
V = ×i∈N Vi with a generic element v. We write v−i for a value profile of bidder i’s
opponents, that is, v−i ∈ V−i = ×j ̸=i Vj. The only information the seller has is that
vi ∈ Vi for all i ∈ I.

We focus on dominant strategy mechanisms. The revelation principle applies,
and we restrict attention to direct mechanisms. A direct mechanism (q, t) consists of an
allocation rule q : V → [0, 1]n and a payment rule t : V → Rn. Each bidder will report a
value vi, and based on the resulting profile of reports v, bidder i receives the object with
probability qi(v) and makes a transfer ti(v) to the seller. Let REV (v) = ∑

i∈N ti(v)
for all v ∈ V .
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Definition 3. A direct mechanism (q, t) is dominant strategy incentive compatible
(DIC) if ∀i ∈ N , ∀v ∈ V , ∀v′

i ∈ Vi,

viqi(v) − ti(v) ≥ viq(v′
i, v−i) − t(v′

i, v−i),

and is dominant strategy individually rational (DIR) if ∀i ∈ N , ∀v ∈ V ,

viqi(v) − ti(v) ≥ 0.

Lemma 3 below is a standard result that characterizes dominant strategy incentive
compatibility and dominant strategy individual rationality for the single-unit auction
environment; see for example Börgers (2015, Section 4.2).

Lemma 3. A direct mechanism (q, t) is DIC if and only if ∀i ∈ N , ∀v−i ∈ V−i,

• qi(vi, v−i) is weakly increasing in vi, and

• for all vi ∈ Vi, we have

ti(vi, v−i) = viq(vi, v−i) −
∫ vi

v
qi(x, v−i)dx −

(
vqi(v, v−i) − ti(v, v−i)

)
.

A DIC direct mechanism is DIR if and only if ∀i ∈ N , ∀v−i ∈ V−i,

vqi(v, v−i) − ti(v, v−i) ≥ 0.

An important class of dominant strategy mechanisms is the class of second-
price auctions with a deterministic or random reserve price. We present a formal
definition here. In the second-price auction with reserve price r, each bidder i submits
a bid mi ∈ R+. Conditional on the submitted bids m = (m1, m2, . . . , mn), bidder i’s
probability of winning the object qi(m) and the payment from bidder i to the auctioneer
ti(m) are given as follows:

qi(m) =


1

|W (m)| if i ∈ W (m)

0 otherwise
and ti(m) =


max(m(2),r)

|W (m)| if i ∈ W (m)

0 otherwise

where W (m) = {i ∈ N : mi = m(1), mi ≥ r}.3

3For any set S, let |S| denote its cardinality. For any real-valued vector x ∈ Rn, we write x(k) for
the k-th largest element of the vector.
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We are interested in the seller’s revenue in the dominant strategy equilibrium
in which each bidder submits a bid that is equal to her value of the object. For the
second-price auction with reserve price r, let

REV (r, v) =


0 if v(1) < r;

r if v(2) < r ≤ v(1);

v(2) if v(2) ≥ r.

That is, we use REV (r, v) to denote the seller’s ex post revenue by using the
deterministic reserve price r when the realized value profile is v. Let G denote the set
of all cumulative distribution functions on the [v, 1] interval. For any random reserve
price G ∈ G, let

REV (G, v) =
∫ 1

v
REV (r, v) dG(r)

denote the seller’s ex post revenue by using the random reserve price G when the
realized value profile is v.

We study mechanisms that are undominated in the following sense.

Definition 4. A DIC and DIR mechanism (q, t) is dominated by another DIC and
DIR mechanism (q′, t′) if

(1) REV ′(v) ≥ REV (v) for all v ∈ V , and

(2) there exists some ṽ ∈ V such that REV ′(ṽ) > REV (ṽ).

A DIC and DIR mechanism is undominated if there is no DIC and DIR mechanism
that dominates it.

3.2 Second-price auctions with a deterministic reserve price

Theorem 2 below shows that any second-price auction with a deterministic reserve
price is undominated. This result includes the second-price auction with no reserve
price as a special case, since we allow the deterministic reserve price to be set at v.

Theorem 2. Any second-price auction with a deterministic reserve price r ∈ [v, 1] is
undominated.

Proof. Fix any r ∈ [v, 1]. Let (q, t) denote the second-price auction with the reserve
price r and REV (v) the seller’s ex post revenue at the value profile v. Fix any DIC
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and DIR mechanism (q′, t′) such that REV ′(v) ≥ REV (v) for all v ∈ V . In what
follows, we show that REV ′(v) = REV (v) for all v ∈ V . This then implies that (q, t)
is undominated.

Case 1. Consider any v ∈ V such that v(1) = r or v(1) = v(2) > r.

For any such v ∈ V , the seller already extracts the entire surplus using the
second-price auction with the reserve price r. Thus, the seller could not obtain a
strictly higher ex post revenue for any such value profile without violating the DIR
constraint of some bidder. Thus, we can conclude that REV ′(v) = REV (v) and the
seller also extract the full surplus in the mechanism (q′, t′) for any v ∈ V such that
v(1) = r or v(1) = v(2) > r.

Case 2. Consider any v ∈ V such that v(1) < r.

Suppose that for some v ∈ V such that v(1) < r, we have REV ′(v) > REV (v).
Clearly, REV ′(v) > REV (v) = 0. There necessarily exists some bidder i ∈ N such
that t′

i(v) > 0. It follows from the DIR constraint of bidder i that q′
i(v) > 0. Consider

the following value profile where we increase the value of bidder i from vi to r while
keeping other bidders’ value unchanged:

v̂ = (v1, v2, . . . , vi−1, r, vi+1, . . . , vn).

Note that v̂ constructed above is a type considered in Case 1. It follows from the DIC
and DIR constraints of bidder i that

rq′
i(v̂) − t′

i(v̂) ≥ rq′
i(v) − t′

i(v) = (r − vi)q′
i(v) + viq

′
i(v) − t′

i(v) > 0.

