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Analysis of Variance from Multiply Imputed Data Sets

Abstract

The analysis of variance is a popular method used in many scientific applications. There

are standard software for handling unbalanced data due to missing values in the out-

come/dependent variable. The analysis becomes difficult when the missing values are in

predictors. Multiple imputation is an increasingly popular method for handling such in-

complete data. This approach involves replacing the missing set of values by more than one

plausible set of values, preferably generated from their posterior predictive distribution given

the observed data. Each plausible set of imputed values when combined with the observed

set of values results in a completed data. Each completed data set is analyzed separately

and the point estimates and their standard errors are combined to form a single inference.

Many analysis of variance models may be formulated as regression models and then apply

the standard multiple imputation combining rules. This is often not possible when the design

is complex involving repeated measures and/or nested, random or interaction effects. It may

be more convenient to directly combine the analysis of variance tables generated from each

completed data to test appropriate hypotheses. This paper develops a combining rule for

the completed data mean squares. Approximate F -tests are developed and evaluated using

the actual and simulated data sets. The method is extended to comparison of regression

models using partial F-tests in multiple linear regression analysis or the deviance statistics

in fitting regression models using the Generalized Estimating Equations.

Key Words: Design of experiments, F -distribution, Nested effects, Random effects

1 Introduction

The analysis of variance (ANOVA) is a very useful analytical tool for drawing inferences

from observational and experimental studies. There are standard software packages to carry
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out these analyses for a variety of designs involving repeated measures, nested and random

effects etc. Though, these software packages can handle unbalanced data arising due to

missing values in the outcome or dependent variable, they exclude subjects with missing

predictor variables.

When the missing data is confined to the outcome variable, a selected set of ANOVA

models can be re-formulated as regression models and then maximum likelihood approach

can be used to fit them assuming that the data are Missing at Random (MAR) (Rubin,

1976). Validity of this approach is questionable when the sample size is small or when the

missing data cannot assumed to be MAR. Regardless of the sample size, it is difficult to

carry out a valid analysis when the data are missing for predictors or factors, unless the data

are missing completely at random (MCAR).

Multiple imputation is increasingly becoming a popular method for analyzing such in-

complete data. This method involves imputing M plausible set of values for the missing set

of values to generate M completed data sets. Each completed data set is then analyzed sep-

arately using the standard complete data software and then the results are combined to form

a single inference. Several combining rules have been developed for a variety of analytical

methods. An earliest combining rule is for parameter estimates such as regression coefficients

(Rubin and Schenker(1986), Rubin(1987)). Procedures for performing multivariate tests of

hypotheses are considered in Li, Raghunathan and Rubin (1991); combining the p-values

from completed data sets in Li et al (1992); the likelihood ratio tests from multiply imputed

data set is considered in Meng and Rubin (1992).

Some of these combining rules could be used especially when the underlying model can be

reformulated as a regression model and then the ANOVA tests can expressed as multivariate

hypotheses tests involving a set of regression coefficients. This is often not possible when

the design is complex involving nested, random or interaction effects. It is more convenient

to directly combine the analysis of variance tables generated from each completed data set

to test appropriate hypotheses, even if the formulation as a regression model is possible.
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This paper develops and evaluates a procedure that combines the mean squares from each

completed data set and then constructs an approximate F-statistics. It is assumed that the

missing values in the data set have been multiply imputed by an imputer using an appropriate

approach and the multiply imputed data set has been made available to the analyst. The

task of the analyst is to test a particular hypothesis using these multiply imputed data sets.

This paper does not consider alternative methods for generating imputations. However, it

is assumed that the imputation procedure used by the imputer yields unbiased estimates of

the components of variances for the particular tests being conducted. Some suggestions for

imputing the missing values are discussed later.

