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Abstract

A sequential regression or chained equations imputation approach is a Gibbs sampling

type iterative algorithm that imputes the missing values using a sequence of conditional

regression models. It is a flexible approach for handling different types of variables and

complex data structures. Many simulation studies have shown that the multiple imputation

inferences based on this procedure have desirable repeated sampling properties. However, a

theoretical weakness of this approach arises from the fact that the specification of a set of

conditional regression models may not be compatible with a joint distribution of the variables

being imputed. Hence, the convergence properties of the iterative algorithm are not well

understood. In this paper, we develop conditions for convergence and assess the properties of

inferences from both compatible and incompatible sequence of regression models. The results

are established for the missing data pattern where each subject may be missing a value on at

most one variable. We assume that the sequence of regression models are empirically good

fit for the data and the imputer has performed appropriate model diagnostics in developing

these models. Also, we develop criteria for model choice when specifying the sequence of

regression models.

Key Words: Bayesian analysis; Chained equations, Compatible conditionals; Condi-

tional specifications; Exponential family; Gibbs sampling; Missing data; Multiple imputation

1 Introduction

1.1 Background

Consider a data set with p variables, Y1, . . . , Yp, with some missing values. The sequential

regression (or chained equations, flexible conditional specifications) imputation approach is

a Gibbs sampling style iterative algorithm where, at iteration t = 1, . . . , T , the imputations

for missing values in variable Yi are drawn from the posterior predictive distribution, p(Yi |

Y
(t)
1 , . . . , Y

(t)
i−1, Y

(t−1)
i+1 , . . . , Y

(t−1)
p ), where Y

(t)
j equals the observed value if available, or an

imputed value at iteration t if missing. Denoting Y
(t)
[−i] = {Y

(t)
1 , . . . , Y

(t)
i−1, Y

(t−1)
i+1 , . . . , Y

(t−1)
p },
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the posterior predictive distribution corresponds to a parametric regression model, p(Yi |

θi, Y
(t)
[−i]) and a prior distribution π(θi). Denoting Yi,obs and Yi,mis as the observed and missing

values of Yi, the following two step procedure is used to draw the missing values:

Step 1: Draw a value of θi, say, θ∗i , from its posterior density π(θi | Yi,obs, Y
(t)
[−i]).

Step 2: Draw the set of missing values Yi,mis from the model p(Yi | θ
∗
i , Yi,obs, Y

(t)
[−i]).

For large samples, one may skip the first step and substitute the maximum likelihood

or any other consistent estimate of θi in the second step. This approach is not Bayesianly

proper and may result in understating the variability among the imputed values but may be

negligible for large samples. Since our interest is in establishing the asymptotic convergence

properties, we skip the draw in Step 1 and use a consistent estimate of θi obtained from the

data {Yi,obs, Y
(t)
[−i]} (typically the maximum likelihood estimate θ̂

(t)
i ) in Step 2.

This approach was first used by Kennickel (1991) for imputing the missing values in

continuous variables in the Survey of Consumer Finances using a sequence of linear regres-

sion model and used the maximum likelihood estimates of the regression coefficients and the

residual variance in Step 2. Brand (1999), Van Buuren and Oudshoorn (1999) and Raghu-

nathan et al (2001) generalized this approach by considering linear regression for continuous,

logistic for binary, multinomial logit for more than two categories, Poisson for count and a

two-stage model (logistic and then conditional normal) for semi-continuous variables which

are generally continuous but have a spike at 0 (For example, real estate income, it is zero

for a sizable fraction of the population and a continuous value for the rest).

The sequential regression approach has two major practical advantages over other model-

based imputation methods. It enables handling of complex data structures by focusing on

individual unidimensional models. The flexible selection of regression models enables better

prediction of the missing values based on other variables, and the regression models are

more intuitive to analysts than a joint model. Also, individual regression models can easily

account for study designs such as skipping patterns, logical constraints, bounds for imputed

values and consistency requirements. The software IVEWARE (Raghunathan et al, 2001)

implements this approach using a fully Bayesian approach described above for each model.

Several other additional features such as placing bounds on the imputed values, restricting

the sample to accommodate skip patterns, model tuning and diagnostics are built into the

software. A similar approach has been implemented in program MICE in the R programing

environment based on the work of Van Buuren and Oudshoorn (1999) and in STATA by

Royston (2005). This approach is also available as a part of PROC MI in SAS (2011). The

recent issue of the Journal of Statistical Software (2012) has published several articles on

this approach.