In words, bidder i has positive rent at the value profile v̂. But this is impossible since
we have already concluded from Case 1 above that the seller must extract the full
surplus at the value profile v̂ in the mechanism (q′, t′). Thus, it must be that for any
v ∈ V such that v(1) < r, we have REV ′(v) = REV (v) = 0.

Case 3. Finally, we consider any v ∈ V with v(1) > r and v(1) > v(2).

Suppose that for some v ∈ V such that v(1) > r and v(1) > v(2), we have
REV ′(v) > REV (v). Let z = max

{
v(2), r

}
. Clearly, REV ′(v) > REV (v) = z. Let

i1 denote the bidder with the highest value v(1). Since v(1) > v(2), i1 is unique. Let i2

denote one of the bidders with the second highest value v(2).
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In the mechanism (q, t), we have

qi1(v) = 1, REV (v) = ti1(v) = z.

For sufficiently small ϵ > 0, consider the following value profile ṽ where

ṽi1 = z + ϵ,

ṽi = vi, ∀i ̸= i1.

In words, we decrease the value of bidder i1 from vi1 to z + ϵ without changing the
values of the other bidders. By construction, bidder i1 still has the highest value at the
value profile ṽ. Thus, in the original mechanism (q, t), we have REV (ṽ) = z. It follows
that REV ′(ṽ) ≥ REV (ṽ) = z.

We claim that, in the mechanism (q′, t′), bidders other than bidder i1 cannot get
the good with any positive probability at the value profile ṽ. Suppose to the contrary,
for some bidder j ̸= i1, we have q′

j(ṽ) > 0. We consider another value profile ˜̃v where
we increase the value of bidder j from ṽj to z + ϵ while leaving the other bidders’ values
unchanged:

˜̃vj = z + ϵ,

˜̃vi = ṽi, ∀i ̸= j.

Note that v and ṽ only differ in bidder i1’s value, and ṽ and ˜̃v only differ in bidder
j’s value. Furthermore, ˜̃v is a type considered in Case 1. Since q′

j(ṽ) > 0, we can use
the DIC and DIR constraints of bidder j to show that type ˜̃vj has positive rent at the
value profile ˜̃v. But this contradicts with our finding in Case 1 that in the mechanism
(q′, t′) the seller must extract the full surplus and leave no rent to the bidders at the
value profile ˜̃v. Thus, in the mechanism (q′, t′), bidders other than bidder i1 cannot get
the good with any positive probability at the value profile ṽ.

It follows that

z = REV (ṽ) ≤ REV ′(ṽ) =
∑
i∈N

t′
i(ṽ) ≤

∑
i∈N

ṽiq
′
i(ṽ) = (z + ϵ)q′

i1(ṽ),
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which further implies that

q′
i1(ṽ) ≥ z

z + ϵ
.

Thus, we have

t′
i1(v) ≤ vi1q′

i1(v) − vi1q′
i1(ṽ) + t′

i1(ṽ)

≤ vi1 − vi1q′
i1(ṽ) + t′

i1(ṽ)

≤ vi1 − vi1
z

z + ϵ
+ (z + ϵ)

= vi1
ϵ

z + ϵ
+ (z + ϵ)

→ z

as ϵ → 0, where the first line follows from the DIC constraint of bidder i1, the second
line is due to the feasibility constraint q′

i1(v) ≤ 1, the third line follows from the lower
bound on q′

i1(v̂) and the DIR constraint of bidder i1. Thus, we have that t′
i1(v) ≤ z.

Using similar arguments as above, we can show that in the mechanism (q′, t′),
bidders other than bidder i1 cannot get the good with any positive probability at the
value profile v. Thus, we have

z = REV (v) ≤ REV ′(v) =
∑
i∈N

t′
i(v) ≤ t′

i1(v) ≤ z,

which implies that REV ′(v) = REV (v).

3.3 Second-price auction with a random reserve price

Theorem 2 shows that any second-price auction with a deterministic reserve price is
undominated. One natural conjecture is that if we randomize between two mechanisms
that are undominated, the resulting mechanism remains undominated.4 However, this
property does not hold here. As we have seen in Example 1, a second-price auction
with a random reserve price, while being maxmin optimal in the correlation-robust
auction design framework, is dominated. In what follows, we generalize Example 1 and
show that any second-price auction with a (non-degenerate) random reserve price is
dominated, and we explicitly construct a superior mechanism that dominates it.

4This is true in the case of the screening environment; see Theorem 1
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Theorem 3. Any second-price auction with a (non-degenerate) random reserve price
G ∈ G is dominated.

Fix any (non-degenerate) random reserve price G ∈ G. Let (q, t) denote the
second-price auction with the random reserve price G. Let

r = min supp(G), r̄ = max supp(G).

Clearly, G(v) = 1 if and only if v ≥ r̄.

We explicitly construct a mechanism (qA, tA) by modifying the mechanism (q, t) for
value profiles v with v(1) = v(2) ∈ [r, r̄), and proceed to show that (qA, tA) dominates
(q, t). The intuition for modifying the allocation rule for these value profiles is as follows.
For any v with v(1) = v(2), conditional on the object being allocated, the reserve price
plays no role in determining the ex post revenue to the seller. Thus, the seller could
potentially generate higher revenue by increasing the allocation probability for such v.
The seller, however, may not be able to arbitrarily increase the allocation probability,
as that might distort the bidders’ incentives to report their values truthfully. The
mechanism (qA, tA) exploits this observation by increasing the allocation probability
for these valuation profiles while preserving the bidders’ incentive constraints. For any
v, let

M(v) = {i ∈ N | vi = v(1)}

denote the collection of bidders who have the highest value at the value profile v. For
any v with v(1) = v(2) ∈ [r, r̄), let

qA
i (v) =

 min
{
G(v(1)), 1

|M(v)|

}
∀i ∈ M(v);

0 ∀i /∈ M(v),

and let
tA
i (v) = vi qA

i (v), ∀i ∈ N.