The rest of the article is organized as follows. Section 2 describes the approach and

illustrates its application using a numerical example. The technical justification is given

in Section 3. Section 4 evaluates the approach from a repeated sampling perspective by

computing the exact level of significance for the nominal 5% level tests through simu-

lations. In the simulation study, the imputations are carried out using the sequential

regression approach (Raghunathan et al (2001)) as implemented in the software IVEare

(www.isr.umich.edu/src/smp/ive). Section 5 extends the methodology to partial F-tests

in the multiple regression analysis and comparison of models using deviance statistics in

the analysis using Generalized Estimating Equations. Finally, Section 6 concludes with the

discussion and potential future work.

2 Combining ANOVA Results

At the basic level, the analysis of variance involves comparing two independent or approx-

imately independent mean squares (sums of squares divided by their degrees of freedom)

that have the same expected values (the associated variance components) under the specific

null hypothesis. The ratio of the mean squares to the corresponding variance components

defines a pivotal quantity, a function of a statistic and the parameter having a sampling

distribution independent of the parameter. To be concrete, consider the one-way analysis
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of variance setup with k treatments or groups and ni subjects in group i = 1, 2, . . . , k. Let

yij be the response variable on subject j = 1, 2, . . . , ni in group i;
∑

j yij/ni be the mean

for group i and
∑

i

∑
j yij/n =

∑
i niȳi/n be the overall mean where n =

∑
i ni is the total

sample size. To analyze the data from such a design, the following ANOVA model is posited:

yij = µ + αi + εij where εij iid N(0, σ2) and
∑

i αi = 0. Under this model, the between-

group mean square BMS =
∑

i ni(ȳi − ȳ)2/(k − 1) has the expected value, the variance

component, σ2
b = σ2 +

∑
i niα

2
i /(k − 1) and the pivotal quantity is PN = BMS/σ2

b which

has a chi-square distribution with k − 1 degrees of freedom. Similarly, the mean square

error, MSE =
∑

i

∑
j(yij − ȳi)

2/(n − k) has the expectation σ2 and PD = MSE/σ2 is also

a pivotal quantity which has a Chisquare distribution with n− k degrees of freedom where

n =
∑

i ni is the total sample size. Given the independence of the two mean squares, BMS

and MSE, the ratio PN/PD is also a pivotal quantity having an F-distribution with k − 1

and n − k degrees of freedoms. Under the null hypothesis, Ho : αi = 0, i = 1, 2, . . . , k, the

ratio PN/PD = BMS/MSE becomes a statistic (independent of the parameters) with the

same F - distribution.

The distributions of the pivotal quantities can be interpreted from the Bayesian per-

spectives as well. In the Bayesian framework, these pivotal quantities describe approximate

posterior distributions of the variance components conditional on the observed data (See, for

example, Box and Tiao (1973)). For example, defining ρ = σ2/σ2
b , the posterior distribution

of ρ is a multiple MSE/BMS of an F-distribution with k − 1 and n − k degrees of free-

dom. Based on this posterior distribution, one could construct, say, a (1− γ)100% Bayesian

confidence or credible interval for ρ. If the interval excludes 1 then we may reject the null hy-

pothesis. This pragmatic view of interpreting the distribution of the pivotal quantities from

both Bayesian and Frequentist perspectives will be used to justify the procedure described

in this paper. That is, the combining rules will be developed from the Bayesian perspective

for the ratio of the variance components and then reverted to a Frequentist test statistics

under the specific null hypothesis.
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In general, testing of hypothesis under any ANOVA model involves choosing the ap-

propriate ratio of pivotal quantities (mean squares divided by the corresponding variance

component) that become independent of parameters under the hypothesis being tested has

an (or approximate) F - distribution. Suppose that, in the absence any missing data (i.e.

based the complete data),sN is the numerator mean square with νN degrees of freedom and

the associated component of variance σ2
N . Similarly, let sD, νD and σ2

D be the corresponding

quantities for the denominator mean square error, the degrees of freedom and the variance

components, respectively. The two complete data pivotal quantities PN = νNsN/σ2
N and

PD = νDsD/σ2
D have chi-square distributions with the degrees of freedom, νN and νD, re-

spectively.

