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Abstract 

Multiple imputation, a general purpose method for analyzing data with missing values, involves 

replacing a missing set of values by several plausible sets of missing values to yield completed 

data sets. Each completed data set is then analyzed separately and the results (estimates, standard 

errors, test statistics, etc.) are combined to form a single inference. It is fairly well established, 

that the imputations should be draws from a predictive distribution of the missing values and 

should be conditioned on as many covariates as possible. However building such predictive 

distributions in a practical setting can be quite daunting. As an alternative, a sequential 

regression imputation method uses a Gibbs sampling style iterative process of drawing values 

from a predictive distribution corresponding to a sequence of conditional regression models to 

impute missing values in any given variable with all other variables as predictors. Many current 

implementation of this approach use parametric models.  In practice, however, many variables 

have distributions that can hardly be classified or transformed to satisfy standard parametric 

distribution assumptions. This paper develops and evaluates a modification of this method which 

uses draws from nonparametric predictive distributions for imputing the missing values. For a 

variable to be imputed, two scores are constructed:  Propensity scores for its missingness, and its 

predicted values. The sample is stratified based on these two scores and within each stratum, the 



Approximate Bayesian Bootstrap (ABB) is used to impute the missing values. The proposed 

method is illustrated and evaluated using actual and simulated data sets. 
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1. Introduction. 

Multiple imputation is becoming an increasingly popular approach for analyzing 

incomplete data. In this approach, a set of missing values is replaced by more than one 

plausible set of values to yield several completed data sets. Each completed data set is 

analyzed, and the inferential statistics, such as estimates, standard errors, test-statistics, etc., 

are combined to form a single inference. It is fairly well established, that the imputations 

have to be draws from a predictive distribution of the missing values and should be 

conditioned on as many variables as possible (Little and Raghunathan [1], Paulin and 

Raghunathan[2],  Schafer et al. [3]). This is a tall order given that the data set may contain 

several variables of varying types with complex structural and stochastic inter-relationships. 

Developing a model, a joint distribution of variables with missing values conditional on the 

fully observed variables with some unknown parameters, and then obtaining draws from the 

corresponding predictive distribution is difficult, if not impossible.  

An approach particularly suited to such a complex situation is a chained equation or 

sequential regression multiple imputation (SRMI). This approach involves a Gibbs sampling 

style iterative sampling from a sequence of conditional regression models, where the missing 

values in any given variable are drawn from the predictive distribution corresponding to the 



regression model, and uses all other variables (including interaction terms) as predictors. 

Specifically, suppose that 1 2, ,..., pY Y Y are the variables with missing values and X is the set of 

variables with no missing values. At iteration t, the imputations of variable, jY are obtained as 

draws from the predictive distribution, ( ) ( ) ( ) ( 1) ( 1)
1 2 1 1Pr( | , , ,..., , ,..., )t t t t t

j j j pY X Y Y Y Y Y− −
− + , where 

( )tY denotes the variable that has either the observed value or the imputed value obtained at 

iteration t. This conditional distribution is based on a regression relating the variables being 

imputed and all other variables as predictors.  

This approach was first used in the Survey of Consumer Finances by Kennickell [4] to 

impute missing values in continuous variables using a sequence of normal linear regression 

models. This approach has since been generalized to a variety of types of variables and 

incorporated complexities, such as bounds on the imputations and skip patterns[5,6].  This 

general approach has been implemented in both stand-alone and as an add-on to commercial 

packages, SRCWARE (Standalone), IVEWARE (SAS) [7], MICE (R-package) [8], and ICE 

(STATA)  [9].  All these implementations use a sequence of parametric models, such as 

normal linear model for continuous variables, logistic for binary, Poisson for count, etc., and 

some of these packages facilitate incorporation of structure dependencies and constraints. 

This approach seems to work well, provided parametric assumptions are approximately 

satisfied. However, variables collected in many practical situations rarely satisfy the 

underlying parametric assumptions and imputing them using parametric model may 

introduce bias. Attempts to transform a continuous variable to achieve an approximate 

normality may not yield valid imputations [10].    

Consider as an example, data from Sacramento Area Latino Study of Aging 

(SALSA)[11]. This is an ongoing cohort study of 1,789 Latinos aged 60 and older in 1998-99 



residing in rural and urban areas of the Sacramento Valley. Researches are interested in 

neuropsychological characteristics and prevalence of dementia in aging Latino population. 