In words, (qA, tA) is identical to (q, t) except for v ∈ V with v(1) = v(2) ∈ [r, r̄). For
these value profiles, if |M(v)|G(v(1)) ≤ 1, we increase the allocation probability for each
bidder i ∈ M(v) to G(v(1)). As such, for each i ∈ M(v), qA

i (vi, v−i) is right-continuous
at the point vi = v(1), that is,

qA
i (v(1), v−i) = qi(v(1)+, v−i) = G(v(1)).

21



If we increase the allocation probability any further, the allocation would no longer
be ex post monotone. When |M(v)|G(v(1)) > 1, due to the feasibility constraint,
we could not increase the allocation probability for each bidder i ∈ M to G(v(1)).
Thus, qA

i (v) = 1
|M(v)| for all i ∈ M(v) in this case. The allocation rule is modified

so that we increase the allocation probability as much as possible while satisfying
the monotonicity constraint and the feasibility constraint. We say that (qA, tA) is an
augmented mechanism of (q, t).

Proof of Theorem 3. Fix any (non-degenerate) random reserve price G ∈ G. Let (q, t)
denote the second-price auction with the random reserve price G. In what follows,
we show that (qA, tA), the argumented mechanism of (q, t), dominates (q, t). For any
v ∈ V with v(1) = v(2) ∈ [r, r̄), we have

REV A(v) =
∑
i∈N

tA
i (v)

=
∑
i∈N

vi qA
i (v)

=
∑

i∈M(v)
vi qA

i (v)

=
∑

i∈M(v)
v(1) min

{
G(v(1)), 1

|M(v)|
}

= min
{
|M(v)| · v(1)G(v(1)), v(1)

}
≥ v(1)G(v(1))

= REV (v),

where the inequality holds because |M(v)| ≥ 2 and G(v(1)) < 1 for any v with
v(1) = v(2) ∈ [r, r̄). Furthermore, the inequality is strict if G(v(1)) > 0. This trivially
holds for any v with v(1) = v(2) ∈ (r, r̄).

Clearly, REV A(v) = REV (v) for any other v. Therefore, we conclude that
(qA, tA) dominates (q, t).

Remark 3. The class of second-price auctions with (non-degenerate) random reserve
prices is an important class of auction mechanisms, particularly in the literature of
robust mechanism design. Among many others, He and Li (2022), Zhang (2022a),
Zhang (2022b), and Che (2022) establish the optimality of second-price auctions with
random reserve prices across various design environments. These papers model a seller
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who has various degrees of uncertainty about the environment and take either the
maxmin approach or the minimax regret approach. Theorem 3 highlights the usefulness
of the analysis of undominated mechanisms. Perhaps surprisingly, the identified optimal
mechanisms according to the various criteria in these papers are, in fact, dominated. Our
analysis suggests that the argmented mechanisms we propose dominate the previously
identified optimal mechanisms. Therefore, they are also optimal in these studies. In
the next section, we further show that the argumented mechanims that we construct
are undominated.

3.4 Augmented mechanisms are undominated

Section 3.3 shows that for any second-price auction with a (non-degenerate) random
reserve price, the corresponding augmented mechanism dominates it. The question
remains: is the augmented mechanism itself dominated? This section addresses this
question.

Theorem 4. For any second-price auction with a (non-degenerate) random reserve
price that has finite support, the corresponding augmented mechanism dominates it and
is itself undominated.

We illustrate the main idea of the proof with the following example where there
are only two bidders and the reserve price only takes two possible values. The proof of
Theorem 4 can be found in Appendix B.

Example 2. Suppose that there are two bidders. Let (q, t) denote the second-price
auction with a random reserve price, which takes the value r with probability p and
r̄ with probability 1 − p, for some fixed p ∈ (0, 1). Formally, the reserve price is
distribution according to the following distribution:

G(r) =


0 if r < r;
p if r ≤ r < r̄;
1 if r ≥ r̄.

Let (qA, tA) be the corresponding augmented mechanism. Formally, (qA, tA) differs
from (q, t) only for value profiles v where v1 = v2 ∈ [r, r̄). For any such v,

qA
i (v) = min

{
p,

1
2

}
and tA

i (v) = vi qA
i (v), ∀i = 1, 2.
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In what follows, we show that (qA, tA) is undominated.

Fix any DIC and DIR mechanism (q′, t′) such that REV ′(v) ≥ REV A(v) for all
v ∈ V . We show that REV ′(v) = REV A(v) for all v ∈ V . This then implies that
(qA, tA) is undominated.

Case 1. Consider any v where v(2) ≥ r̄.

First consider any v with v1 = v2 ≥ r̄. For any such v ∈ V , the seller already
extracts the entire surplus in the mechanism (qA, tA). Thus, the seller could not obtain
a strictly higher ex post revenue for any such value profile without violating the DIR
constraint of some bidder. Thus, we can conclude that REV ′(v) = REV A(v) and the
seller also extract the full surplus in the mechanism (q′, t′) for any v ∈ V such that
v1 = v2 ≥ r̄. In particular, at the value profile (r̄, r̄), both bidders have zero rent. This
further implies that for any value profile where one bidder’s value is r̄ and the other
bidder’s value is less than r̄, the bidder whose value is lower does not get the object
with any positive probability. Using similar arguments as in the proof of Theorem 2,
one can show that REV ′(v) = REV A(v) for any v where v(1) > v(2) ≥ r̄.

Case 2. Consider any v where v1 = v2 ∈ [r, r̄).