Suppose that under a certain null hypothesis, σ2
N = σ2

D, then the ratio of the two pivotal

quantities PN/PD is a statistic and its sampling distribution follows an F -distribution with

degrees of freedom (νN , νD). More generally, the pivotal quantities can be used to construct

frequentist confidence intervals or Bayesian credible intervals for the variance components

or for the ratio of the variance components. These will be numerically identical but differ in

interpretations.

Our goal is to use the same framework to develop approximate pivotal quantities when

the missing values in the data sets have been multiply imputed. Suppose that based on

the completed data, l = 1, 2, . . . ,M , the mean squares are s
(l)
N and s

(l)
D with the respective

degrees of freedoms ν
(l)
N and ν

(l)
D . Typically, the degrees of freedom across the completed data

sets will be constant (i.e. ν
(l)
N = νN and ν

(l)
D = νD), but, occasionally, the degrees of freedom

may differ across the completed data sets, for example, when Satterthwaite approximation

is used to constructed tests from each completed data set under some nested random effects

models.

Define AN =
∑

l(1/s
(l)
N )/M , BN =

∑
l(1/(ν

(l)
N ×s

2(l)
N ))/M and CN =

∑
l(1/s

2(l)
N −AN)2/(M−

1). Similarly, AD, BD and CD are defined for the denominator mean square and its degrees

of freedom. The proposed procedure is to use FMI = AD/AN as the multiple imputation
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F -statistics with the degrees of freedom (rN , rD) where rN = 2A2
N(2BN + (M + 1)CN/M)

and rD = 2A2
D(2BD +(M +1)CD/M). Note that the proposed F -statistic is the ratio of the

harmonic means of the completed data numerator and denominator mean square errors.

To illustrate the methodology, we use the data from Wave 1 of the National Longitudinal

Study of Adolescent Health (Add Health)(Harris and Udry (1994)). The dependent variable

(Y ) is the vocabulary score and the two factors are the Household income (X1)(four categories

corresponding to quartiles) and the Attitude towards sexual behavior (X2) (four categories

based on quartiles of an index constructed from 8 items). The total sample size is n = 6, 224

and if one were to perform the complete-case analysis (that is, remove all subjects with

missing values in the two predictors)the sample size would have been reduced to ncomplete =

2, 853.

The missing values were imputed using the sequential regression imputation approach

which included main effects and all two-factor interactions as predictors in each regression

model. Specifically, in imputing Y the predictors were X1, X2 and X1×X2, while imputing

X1 the predictors were Y,X2 and Y ×X2 and for imputing X2 the predictors were Y,X1 and

Y ×X1. The normal linear regression model was used to impute Y , and multinomial logit

models were used for imputing X1 and X2.

We illustrate the test for the main effect of X2 using(M = 5)five imputed data sets.

For the complete data, the numerator degrees of freedom is νN = 3 and the denominator

degrees of freedom is νD = 6207. The five mean squares for X2 are: 2521.85, 2534.79,

3021.39, 3873.45, and 3246.94. The corresponding five mean square errors are: 201.98,

201.11, 200.77, 199.68, and 199.46. These numbers result in AN = (1/2521.85+1/2534.79+

. . .+1/3246.94)/5 = 0.000338 and AD = (1/201.98+ . . .+1/199.46)/5 = 0.004985 resulting

in FMI = 0.004985/0.000338 = 14.77. In contrast, the complete-case analysis based on 2,853

subjects results in FCC = 6.85.

To compute the degrees of freedom, note that BN = (1/3)(1/2521.852+. . .+1/3246.942)/5 =

3.89 × 10−8 and BD = 4 × 10−9. The variance of the reciprocals of the mean squares are
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CN = 3.49× 10−9 and CD = 6.71× 10−10. These numbers result in rN = 2× 0.0003382/(2×

3.89×10−8+(5+1)×3.49×10−9/5) = 2.78 and rD = 5639.97. The p-value based on this test

statistic is 4× 10−7 in contrast to the complete-case analysis p-value 14× 10−5. Though the

substantive conclusions remain the same under both the analysis, the multiple imputation

analysis indicates much stronger evidence of the association between the attitude towards

the sexual behavior and vocabulary score.