A theoretical weakness of this approach is due to the fact that the specifications of con-

ditional distributions do not guarantee the existence of a joint distribution, and hence, it is

2



not clear whether the iterative algorithm will achieve any stability. The convergence results

established for the standard Gibbs sampling algorithms or its variations may not be appli-

cable. Though, many simulation studies have shown that the multiple imputation inferences

using this approach have desirable repeated sampling properties under a variety of condi-

tions, the convergence properties of these algorithms are not known and is often arguable

due to incompatibility. This problem was also discussed in the context of spatial analysis

(Besag 1974), and necessary and sufficient conditions for the existence of a joint model were

given by Arnold and Press (1989) for bivariate conditional densities. Gelman and Speed

(1993) also discussed the existence of a unique joint distribution given a set of conditional

and marginal distributions. Arnold et. al (2001) gave a thorough introduction to the prob-

lem in general, and Gelman and Raghunathan (2001) joined the discussion regarding the

effect of incompatible conditionally specified models in missing data analysis. Van Buuren

et al (2006) showed through simulations that incompatibility caused minimal effects in some

cases.

The fact that incompatibility does not necessarily lead to divergence can be illustrated

using the following simple bivariate example. Suppose that the data set of two variables

(X,Y ) can be divided into three groups: the nXY individuals with both (X,Y ) observed,

the nX individuals with missing Y and the nY individuals with missing X. Assume that

the missing data mechanism is ignorable as defined in Rubin (1976). After an empirical

investigation, suppose that an imputer decides to use m1(y | x, θ1) ∼ exponential(θ1x) and

m2(x | y, θ2) ∼ exponential(θ2x) as conditional regression models. There is no joint distri-

bution with these two conditional distributions. At iteration t, the imputation of missing Y

is drawn from exponential(θ̂
(t)
1 x) where

θ̂
(t)
1 = (nXY + nY )/(

∑

i∈RXY

xiyi +
∑

i∈RY

x
(t−1)
i yi),

and the imputed values for the missing X is drawn from exponential(θ̂
(t)
2 y) where

θ̂
(t)
2 = (nXY + nX)/(

∑

i∈RXY

xiyi +
∑

i∈RX

xiy
(t)
i ).

Let ρXY , ρX and ρY be the limiting values of nXY /n, nX/n and nY /n, respectively, as

n→ ∞. The above two equations, in the limit, are

θ
(t)
1 = (ρXY + ρY )/(ρY /θ

(t−1)
2 + ρXYEo),

and

θ
(t)
2 = (ρXY + ρX)/(ρX/θ

(t)
1 + ρXYEo).

where Eo is the expected value of the product XY for the complete cases. It is easy to show

that the limiting case of the iterative algorithm given above converges to θ∗1 = θ∗2 = 1/Eo.
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Thus asymptotically, as the sample size, n, the number of iterations, t, and the number

of imputations, m, all tend to infinity, the completed-data joint density function (X,Y )

averaged over infinite number of imputations, fMI(x, y) tends to ρXY fo(x, y) + (ρY yf1(y) +

ρXxf2(x)) exp(−xy/Eo)/Eo where fo(x, y) is the joint density of (X,Y ) for complete cases,

f1(y) is the marginal density of Y for subjects with missing X and f2(x) is the marginal

density of X for subjects with missing Y . Thus, the practical validity of the multiple

imputation inferences depends on the closeness of m1(y | x, θ1) and m2(x | y, θ2) to the

corresponding true conditional distributions f1(y | x) and f2(x | y). Under the missing at

random assumption, if the model diagnostics based on the observed data indicate a good fit

of the two conditional exponential distributions then the incompatibility may have a very

little practical impact on the inferences. For example, if the true joint density function of

(X,Y ) is f(x, y) ∝ exp(−xy/Eo − ǫx− ǫy) where ǫ is an arbitrarily small positive number,

then an imputer is likely to choose the two conditional models given above. In this case,

fMI(x, y) is nearly the same as f(x, y) depending upon the ǫ.