For any such v, we have

v1q
A
1 (v) + v2q

A
2 (v) = REV A(v) ≤ REV ′(v) ≤ v1q

′
1(v) + v2q

′
2(v), (1)

where the last inequality follows from the DIR constraints. Since v1 = v2, we have

q′
1(v) + q′

2(v) ≥ qA
1 (v) + qA

2 (v). (2)

We shall show that (2) must hold with equality. This, together with (1), shows that
REV A(v) = REV ′(v).

If p ≥ 1
2 , then by construction, qA

1 (v) + qA
2 (v) = 1. Clearly, in this case, (2) holds

with equality. If p < 1
2 , then by construction, qA

1 (v) = qA
2 (v) = p. Suppose to the

contrary, (2) holds with strict inequality. Then, there necessarily exists some bidder i

with q′
i(v) > p.

Consider the following profile v̂:

v̂i = r̄ ≥ v̂j = vj ∈ [r, r̄).
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From our analysis in Case 1, we know that q′
j(v̂) = 0. Thus, t′

j(v̂) ≤ 0. It follows that

t′
i(v̂) ≥ REV ′(v̂) ≥ REV A(v̂) = (1 − p)r̄ + pv̂j. (3)

It follows from the DIC and DIR constraints of bidder i that

r̄q′
i(v̂) − t′

i(v̂) ≥ r̄q′
i(v) − t′

i(v) ≥ (r̄ − vi)q′
i(v) > (r̄ − vi)p. (4)

From (3) and (4), we obtain that

r̄q′
i(v̂) > r̄ =⇒ q′

i(v̂) > 1.

We arrive at a contradiction. Therefore, if p < 1
2 , (2) also holds with equality. We have

v1q
A
1 (v) + v2q

A
2 (v) = REV A(v) = REV ′(v) = v1q

′
1(v) + v2q

′
2(v).

This further implies that both bidders have zero rent at v.

Case 3. Consider any v where v(2) < r.

It follows from Case 2 that at the value profile (r, r), both bidders have zero rent.
This implies that for any value profile v where one bidder’s value is r and the other
bidder’s value is less than r, the bidder whose value is lower does not get the object
with any positive probability. Without loss of generality, suppose that bidder 2’s value
v2 is less than r. Consider the following two value profiles:

w1 = (r, v2), w2 = (r̄, v2).

At w1, we have q′
2(w1) = 0 and

pr = REV A(w1) ≤ REV ′(w1) ≤ t′
1(w1) ≤ rq′

1(w1) =⇒ q′
1(w1) ≥ p. (5)

At w2, we have q′
2(w2) = 0 and

(1 − p)r̄ + pr = REV A(w2) ≤ REV ′(w2) ≤ t′
1(w2). (6)
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Furthermore, for bidder 1 we have

r̄q′
1(w2) − t′

1(w2) = rq′
1(w1) − t′

1(w1) +
∫ r̄

r
q′

1(x, v2) dx ≥
∫ r̄

r
q′

1(x, v2) dx. (7)

It follows from (5), (6), and (7) that

r̄ ≥ r̄q′
1(w2)

=
(
r̄q′

1(w2) − t′
1(w2)

)
+ t′

1(w2)

≥
∫ r̄

r
q′

1(x, v2) dx + (1 − p)r̄ + pr

≥ (r̄ − r)q′
1(w1) + (1 − p)r̄ + pr

≥ (r̄ − r)p + (1 − p)r̄ + pr

= r̄.

Therefore, the above inequalities must all hold with equality, and we have q′
1(v1, v2) = p

if v1 ∈ [r, r̄), and q′
1(r̄, v2) = 1. Since q′

1(v1, v2) is weakly increasing in v1, we further
have q′

1(v1, v2) = 1 if v1 ∈ [r̄, 1].

Next, we show that q′
1(v1, v2) = 0 if v1 ∈ [v, r]. Suppose not, there exists some

v1 < r such that q′
1(v1, v2) > 0. It follows from the DIC and DIR constraints of bidder

1 that q′
1(w1) > p, contradicting with our finding in the previous paragraph. Thus

q′
1(v1, v2) = 0 if v1 ∈ [v, r].

Since for any v2 < r, q′
1(v1, v2) = qA

1 (v1, v2) for all v1, we have REV ′(v) =
REV A(v) for any v where v(2) < r.

Case 4. Consider any v with v(1) > v(2) ∈ [r, r̄).

Without loss of generality, we consider the case in which v1 > v2 ∈ [r, r̄). Consider
the value profile w = (w1, w2) = (v2 + ϵ, v2) for some fixed v2 ∈ [r, r̄), where ϵ > 0 is
sufficiently small. Since both bidders have zero rent at (v2 + ϵ, v2 + ϵ), a value profile
considered in Case 2, we have q′

2(w) = 0. Thus,

p v2 = REV A(w) ≤ REV ′(w) ≤ t′
1(w) ≤ (v2 + ϵ)q′

1(w),
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which implies that

q′
1(w) ≥ p

v2

v2 + ϵ
> 0.

Consider the profile w′ = (r̄, v2). Since both bidders have zero rent at (r̄, r̄), a
value profile considered in Case 1, we have q′

2(w′) = 0. Thus,

t′
1(w′) ≥ REV ′(w′) ≥ REV A(w′) = p v2 + (1 − p) r̄.

Furthermore, for bidder 1 we have

r̄q′
1(w′) − t′

1(w′) = (v2 + ϵ)q′
1(w) − t′

1(w) +
∫ r̄

v2+ϵ
q′

1(x, v2) dx ≥
∫ r̄

v2+ϵ
q′

1(x, v2) dx.