A similar calculations for testing the interaction effectX1×X2 yields FMI = 0.7312, rN =

3.1706 and the p-value of 0.533. The corresponding complete case analysis yields FCC = 1.077

and the p-value 0.376. The multiple imputation analysis indicates somewhat weaker evidence

of interaction than the complete-case analysis.

3 Technical Justification

The most straightforward justification of the multiple imputation inferences is from the

Bayesian perspective although such procedures have been shown to have desirable repeated

sampling properties. We adopt the same standard multiple imputation Bayesian framework

to justify the approximation of the pivotal quantities that leads the test statistics described

in the previous section. Writing the lth completed data set as Dl = (Dobs, D
(l)
mis), where the

Dobs is the observed data and D
(l)
mis is the lth imputations of the missing data Dmis, we have

ν
(l)
N s

(l)
N

σ2
N

|Dl ∼ χ2

ν
(l)
N

.

The completed data posterior mean of σ−2
N is 1/sl

N and the posterior variance is 2/(ν
(l)
N s

2(l)
N ).

Using the standard multiple imputation theory from Rubin (1987), the Multiple imputation

posterior mean of σ−2
N , conditional on the observed data is AN =

∑
l 1/s

(l)
N /M and its posterior

variance is

TN = 2BN + (1 + M−1)CN

We approximate the posterior distribution of σ−2
N by a multiple of a chi-square distribution,

aχ2
b , and a and b are determined by matching the posterior mean and variance. Specifically,
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we get ab = AN and 2a2b = TN . Solving, for a and b, we get b = rN defined in the previous

section and a = AN/rN . Thus, we have σ−2
N |Dobs ≈ aχ2

b or equivalently A−1
N σ−2

N |Dobs ≈

χ2
rN

/rN , a pivotal quantity. Using the same argument for the denominator quantities, we

obtain A−1
D σ−2

D |Dobs ≈ χ2
rD

/rD.

Thus, the ratio ADσ2
D/ANσ2

N has an approximate F- distribution with the degrees of

freedom rN and rD. From the frequentist perspective, if a particular null hypothesis implies

that σ2
N = σ2

D, then the test statistic AD/AN can be referred to an F distribution with rN and

rD degrees of freedom. Alternatively, one could construct a Bayesian credible interval using

the approximation for the posterior distribution of the ratio σ2
D/σ2

N |Dobs ≈ (AD/AN)FrN ,rD

and rejecting the hypothesis if 1 is contained in the interval. See Box and Tiao (1973)

for constructing the highest posterior density credible interval for the ratio of the variance

components.

4 Simulation Study

Obviously, any single data analysis cannot determine which of the two approaches used in the

ADD-HEALTH example, (Complete-case versus Multiple Imputation Analysis) is correct or

valid. Therefore, we conducted a simulation study to evaluate the exact level of the nominal

5% tests using the above method. The complete data consisted of 3 variables X1 generated

from a multinomial distribution with 4 categories with probabilities Pr(X1 = i) = 0.25, i =

1, 2, 3, 4 and X2 generated from an independent multinomial distribution with 3 categories

with probabilities Pr(X2 = j) = 1/3, j = 1, 2, 3. For each of the 12 combinations of X1

and X2 (cells), the outcome, Y was generated from 4 different models given below. The

cell sample size was fixed at 10. One thousand data sets were generated from each of the

following four models:

1. yijk ∼ N(0, 1), k = 1, 2, . . . , 10. For this model, all three null hypotheses, no interaction

(X1 ×X2) and no main effects (X1 and X2) are true.
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2. yijk ∼ N(µ + αi + βj, 1) where µ = 0, α = (−1.5,−0.5, 0.5, 1.5) and β = (−1, 0, 1).

The null hypothesis of no interaction effect is true for this model.

3. yijk ∼ N(µ + αi, 1). For this model, the two true null hypotheses are no interaction

effect X1 ×X2 and no main effect X2; Finally,

4. yijk ∼ N(µ + βj, 1). For this model, the two true null hypotheses are no interaction

effect X1 ×X2 and no main effect X1.