On the other hand, suppose that the true joint density function of (X,Y ) is f(x, y) ∝

exp(−αxy − βx − γy) with α > 0, β > 0 and γ > 0. The two conditional distributions

are exponential distributions with αx + β as the parameter for f(y | x) and αy + γ as the

parameter of f(x | y) (Arnold and Strauss (1988)) . Again, assume that the missing data

mechanism is ignorable and that the imputations are carried out under the following sequence

of regression models,m(x | y) ∼ exponential(φ1+φ2y) andm(y | x) ∼ exponential(φ3+φ4x).

These two conditional distributions are not compatible with any joint distribution unless

φ2 = φ4. Note that the functional form of the two conditional densities match the true

densities, and the two conditional densities are compatible when (φ2 = φ4 > 0, φ1 > 0 and

φ3 > 0), a subspace of the joint parameter space (φi > 0, i = 1, 2, 3, 4) used by the imputer.

We may view these two conditionals as ”over parameterized” where the joint distribution

is embedded within the joint parameter space of the conditional distributions used in the

imputation process. For such situations, Theorem 1 given in the next section provides

sufficient conditions for the sequential regression imputation approach yields a consistent

estimator of the joint density function of (x, y). In fact, many standard conditional regression

models satisfy the sufficient conditions.

The rest of the paper is organized as follows. Section 2 provides definition of incompati-

bility and model validity to classify regression models in the sequential regression approach.

Section 3, focusing on bivariate scenario, provides two sufficient conditions for the conver-

gence of the sequential regression approach and resulting in consistent estimators. Section 4

enhances the analytical results given in Sections 3 through a simulation study for incompat-

ible but approximately valid or well fitting model sequences. Section 5 extends the results

for multivariate missing data with single variable missing data pattern (that is, any subject

is missing at most one variable). Section 6 summarizes the findings, discusses extensions for
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arbitrary pattern of missing data and the limitation of the sequential regression algorithm.

2 Classification of Regression Model Sequences

Before we establish the convergence and consistency properties, we define the degree or

types of incompatibility among the conditionally specified regression model in the sequential

regression algorithm. We consider two types of incompatible models, one with reference to

the true or actual distribution and another without any reference to the true distribution.

The former is of more theoretical interest or when the posited joint distribution is too

complicated and an imputer would like to find an approximately valid sequential regression

model. The latter is tuned towards selecting the kind of sequential regression models that

will lead to convergence.

Definition 1 (Weakly Incompatible Model Sequence): Supposes that the joint

density function, f(y1, . . . , yp) has the conditional densities f(yi | y[−i], ψi), i = 1, 2, . . . , p.

A regression model mi(yi | y[−i], θi) with θi ∈ Θi is defined to be validly specified for

f(yi | y[−i], ψi) if the following condition holds: for any ψi, θi can be expressed as

(g(ψi), ξi), and there exists θ0
i = (g(ψi), 0) ∈ Θi such that mi(yi | y[−i], θ

0
i ) = f(yi |

y[−i], ψi).

A sequence of regression models is defined to be weakly incompatible if each regression

model in the sequence is validly specified.

For example, both m(y | x, θ) ∼ N(θ10 + θ11x, σ
2) and m(y | x, θ) ∼ N(θ10 + θ11x +

θ12x
2, σ2) are validly specified models for the conditional density y | x ∼ N(2 + x, 1). The

former is exactly specified, and the latter has an extra term with the parameter ξ = θ12.

Definition 2 (Possibly Compatible Models): A sequence of regression models

mi(yi | y[−i], θi), θi ∈ Θi is defined to be possibly compatible, if there exists a target joint

density function p(y1, . . . , yp | θ) with conditional density functions, pi(yi | y[−i], θYi|Y[−i]
)

for i = 1, 2, . . . , p such that the exact functional form of mi is the same as pi for some

subspace ΘC ⊆ Θ1 × Θ2 × · · · × Θp and (θY1|Y[−1]
, . . . , θYp|Y[−p]

) can be functionally

expressed in terms of (θ1, θ2, . . . , θp).

We now provide several examples of conditional regression models commonly used in the

sequential regression multivariate imputation algorithm and relate them to above definitions.

The following four examples are possibly compatible models, and they can be weakly

incompatible if they correspond to the true conditional densities:
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Example 1 (Two Linear Regression Models): Suppose (X,Y ) are two continuous

variables, and sequential regression imputation assumes two linear regression models:

m1 : y | x, θ1 ∼ N
(
θ10 + θ11x, σ

2
12

)
,

m2 : x | y, θ2 ∼ N
(
θ20 + θ21y, σ

2
21

)
.