It follws from these inequalities that

r̄ ≥ r̄q′
1(w′)

=
(
r̄q′

1(w′) − t′
1(w′)

)
+ t′

1(w′)

≥
∫ r̄

v2+ϵ
q′

1(x, v2) dx + p v2 + (1 − p) r̄

≥
(
r̄ − (v2 + ϵ)

)
q′

1(w) + p v2 + (1 − p) r̄

≥
(
r̄ − (v2 + ϵ)

) v2

v2 + ϵ
p + p v2 + (1 − p) r̄

→ r,

as ϵ → 0. Therefore, the above inequalities must all hold with equalities, and we have
q′

1(v1, v2) = p if v1 ∈ [r, r̄), and q′
1(r̄, v2) = 1. Since q′

1(v1, v2) is weakly increasing in v1,
we further have q′

1(v1, v2) = 1 if v1 ∈ [r̄, 1]. Therefore, we have REV ′(v) = REV A(v)
for any v with v(1) > v(2) ∈ [r, r̄).

The above analysis show that REV ′(v) = REV A(v) for all v. Therefore, (qA, tA)
is undominated.

4 Discussion

Section 4.1 introduces an alternative notion of dominance and highlights the contrasting
effects of applying each notion, using the screening environment as a case study. Section

27



4.2 discusses how variations in the designer’s knowledge of the environment affect the
set of undominated mechanisms.

4.1 Strong dominance

The notion of dominance we consider so far only requires that there exist at least
one scenario under which the superior mechanism achieves strict improvement (while
leading to no worse outcome for all scenarios). In this section, we briefly consider an
alternative notion of dominance which requires that the superior mechanism strictly
improve over a set of scenarios with positive Lebesgue measure. In this sense, this
alternative notion of dominance is more demanding. We illustrate the distinction
between the notions of dominance and strong dominance in the screening environment.

Definition 5. An IC and IR mechanism (q, t) is strongly dominated by another IC
and IR mechanism (q′, t′) if t′(v) ≥ t(v) for all v ∈ V , with strict inequality in a set of
positive Lebesgue measure. An IC and IR mechanism is not strongly dominated if there
is no IC and IR mechanism that strongly dominates it.

At this point, the readers might wonder which of the two notions is preferable.
Here, we clarify the distinctions between the two notions and discuss how the seller’s
information affects the choice of a more suitable notion. First, by definition, f
a mechanism (q, t) is strongly dominated by another mechanism (q′, t′), then it is
dominated by (q′, t′). Thus, the set of mechanisms that are not strongly dominated
is a superset of the set of undominated mechanisms. Second, the choice between the
two notions depends on the designer’s knowledge about the environment. When the
seller has only minimal information about the environment and only knows the bounds
on the buyer’s value, we favor the original notion of dominance. This is because, to
justify using strong dominance, additional assumptions about the seller’s knowledge of
the environment are necessary—specifically, that the seller views any given scenario as
having zero probability of being the true scenario. That said, the concept of strong
dominance holds interest in its own right. One notable advantage of strong dominance
is that it allows us to use duality arguments to construct mechanisms that are not
strongly dominated, as we shall see shortly.

Lemma 4 presents the necessary conditions for a mechanism to be not strongly
dominated.

Lemma 4. If a mechanism (q, t) is not strongly dominated, then we must have
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• vq(v) − t(v) = 0, and

• q(1) = 1.

Proof. The same arguments for the case of dominance implies that if a mechanism
(q, t) is not strongly dominated, then vq(v) − t(v) = 0; see Observation 1. In what
follows, we show that if a mechanism (q, t) is not strongly dominated, then q(1) = 1.

Suppose to the contrary, q(1) < 1. We explicitly construct another mechanism
(q′, t′) that strongly dominates (q, t). Let

q′(v) = q(v), ∀v ∈ [v, 1 − ϵ),

q′(v) = q(v) + (1 − q(1)), ∀v ∈ [1 − ϵ, 1],

t′(v) = vq′(v) −
∫ v

v
q′(x)dx, ∀v ∈ V

for some sufficiently small ϵ > 0. In words, we shift upward the allocation probability
on the interval [1 − ϵ, 1] and adjust the payments accordingly. Clearly, the mechanism
(q′, t′) is IC and IR. Furthermore, it is easy to verify that t′(v) = t(v) for all v ∈ [v, 1−ϵ)
and

t′(v) − t(v) = v(q′(v) − q(v)) −
∫ v

v
(q′(x) − q(x))dx

= v(q′(v) − q(v)) −
∫ v

1−ϵ
(q′(x) − q(x))dx

= v(1 − q(1)) −
(
v − (1 − ϵ)

)
(1 − q(1))

= (1 − ϵ)(1 − q(1))

> 0,

for all v ∈ [1 − ϵ, 1]. Thus, we can conclude that (q′, t′) strongly dominates (q, t).

We say that an IC and IR mechanism (q, t) is rationalizable with respect to some
distribution F ∈ ∆(V ) if the mechanism (q, t) generates the highest expected revenue
with respect to the distribution F . In particular, we consider the following distribution
that rationalizes a wide array of mechanisms:

F ∗(v) =

 1 − v
v

if v ∈ [v, 1);
1 if v = 1.
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Note that the distribution F ∗ rationalizes any mechanism (q, t) such that vq(v)−t(v) = 0
and q(1) = 1.

Lemma 5. If a mechanism (q, t) is rationalizable with respect to F ∗, then (q, t) is not
strongly dominated.

Proof. Fix any mechanism (q, t) that is rationalizable with respect to F ∗. Suppose to
the contrary, (q, t) is strongly dominated by another mechanism (q′, t′). By definition,
we have t′(v) ≥ t(v) for all v ∈ V , with strict inequality in a set of positive Lebesgue
measure. It follows that, again the distribution F ∗, the expected revenue generated by
the mechanism (q′, t′) is strictly higher than that by the mechanism (q, t). Thus, F ∗

cannot rationalize the use of the mechanism (q, t). We arrive at a contradiction.

Theorem 1. A mechanism (q, t) is not strongly dominated if and only if it satisfies
vq(v) − t(v) = 0 and q(1) = 1.