Some values of X1 and X2 were deleted using two different mechanisms. The first was

Missing Completely at Random (MCAR)where roughly 15% of X1 and 15% of X2 were set

to missing at random. The second mechansism was Missing at Random where

logitPr(X1 = missing) = θo + θ1Y.

The values of X2 were set to missing with probability given by

logitPr(X2 = missing) = θ2 + θ3Y,

if X1 is missing and

logitPr(X2 = misssing) = θ4 + θ5Y + θ6X1 + θ7X1 × Y,

if X1 is not missing. The coefficients in these logistic models were all non-zero and were

determined to yield about 70% complete cases. In addition, the outcome was set to missing

for about 10% of subjects completely at random for both mechanisms. It is possible that

some subjects had all three variables with missing values (unit nonresponse) in some data

sets.

All data sets with missing values were multiply imputed (M = 10) using the sequen-

tial regression approach as implemented in IVEware (2001). Regardless of the true model or

mechanism, the imputation of missing values were draws from the posterior predictive distri-

bution corresponding to regression model with Y as the outcome and three dummy variables
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for X1, two for X2, and their product as predictors. The intercept was also included. For

imputing X1, we used multinomial logit model with Y , two dummy variables for X2 and

their product as predictors. Similarly, for imputing X2, we used multinomial logit model

with Y , three dummy variables for X1 and their product as predictors. The intercept term

was also included in both multinomial logit models.

Three hypothesis tests, one for no interaction and two for no main effects were carried out

for “Before Deletion”, “Complete Cases” and “Multiply Imputed” data sets. The nominal

level used were 5% and the proportion of 1000 data sets for which the null hypotheses were

rejected is tabulated in Table 1. The results are provided only for true null hypotheses under

each model.

Table 1: The exact levels (in %) of various null hypotheses based on Before

deletion (BD), complete-cases (CC) and multiply imputed (MI) data sets under

four models and two mechanisms

Model Source MCAR MAR
BD CC MI BD CC MI

1 X1 5.2 5.4 5.3 5.8 3.8 5.1
X2 4.6 4.7 6.1 4.9 4.0 4.4
X1 ×X2 4.9 5.4 4.4 5.3 3.1 4.1

2 X1 ×X2 4.6 5.0 4.5 4.6 46.7 3.5
3 X1 4.4 6.1 5.5 4.8 48.6 3.8

X1 ×X2 4.8 5.6 3.7 4.4 37.4 4.1
4 X2 4.4 5.2 5.1 4.7 46.0 4.9

X1 ×X2 4.3 5.5 4.6 4.9 47.0 3.6

Based on the table, the proposed test has desirable levels across all simulation conditions

and perhaps slightly conservative for the interaction effects. The complete case analysis is

considerably biased under MAR.

5 Extensions

Partial F-test, which is a ratio of two chi-square statistics is used in comparing models

in the multiple regression analysis. Suppose that the residual sum of squares from the
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reduced model from the lth completed data set is R(l)
o and for the full model it is R

(l)
1 . Define

s
(l)
N = (R(l)

o −R
(l)
1 )/(p1−po) where p1(po) is the number of parameters (regression coefficients)

in the full (reduced) model, s
(l)
D = R

(l)
1 /(n− p1) where n is the sample size, νN = p1− po and

νD = n− p1. We can now apply the procedure described in this paper to perform a multiple

imputation partial F-test to compare the fit of reduced and full models.

The same approach can be used to perform the overall F-test in a regression analysis.

Suppose that the regression model under consideration is y = βo+
∑p

j βjxj+ε. Let M (l) be the

model sum of squares from the lth completed data set and R(l) be the corresponding residual

sum of squares. Define νN = p, νD = n − p − 1, s
(l)
N = M (l)/p and s

(l)
D = R(l)/(n − p − 1).