The neuropsychological test battery includes Informant Questionnaire of Cognitive Decline 

in Elderly (IQCODE). A histogram of observed values of IQCODE score is shown in Figure 

1.  This variable is missing for 64% of the sample subjects. Figure 2 shows Kernel Density 

estimates of the observed, imputed, and completed values, when data are imputed assuming 

normal distribution for the IQCODE. This figure indicates a remarkable difference in shapes 

of the distributions of observed and imputed values. None of the standard transformation 

techniques such as Box-Cox transformation to normality improves quality of imputations. 

We expect that imputed and observed data distributions to be similar only if the data are 

missing completely at random. However, the degree of difference between the distributions 

of the imputed and observed data is quite substantial, especially when our preliminary 

analysis did not identify covariates that are strong predictors of missingness in IQCODE. 

2. Nonparametric Sequential Regression  

We modify the sequential regression approach described above as follows:  

i. Matching: We define two summary scores: (1) a propensity score for 

missingness of the variable being imputed (to balance the respondents and 

nonrespondents on the covariates)[12]  and (2) a predicted-value-score (to 

match on the predictive distribution of the variable). To construct both scores 

we condition on all other variables, imputed or observed just as in the 

conditional distribution given above. We form several strata based on the joint 

distribution of these two scores.  



ii. Imputation: Within each stratum, missing values are drawn from the set of 

observed values by applying Approximate Bayesian Bootstrap [13-14].  

 

This approach combines the features of survey weighting, carried through grouping of 

respondents and nonrespondents into the strata balanced on all covariates and designed to reduce 

the nonresponse bias, and the predictive mean matching imputation strategies [15-16]. By 

matching on the covariates through response propensity score and as well as the predicted 

values, we are creating homogenous groups on available information and then using the 

nonparametric posterior  predictive distribution within each group to draw the missing values.  

 

Matching 

Suppose, that the data set has p variables, , 1, 2,...,vY v p= . Let vR  denote a binary 

response indicator with 0 for missing and 1 for observed value of vY . Let vY−  denote the 

collection of all p-1 variables except vY . With a slight abuse of notation, partition the vector or 

matrix of observations on  n subjects as , , ,( , )com v obs v mis vY Y Y= and , , ,( , )com v obs v mis vY Y Y− − −= .  

Suppose at iteration t, ( )
,

t
com vY −  is the completed data on all subjects except for variable v and 

( )
,

t
com vY is the completed data on all subjects for variable v.  

We construct two efficient summaries of the covariates ( )
,

t
com vY −  through two regression 

models:  

1. Propensity of missingness, ( ) ( )
,Pr( 1| )t t

v v com ve R Y −= = , estimated using a logistic or 

generalized additive model. This is an efficient summary of ( )
,

t
com vY − that can be used to 

balance the respondents and nonrespondents [12]. The predictors may include interaction 



terms to achieve balance between respondents and nonrespondents. We stratify ( )   t
ve into 

the K equal size strata. 

Predicted-value-score is defined by regressing vobsY , on ( )
,

t
com vY −  within each class. We use 

estimated parameters of the regression model with dependent variable vobsY ,  to define predicted 

values for vmisY ,   Within each of the K strata we create J equal-size strata and thus forming 

K J× match classes.   

Impuation. 

An approximate Bayesian Bootstrap algorithm for imputation can be implemented as 

follows [13]. Suppose r and m are the numbers of the observed and missing observations, 

respectively, on the variable being imputed. First, draw a sample of size r with replacement from 

r observed values. Second, from this sample draw a sample of size m as the imputed values. 

Repeat this step for all the cells and independently replicate the process to obtain multiple 

imputations.   

Revisiting SALSA study, we imputed the missing values IQCODE variable using this 

method. We used a total of 9 matching classes based on the propensity scores and predicted 

values.   Kernel density estimates based on five imputations for imputed and true values of 

IQCODE are shown in Figure 3. There is a remarkable improvement in the matching between 

marginal distribution of observed and imputed values. 

3. Simulation study 

   We conducted a simulation study to assess repeated sampling properties of inferences based on 

imputed data sets obtained using the method discussed in the previous section. The simulation 

study consisted of the following steps: 



1. Creation of population: A pseudo population of 200,000 records was constructed from 

the National Health Interview Survey from 1997 to 2003.  Fully observed records of eight 

variables (age, gender, weight, height, years-of-education, income-to-poverty-ratio, self-

reported hypertension and diabetes) constituted our population.  