Theorem 1 follows from Lemma 4 and Lemma 5.

4.2 The designer’s knowledge

Our analysis suggests that the set of undominated mechanisms is rather large. There
are two compounding factors driving this. First, the notion of dominance itself directly
compares vector outcomes corresponding to the mechanisms without making any
assumptions about the designer’s decision-making procedure. This comparison leads to
a partial order over mechanisms. Thus, to a certain extent, it is not surprising to find
a wide array of undominated mechanisms. Second, the minimal information assumed
in the two applications we consider amplifies this effect. In particular, we assume that
the seller has minimal knowledge about the environment, knowing only the bounds of
valuations but has no additional distributional information. Our results show that, the
set of undominated mechanisms turns out to be large under this environment.

To understand the role of the designer’s information, consider the other extreme
case in which the designer has a well-defined Bayesian model. In this case, each
mechanism’s vector outcome simplifies to a scalar—the expected performance of the
mechanism with respect to the Bayesian environment—allowing for a total ordering
among mechanisms and typically resulting in a unique undominated mechanism.

In practice, the designer’s knowledge is likely somewhere between these extremes.
While the designer may not fully rely on a specific Bayesian model, the designer is
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likely to possess some information about the design environment. The literature of
robust mechanism design has explored various instances of this possibility, modeling
a designer who knows, for example, marginal distributions, moment conditions, or
aspects of the payoff environment but not agents’ beliefs. A reasonable conjecture is
that more precise knowledge of the environment would enable the designer to eliminate
more dominated mechanisms. We illustrate this point in Example 3, as a contrast to
the minimal information assumption findings in Section 2.

Example 3. A seller seeks to sell a single indivisible object to one risk-neutral buyer.
The buyer has a private value v ∈ [0, 1] for the good. The seller knows that the buyer’s
value v follows some distribution from the following set of distributions:

Fn(v) = vn, n = 1, 2,

but has non-Bayesian uncertainty about the true distribution. In this setting, each
mechanism is associated with two possible levels of expected revenue, (p(1−p), p(1−p2)),
one for each possible distribution. It is straightforward to check that any price p < 1

2 is
dominated by the price 1

2 and any price p >
√

3
3 is dominated by the price

√
3

3 .

5 Conclusion

This paper is devoted to the analysis of undominated mechanisms. While understanding
the set of undominated mechanisms requires a distinct analytical approach from typical
optimization problems (such as Bayesian optimization, maxmin, or minimax), we show
that the analysis is still largely tractable.

The notion of dominance establishes only a partial ordering over mechanisms, as
it relies on directly comparing their vector outcomes. As such, it should not come as a
surprise that the set of undominated mechanisms is large, especially when dealing with
a large uncertainty set. Consequently, in many cases, the undominated mechanism
analysis might not always yield sharp recommendations for the designer. Indeed,
our findings reveal that many mechanisms are undominated. Below, we offer some
reflections on this approach and suggest some directions for future research.

First, as discussed in Section 4.2, the large set of undominated mechanisms is
partly driven by the notion of dominance itself and by the large uncertain set we assume
in this paper. In practice, the designer’s knowledge likely falls between the extremes
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of minimal information and specific Bayesian models. Indeed, the literature of robust
mechanism design has already explored various design environments with designers
who have partial knowledge of the environment, often using maxmin or minimax regret
approach. The analysis of undominated mechanisms in environments where the designer
has additional information beyond the minimal information considered in the paper is
a particularly fruitful direction for further research.

Second, even when the designer has minimal information about the environment,
as studied in the current paper, we can already derive (rather surprising) results about
specific mechanisms. For instance, a large number of papers advocate the use of
second-price auctions with random reserve prices due to their desirable performance
even in the adversarial scenario. It is hitherto unknown that this well-known auction
format is actually dominated by the corresponding augmented mechanism. Being
dominated is a compelling reason to reject a mechanism, involving a straightforward
and convincing argument for avoiding dominated mechanisms, without the need to
rely on extreme or highly unlikely scenarios. This offers a robust justification for not
using such mechanisms, reinforcing the practicality and reliability of the undominated
mechanism approach.

Third, analyzing undominated mechanisms allows us to avoid justifying the
robust optimality of certain mechanisms based on specific, isolated scenarios, a common
criticism raised on the maxmin or minimax regret approach. To make meaningful
progress along this dimension, it seems necessary to examine the performance of any
given mechanism across all plausible scenarios, which necessitates the comparison of
vector outcomes.

Fourth, the analysis of undominated mechanisms provides a comprehensive
understanding of a mechanism’s performance across various scenarios and facilitates a
deeper understanding of the trade-off across the performance of a mechanism against
different scenarios. This aspect of mechanisms can go unnoticed when one takes the
Bayesian approach, the maxmin appraoch, or the minimax regret approach, as typically
these approaches involve the analysis against a particular type of scenario. For example,
while a random posted-price mechanism is not the unique Bayesian optimal mechanism
with respect to some distribution, its performance across different values provides
hedging benefit when the seller has minimal information about the environment and is
hence undominated.
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Last, the set of undominated mechanisms can be a useful first step in a two-
stage decision-making process. In the first stage, we identify the set of undominated
mechanisms, ensuring that focusing on this set does not entail any loss of generality for
the designer. In the second stage, this set can be further refined based on the designer’s
specific decision criteria, allowing for more concrete recommendations. In this way, the
undominated mechanism approach complements other methods in mechanism design
when there is uncertainty in the design environment.

Overall, the undominated mechanism approach enriches the toolkit for mechanism
design under uncertainty, and complements existing methodologies to broaden the
scope of mechanism design.