The target joint distribution is a bivariate normal distribution. The compatibility

condition is θ11/σ
2
12 − θ21/σ

2
21 = 0, θ2

11 6= σ2
12/σ

2
21 and θ2

21 6= σ2
21/σ

2
12, where the first

equation ensures that m1(y | x, θ1)/m2(x | y, θ2) can be expressed as m(y)/m(x) and

the latter two inequalities ensure that m(y) and m(x) are integrable.

Example 2 (Two Logistic Regression Models): Suppose (X,Y ) are two binary

variables, and sequential regression imputation assumes two logistic regression models:

m1 : y | x, θ1 ∼ Bernoulli
[
(1 + exp(−θ10 − θ12x))

−1] ,
m2 : x | y, θ2 ∼ Bernoulli

[
(1 + exp(−θ20 − θ21y))

−1] .

The target joint distribution is a bivariate Bernoulli distribution and the compatibility

condition is θ12 − θ21 = 0.

Example 3 (Two Conditional Exponential Models With Intercepts): Suppose

(X,Y ) are two positive continuous variables, and sequential regression imputation

assumes

m1 : y | x, θ1 ∼ Exp(θ10 + θ11x),

m2 : x | y, θ2 ∼ Exp(θ20 + θ21y).

The compatibility condition is θ11 − θ21 = 0.

Example 4 (Two Conditional Poisson Models): Suppose (X,Y ) are two count

variables, and sequential regression imputation assumes two Poisson regression models

with canonical links:

m1 : y | x, θ1 ∼ Poisson(exp(θ10 + θ11x)),

m2 : x | y, θ2 ∼ Poisson(exp(θ20 + θ21y)).

The compatibility condition is θ11 − θ21 = 0 and θ11 < 0.

The following two examples are not possibly compatible models:

Example 5 (Two Conditional Exponential Models): Suppose (X,Y ) are two

positive continuous variables, and sequential regression imputation assumes

m1 : y | x, θ1 ∼ Exp (θ1x) ,

m2 : x | y, θ2 ∼ Exp (θ2y) .
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Example 6 (Two Gamma Regression Models): Suppose (X,Y ) are two non-

negative continuous variables, and sequential regression imputation assumes two Gamma

regression models:

m1 : y | x, θ1 ∼ Γ(K)−1(θ10 + θ11x)
−KyK−1 exp{−y(θ10 + θ11x)

−1},

m2 : x | y, θ2 ∼ Γ(J)−1(θ20 + θ21y)
−JxJ−1 exp{−x(θ20 + θ21y)

−1}.

We now define a subclass of possibly compatible model sequence where the parameters

are separable between conditional and marginal distributions. This separability of the pa-

rameters was first used by Anderson (1958) to develop maximum likelihood estimates for

the mean and the covariance matrix of multivariate normal distribution.

Definition 3 (Possibly Compatible Model Sequence With Separable Marginal

Parameters): A joint density function p(y1, . . . , yp | θ) is defined to have separable

marginal parameters if for any subset YM of Y = {y1, . . . , yp}, θYC |YM
is distinctive from

θYM
, where YC = Y − YM , θYC |YM

is from the conditional distribution p(YC | YM , θYC |YM
)

and θYM
is from the marginal distribution p(YM | θYM

). Equivalently, separable

marginal parameters imply that for the parameterization (θYM
, θYC |YM

), the param-

eter space is the product of two independent parameter spaces Θ = ΘYM
× ΘYC |YM

.

A sequence of possibly compatible regression models is defined to have separable

marginal parameters if the target joint density function has separable marginal pa-

rameters.

Possibly compatible regression model sequences with separable marginal parameters in-

clude the linear regression models and logistic regression models for binary variables from

Example 1 and Example 2, and they can be extended to multivariate settings:

Example 1 (Linear Model Sequence):

Two linear regression models: Suppose (X,Y ) are two continuous variables, and

sequential regression imputation assumes two linear regression models:

m1 : y | x, θ1 ∼ N
(
θ10 + θ11x, σ

2
12

)
,

m2 : x | y, θ2 ∼ N
(
θ20 + θ21y, σ

2
21

)
.