The ratio FMI = AD/AN is the multiple imputation test for the null hypothesis Ho : β1 =

β2 = . . . , βp = 0 and is an alternative to procedure described in Li, Raghunathan and Rubin

(1991) which requires point estimates and the covariance matrix from each completed data.

This may be more efficient or powerful than the procedure described in Li et al (1992) which

only requires p-values from each completed data.

An interesting by-product of above analysis is the multiple imputation combined R-

square. Using the well-known relationship between R2 and F in the least square analysis

using multiple linear regression model, we can define the multiple imputation R-square as

R2
MI = rNFMI/(rNFMI + rD).

The adjusted R2
MI may be defined as R2

a,MI = 1− (1−R2
MI)(n− 1)/(n− p− 1).

When fitting regression models using Generalized Estimating Equations approach, the

deviance is often used to compare the models. These can be viewed as partial F-test using

Deviance statistic as residual sum of squares. Let D(l)
o and D

(l)
1 be the deviance statistics

(or -2 log-likelihood) for the reduced and full model. Defining s
(l)
N = (D(l)

o −D
(l)
1 )/(p1 − po),

s
(l)
D = D

(l)
1 /p1, νN = p1 − po and νD = p1. When applied to the likelihood ratio statistic,

this procedure can be viewed as an alternative to a more complicated procedure discussed

in Meng and Rubin (1992).

12



6 Discussion

We have proposed a simple procedure for combining mean square errors when an ANOVA

model is used in the analysis of multiply imputed data sets. The standard multiple im-

putation theory is used to derive the approximate F test which can be used in a variety

of contexts and is shown through a simulation study to have desirable repeated sampling

properties.

The imputations in the example (and also in the simulations) were carried out using the

sequential regression framework and the simulation study is also a testament to the validity

of this imputation approach in this particular context. There are other methods for imputing

the missing values such as General Location model (Shafer (1997))which can be used in this

particular context. The combining procedure should be applicable as long as the imputation

procedure results in the consistent estimates of the underlying variance components involved

in the F-statistics.

The procedure could be used for many other tests involving pivotal quantities having chi-

square distributions. Many such extensions have been outlined in Section 5 such as multiple

linear regression models, Generalized Estimating Equations and in general any likelihood

ratio tests. These procedure need to be evaluated using simulation studies and compared

with other alternatives. The simulation study can be expanded in the future to consider

these other situations and include other alternatives in the evaluation.

The combining procedure is easy to implement requiring only the relevant sufficient

statistics, the mean squares from each completed data analysis. The manipulation of these

mean squares can be performed using, for example, a spreadsheet program. Alternatively,

a simple macro program, for example, in SAS can be written to implement the combining

rule.

13



References

1. Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis.

Reading, MA: Addison-Wesley.

2. Harris, K. M. and Udry, J. R. (1994). National Longitudinal Study of Adolescent

Health (Add Health), 1994-2002[Computer File]. ICPSR21600v4. Ann Arbor, MI:

Inter-University Consortium of Political and Social Research [distributor], 2010-12-

08.DOI:10.3886/ICPSR21600.

3. Li, K.H., Raghunathan, T. E. and Rubin, D. B. (1991). Large-sample significance

levels from multiply imputed data using moment-based statistic and an F-reference

distribution, J. Amer. Statist. Assoc., 86, 1065-73.

4. Li, K. H., Meng, X. L., Raghunathan, T. E. and Rubin, D. B. (1992). Significance

levels from repeated p-values with multiply imputed data. Statistica Sinica, 1, 65-92.

5. Meng, X. L. and Rubin, D. B. (1992). Performing likelihood ratio tests with multiply

imputed data set. Biometrika, 79, 103-111.

6. Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J. and Solenberger, P. W. (2001).

A multivariate technique for multiply imputing missing values using a sequence of

regression models. Survey Methodology, 27,89-95.

7. Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.

8. Rubin, D. B. and Schenker, N. (1986). Multiple imputation for interval estimation

from simple random samples with ignorable nonresponse. J. Amer. Statist. Assoc.,

81, 366-374.

9. Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York:

Wiley.

14



10. Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. London: Chapman &

Hall.

15