A Proof of Theorem 1

The only if direction follows immediately from Lemma 2. In what follows, we prove the
if direction. Fix any random posted-price mechanism (qG, tG). Suppose to the contrary,
there exists some IC and IR mechanism (q, t) that dominates (qG, tG). If q(v) is not
right-continuous or vq(v) − t(v) > 0, then there exists another mechanism (q′, t′) such
that

• q′(v) is right-continuous and vq′(v) − t′(v) = 0, and

• (q′, t′) dominates (q, t) and thus dominates (qG, tG).

Therefore, without loss of generality, we assume that for the mechanism (q, t) that
dominates (qG, tG), q(v) is right-continuous and vq(v) − t(v) = 0.

The proof is conceptually similar to that of Proposition 2, but involves some
continuity arguments to handle all random posted-price mechanisms. Step 1 shows
that q(v) ≥ qG(v) for all v ∈ V , and Step 2 shows that q(v) = qG(v) for all v ∈ V ,
which further implies that t(v) = tG(v) for all v ∈ V .

Step 1. We show that q(v) ≥ qG(v), ∀v ∈ V .

Suppose to the contrary, there exists some v∗ ∈ V such that q(v∗) < qG(v∗). Let

d = q(v∗) − qG(v∗) < 0 and e = inf
{
q(v) − qG(v) | v ∈ V

}
.

Clearly, e ≤ d < 0. Since vq(v) = t(v) ≥ tG(v) = vqG(v), we have q(v) − qG(v) ≥ 0.
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Since the function q(v) − qG(v) is right-continuous, there exists some ϵ > 0 such that

q(x) − qG(x) >
d

2 , ∀x ∈ [v, v + ϵ]. (8)

Let δ = min
{

− d
2 , −(v + ϵ

2)e
}
. Clearly, δ > 0. By the definition of e, there exists

v∗∗ ∈ V such that

q(v∗∗) − qG(v∗∗) < e + δ ≤ d − d

2 = d

2 . (9)

It follows from (8) and (9) that v∗∗ > v + ϵ.

We then have

∫ v∗∗

v

(
q(x) − qG(x)

)
dx =

∫ v+ϵ

v

(
q(x) − qG(x)

)
dx +

∫ v∗∗

v+ϵ

(
q(x) − qG(x)

)
dx

> ϵ
d

2 +
(
v∗∗ − (v + ϵ)

)
e

≥ ϵ
e

2 +
(
v∗∗ − (v + ϵ)

)
e

= v∗∗e − (v + ϵ

2)e

≥
(
e − (v + ϵ

2)e
)
v∗∗

≥ (e + δ)v∗∗

>
(
q(v∗∗) − qG(v∗∗)

)
v∗∗,

where the second line follows from (8) and the definition of e, the second-to-last line
follows from the definition of δ, and the last line follows from (9). However, by Lemma
1, the condition t(v) ≥ tG(v) for all v ∈ V implies that

v
(
q(v) − qG(v)

)
≥

∫ v

v

(
q(x) − qG(x)

)
dx, ∀v ∈ V.

We arrive at a contradiction. Thus, we can conclude that q(v) ≥ qG(v) for all v ∈ V .

Step 2. We show that q(v) = qG(v), ∀v ∈ V .

Suppose this is not true. Since q(v) ≥ qG(v) for all v ∈ V , there exists some
v∗∗∗ ∈ V such that q(v∗∗∗) > qG(v∗∗∗). Obviously, v∗∗∗ < 1. Since the function
q(·) − qG(·) is right-continuous, there exists some η ∈ (0, 1 − v∗∗∗) such that

q(x) − qG(x) > 0, ∀x ∈ [v∗∗∗, v∗∗∗ + η]. (10)

34



Since we know from Step 1 that q(v) ≥ qG(v) for all v ∈ V , we have

∫ 1

v

(
q(x) − qG(x)

)
dx > 0.

Since t(1) ≥ tG(1), by Lemma 1, we have

1
(
q(1) − qG(1)

)
≥

∫ 1

v

(
q(x) − qG(x)

)
dx > 0 =⇒ q(1) > qG(1) = 1.

We arrive at a contradiction. Thus, we can conclude that q(v) = qG(v) for all v ∈ V .

Since q(v) = qG(v) for all v ∈ V , by Lemma 1, we further have t(v) = tG(v) for
all v ∈ V . This shows that (qG, tG) is undominated.

B Proof of Theorem 4

Fix any G ∈ ∆[v, 1] with finite support, and denote the support of G by {ri}K
i=1 where

v ≤ r1 < r2 < · · · < rK ≤ 1. Denote the probability of the reserve price being rk by λk,
k = 1, 2, . . . , K. Let (q, t) denote the second-price auction with a random reserve price
G, and (qA, tA) the corresponding augmented mechanism.

Consider any DIC and DIR mechanism (q′, t′) that satisfies REV ′(v) ≥ REV A(v)
for all v ∈ V . We show that REV ′(v) = REV A(v) for all v ∈ V . This then implies
that (qA, tA) is undominated.

Case 1. Consider any v with v(2) ≥ rK .

First consider any v with v(1) = v(2) ≥ rK . For any such v ∈ V , the seller
already extracts the entire surplus in the mechanism (qA, tA). Thus, the seller could
not obtain a strictly higher ex post revenue for any such value profile without violating
the DIR constraint of some bidder. Thus, we can conclude that REV ′(v) = REV A(v)
and the seller also extract the full surplus in the mechanism (q′, t′) for any v ∈ V such
that v(1) = v(2) ≥ rK . Using similar arguments as in the proof of Theorem 2, one can
show that REV ′(v) = REV A(v) for any v where v(1) > v(2) ≥ rK .

Case 2. Consider any v with v(1) = v(2) ∈ [r1, rK).

For any such v, we have

v(1)
∑
i∈M

qA
i (v) = REV A(v) ≤ REV ′(v) ≤

∑
i∈N

viq
′
i(v) ≤ v(1)

∑
i∈N

q′
i(v), (11)
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where the second inequality follows from the DIR constraints. We have

∑
i∈M

qA
i (v) ≤

∑
i∈N

q′
i(v). (12)

We shall show that (12) must hold with equality. This, together with (11), shows that
REV A(v) = REV ′(v).