2. 500 independent simple random samples, each of size n=1000, were drawn. We will refer 

to them as the “before-deletion” samples. 

3.  Some values of age, years of education, income-to-poverty-ratio, self-reported 

hypertension and diabetes were deleted using a known missing at random mechanism. We 

modeled this mechanism employing a series of logistic regression models, with probability of a 

variable being missing depending solely on observed values of other variables. We will call the 

resulting 500 replicate data sets “after-deletion” samples. 

No missing values were imposed on gender, weight or height. Figure 4 gives histograms of 

observed values for age, education, and income-to-poverty-ratio, the descriptive statistics along 

with the rate of missingness across 500 replicates. Missing data mechanisms for self-reported 

diabetes and hypertension are binary variables yielded small amount of missing data because our 

concern was mainly to impute continuous type variables where normality is questionable. 

As an evaluation, we compared repeated sampling properties of the following three 

approaches for analyzing incomplete data: (1) Complete cases (CC) analysis; (2) Parametric 

sequential regression as implemented in IVEWARE (SRMI);  (3) ABB with propensity  

estimated employing logistic model, and predicted score constructed using General linear model 

for age and years of education, and Weibulll model for income-to-poverty-ratio.  We used 

‘before-deletion’ samples (BD) as our reference.    



The binary variables, hypertension and diabetes, were imputed using logistic regression 

models under all imputation methods. In non-parametric sequential imputation, education, age, 

and income-to-poverty-ratio were imputed with subjects matched into 9  nested (3x3) strata 

based on the propensity score and predicted values. In the SRMI framework, we imputed 

education and age as continuous variables and income-to-poverty-ratio as a categorical variable.  

 

Simulation results 

  For each method, we compared the complete-case or multiply imputed  inferences to the 

before-deletion data inferences. We evaluated the bias, mean square error, and non-coverage rate 

of a nominal 95% confidence intervals for descriptive as well as analytical estimands. For each 

imputation method, we performed 5 imputations and computed a multiple imputation estimate 

and its multiple imputation variance using the standard multiple imputation combining rules 

[14]. The results for the population means and frequency distributions for categorical and 

grouped continuous variables are summarized in Table 1 and Figure 5.  

As expected, analysis based on Complete Cases yielded a substantial bias, large MSE and 

lowest coverage rates. SRMI approach yields better inferences for population mean estimates, 

but not for the estimated frequency distribution. Across the three approaches considered here, 

ABB method produced the best results in terms of bias, MSE and coverage rates. For both the 

population mean and the frequency distribution estimates, ABB method introduced less bias than 

SRMI method.  Though, there is a reduction in bias for population mean estimates, the 

improvement becomes more apparent for frequency estimates.  



For the population means, ABB estimates have similar or slightly lower MSE when compared to 

SRMI estimates. For the frequency distribution estimates the abatement in MSE is most obvious 

for years-of-education.    

We expanded the simulation study to consider whether we need to stratify on both the propensity 

score for missingness and the predicted values. We compared the bias, means-square error and 

confidence coverage for the population mean of Age variable under two scenarios: (1) 

Stratifying based only predicted values of the variable being imputed and (2) Stratifying based 

on both propensity score for missingness and predicted values. In both cases, we used the same 

number of strata and, hence, a finer stratification under scenario (1).  The bias for the population 

mean under scenario (1) was 0.0746 and 0.007 under scenario (2). The mean square error under 

the two scenarios were 0.0236 and 0.2053, respectively. Finally, the coverage rates were 86% 

and 92% respectively. Thus, the simulation study seems to indicate that one should consider both 

the propensity score for missingness and the predicted value of the variable being imputed to 

create the imputation cells. 

          We also evaluated the methods by comparing inferences for the following proportional 

log-odds model regressing an ordinal outcome,- the number of chronic conditions, on 

demographic variables as predictors. We constructed our dependent variable as the sum of 

indexes for hypertension, diabetes, and obesity and chose gender, age, education, and income-to-

poverty-ratio as predictors. 