If |M(v)| G(v(1)) ≥ 1, then by construction, ∑
i∈M qA

i (v) = 1. Clearly, in this
case, (12) holds with equality. Thus, we only have to consider value profiles v such that
|M(v)| G(v(1)) < 1. By construction, qA

i (v) = G(v(1)) for all i ∈ M . Suppose to the
contrary, (12) holds with strict inequality. Then, there necessarily exists some bidder i

with q′
i(v) > G(v(1)).

Step 1.1. Consider any v with v(1) = v(2) = . . . = v(n) ∈ [rK−1, rK).

We can apply the same arguments as in Case 2 of Example 2 to show that
q′

i(v) = G(v(1)) for all i ∈ M . Therefore, we have

∑
i∈N

q′
i(v) =

∑
i∈M

q′
i(v) =

∑
i∈M

qA
i (v).

Consequently, REV A(v) = REV ′(v) for any v with v(1) = v(2) = . . . = v(n) ∈
[rK−1, rK). Furthermore, none of the bidders has positive rent at any such v in the
mechanism (q′, t′).

Step 1.2. Consider any v with v(1) = v(2) ∈ [rK−1, rK).

We can apply the same arguments as in Case 2 of Example 2 to show that
q′

i(v) = G(v(1)) for all i ∈ M . Using the conclusion from Step 1.1, we further have
q′

i(v) = 0 for all i /∈ M . Thus, we have

∑
i∈N

q′
i(v) =

∑
i∈M

q′
i(v) =

∑
i∈M

qA
i (v),

and REV A(v) = REV ′(v) for any v with v(1) = v(2) ∈ [rK−1, rK). Furthermore, none
of the bidders has positive rent at any such v in the mechanism (q′, t′).

Step 2. Suppose that REV A(v) = REV ′(v) for any v with v(1) = v(2) ∈ [rk, rK)
and none of the bidders has positive rent at any such v in the mechanism (q′, t′).
Consider any v with v(1) = v(2) ∈ [rk−1, rk).

For each bidder i ∈ M , for each value profile (rk′ , v−i) where k′ = k, k + 1, . . . , K,
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by the assumption of Step 2, we must have q′
j(rk′ , v−i) = 0, for all k′ = k, k + 1, . . . , K

and for all j ̸= i. Thus, we can apply the similar arguments as for (random) posted-price
mechanism with finite support (see the proof of Proposition 2) to show that

q′
i(v) = qA

i (v).

Consequently, REV A(v) = REV ′(v) for any v with v(1) = v(2) ∈ [rk−1, rK) and none
of the bidders has positive rent at any such v in the mechanism (q′, t′).

The induction process shows that REV A(v) = REV ′(v) for any v with v(1) =
v(2) ∈ [r1, rK) and none of the bidders has positive rent at any such v in the mechanism
(q′, t′).

Similar arguments as in Case 3 and Case 4 of Example 2 show that REV A(v) =
REV ′(v) for all v ∈ V . Therefore, (qA, tA) is undominated.

References

Bernheim, B. D. (1984): “Rationalizable Strategic Behavior,” Econometrica: Journal
of the Econometric Society, pp. 1007–1028.

Börgers, T. (2015): An Introduction to the Theory of Mechanism Design. Oxford
University Press, USA.

(2017): “(No) Foundations of Dominant-Strategy Mechanisms: a Comment
on Chung and Ely (2007),” Review of Economic Design, 21(2), 73–82.

Carroll, G. (2019): “Robustness in Mechanism Design and Contracting,” Annual
Review of Economics, 11, 139–166.

Che, E. (2022): “Robustly Optimal Auction Design under Mean Constraints,” in
Proceedings of the 23rd ACM Conference on Economics and Computation, pp. 153–
181.

Chen, Y.-C., and J. Li (2018): “Revisiting the Foundations of Dominant-Strategy
Mechanisms,” Journal of Economic Theory, 178, 294–317.

Cheng, X., and T. Börgers (2023): “Dominance and Optimality,” Available at
SSRN 4422054.

37



Chung, K.-S., and J. C. Ely (2007): “Foundations of Dominant-Strategy
Mechanisms,” The Review of Economic Studies, 74(2), 447–476.

Curello, G., and L. Sinander (2024): “Screening for Breakthroughs,” Working
Paper.

He, W., and J. Li (2022): “Correlation-Robust Auction Design,” Journal of Economic
Theory, 200, 105403.

Li, J., and P. Dworczak (2021): “Are Simple Mechanisms Optimal When Agents
are Unsophisticated?,” in Proceedings of the 22nd ACM Conference on Economics
and Computation, pp. 685–686.

Manelli, A. M., and D. R. Vincent (2007): “Multidimensional Mechanism Design:
Revenue Maximization and the Multiple-Good Monopoly,” Journal of Economic
Theory, 137(1), 153–185.

Mishra, D., and S. Patil (2024): “Undominated Monopoly Regulation,” Working
Paper.

Pearce, D. G. (1984): “Rationalizable Strategic Behavior and the Problem of
Perfection,” Econometrica: Journal of the Econometric Society, pp. 1029–1050.

Zhang, W. (2022a): “Auctioning Multiple Goods without Priors,” Working Paper.

(2022b): “Correlation-Robust Optimal Auctions,” Working Paper.

38


	Introduction
	Related literature

	Screening
	Model
	Undominated mechanisms

	Single-unit auction
	Model
	Second-price auctions with a deterministic reserve price
	Second-price auction with a random reserve price
	Augmented mechanisms are undominated

	Discussion
	Strong dominance
	The designer's knowledge

	Conclusion
	Proof of Theorem 1
	Proof of Theorem 4