We categorized education as 'no HS degree', 'HS graduate', and  'college degree'. Income-to-

poverty ratio was classified into 'less than 5' and '5 or more' 

1 2 3 4 5log (Pr( ))  deg ( 5)ok

Income
it Index k Age HS College ree Gender

Poverty
β β β β β β<= = + + + + >= +

                           



The results are reported in Table 2.  The ABB estimates are shown to have repeated sampling 

properties are better than the SRMI estimates. For age and gender,  SRMI  performs well, and 

ABB approach does not bring substantial  reduction in bias, or MSE, or non-coverage rate. For 

the variables years-of-education and income-to-poverty-ratio that were grouped for the analysis 

purposes, there is a clear gain with ABB method. For example, for the 'HS graduate' category 

there is 95% reduction in bias, 50% decrease in MSE, and change in coverage rate from 78% to 

95%.    

 

4. Conclusion  

      Nonparametric sequential regression approach offers a flexibility of handling nonstandard 

distributions for the complex data structures where developing a joint distribution of all the 

variables with missing values is difficult. As we've seen from the simulation study, when the data 

don't satisfy parametric assumptions of the  imputation model,  the estimates derived from SRMI 

approach can be biased. The alternative, ABB approach, discussed in this paper seems to 

perform well under all simulation conditions considered.    

The SRMI method is robust with respect to the central tendency, but imputes missing 

values under a particular distribution assumption, that could create problems at the tails of the 

distribution. ABB allows  preserving a shape of an original distribution, and earns better 

estimates for percentiles of the distribution.  Thus, for a multilevel categorical variable or 

continuous variable with a nonstandard distribution, ABB method produces better results. This 

method can be implemented using standard software packages as it involves iterations of two 

steps: 1) Stratifications via regression models and 2) imputation step involves random sampling. 

This approach shows promise of being more robust and less susceptible to model 



misspecification. The proposed approach may be more useful for routine applications of 

sequential regression multiple imputation where performing model diagnostics and developing 

appropriate models can be very difficult. In this approach, the predicted values may be obtained 

using a nonparametric regression model instead of parametric regression model. However, 

several simulation studies indicate that the results are not sensitive to miss-specification of the 

model used to predict the missing values.  
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Figure 1: Histogram of observed values of  IQCODE from the SALSA Study         

 

 

 

 

                        

 



 

 

Figure 2: Kernel Density Estimates of the observed, imputed(SRMI) and completed data 

for variable IQCODE in the SALSA Study. 

 

 

 

 



 

 

 

 

Figure 3: A comparison of Kernel Density estimates of  observed, imputed (ABB) and 

completed data on IQCODE from the SALSA Study. 

 

 

 

 



 

 

 

 

 

 

 

Figure  4. Histograms of observed values for age, education and income-to-poverty-ratio in the 

Simulation study 
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Table 1. Sampling properties for means of the distributions 

Variable  BD CC SRMI ABB 

Education |Bias| (10-2) 0 42 5 1 

 MSE(10-2) 1 19 4 3 

 Non-coverage 7 87 12 7 

Age |Bias|(10-2) 0 14 11 7 

 MSE(10-2) 31 40 34 36 

 Non-coverage 5 7 6 6 

Income/poverty |Bias|(10-2) 0 12 14 4 

 MSE(10-2) 2 4 5 3 

 Non-coverage 6 14 10 6 
 

 



 

Figure 5: Bias, Mean-square error and noncoverage of  based on the repeated  sampling 

estimates of the frequency frequency distribution of the three variables: Education, Age and 

Poverty-income ratio . 
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Table 2 : Bias, mean-square error and noncoverage based on the repeated sampling of  Beta- coefficients in the 

proportional odds model 

Variable  BD CC SRMI ABB  

Age |Bias| (10-3) 0 12 1 1 

 MSE(10-5) 1 19 2 2 

 Non-Coverage 3 46 4 4 

Gender Bias(10-2) 0 45 3 2 

 MSE(10-3) 2 25 2 2 

 Non-Coverage 5 49 7 6 

HS graduate |Bias|(10-2) 0 7 29 1 

 MSE(10-2) 3 9 11 5 

 Non-Coverage 5 7 22 5 

College degree  Bias(10-2) 0 1 29 3 

 MSE(10-2) 5 13 16 9 

 Coverage  5 4 13 6 

Income/Poverty |Bias|(10-2) 0 4 9 2 

 MSE(10-2) 3 8 6 5 

 Non-Coverage 5 5 5 3 
 

 

 

 

 

 

 