The target joint distribution is a bivariate normal distribution and the necessary com-

patibility condition is θ11/σ
2
12 − θ21/σ

2
21 = 0. The marginal parameters are separable

as follows: mX(x) ∼ N(µx, σ
2
x) and m1(y | x, θ1) ∼ N (θ10 + θ11x, σ

2
12); mY (y) ∼

N(µy, σ
2
y) and m2(x | y, θ2) ∼ N (θ20 + θ21y, σ

2
21). Each marginal-conditional decom-

position of the joint model has parameters one-to-one mapped to the joint model
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parameters, and marginal model parameters are distinctive from (or independent of)

the conditional model parameters.

Multivariate linear regression model sequence: Suppose (Y1, . . . , Yp) are p-

dimension continuous variables, and model sequence consists of

mi(yi | y[−i], θi) ∼ N(θi0 +
∑

j 6=i

θijyj, σ
2
i ), i = 1, . . . , p.

The target joint distribution is a multivariate normal distribution and the necessary

compatibility condition is that for any i 6= j, θij/σ
2
i − θji/σ

2
j = 0. The marginal pa-

rameters are separable as follows: for any subset YM of Y = {y1, . . . , yp}, mM(yM) ∼

MVN(µM ,ΣM) and for any yi ∈ YC = Y−YM ,mi(yi | y[−i], θi) ∼ N(θi0+
∑

j 6=i θijyj, σ
2
i ).

Example 2 (Logistic Regression Model Sequence for Binary Variables):

Two logistic regression models: Suppose (X,Y ) are two binary variables, and

sequential regression imputation assumes two logistic regression models:

m1 : y | x, θ1 ∼ Bernoulli
[
(1 + exp(−θ10 − θ12x))

−1] ,
m2 : x | y, θ2 ∼ Bernoulli

[
(1 + exp(−θ20 − θ21y))

−1] .

The target joint distribution is a bivariate Bernoulli distribution and the compatibility

condition is θ12− θ21 = 0. The marginal parameters are separable as follows: mX(x) ∼

Bernoulli(pX) and m1(y | x, θ1) ∼ Bernoulli[(1 + exp(−θ10 − θ12x))
−1]; and mY (y) ∼

Bernoulli(pY ) and m2(x | y, θ2) ∼ Bernoulli[(1 + exp(−θ20 − θ21y))
−1].

Multivariate logistic regression model sequence: Suppose (Y1, . . . , Yp) are p-

dimension binary variables, and model sequence is for i = 1, . . . , p,

mi(yi | y[−i], θi) ∼ Bernoulli




(

1 + exp

(
−θi0 −

∑

j 6=i

θijyj −
∑

j 6=i,k 6=i,k<j

θijkyjyk

))−1


 .

The target joint distribution is a multivariate Bernoulli distribution and the compati-

bility condition is that for any different i, j and k, θij = θji and θijk = θjik = θkij. The

marginal parameters are separable as follows: for any subset YM of Y = {y1, . . . , yp},

YM follows a multivariate Bernoulli distribution and for any yi ∈ YC = Y − YM ,

mi(yi | y[−i], θi) ∼ Bernoulli




(

1 + exp

(
−θi0 −

∑

j 6=i

θijyj −
∑

j 6=i,k 6=i,k<j

θijkyjyk

))−1


 .
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Examples in which the target joint distribution does not have separable marginal param-

eters include the bivariate exponential distribution and the bivariate Poisson distribution

from Example 3 and Example 4.

In summary, Definition 1 classifies all regression model sequences into valid and invalid

sequences with reference to the true joint density function of the variables being imputed;

Definition 2 classifies model sequences into possibly compatible and incompatible sequences

regardless of the true underlying joint distribution of the variables. The possibly compat-

ible sequence has a target joint density function within the parameter space; Definition 3

defines a subclass of possibly compatible sequences based on the property of the target joint

distribution’s marginal parameter property.

3 Bivariate Missing Data

Before we consider the multivariate imputation problem, we consider the bivariate case,

mostly for notational simplicity and ease of presentation. We also assume that the missing

data mechanism is ignorable as in Rubin (1976) and all the conditional distributions belong

to the exponential family. The convergence and consistency are asymptotic properties as the

sample size, the number of imputation and the number of iterations or sequential updates

all tend towards ∞.

Suppose that (X,Y ) follows a joint distribution with the joint density fXY (x, y | ψ), the

marginal densities fX(x | ψX) and fY (y | ψY ), and the conditional densities fY |X(y | x, ψ1)

and fX|Y (x | y, ψ2). Let R denote the response pattern where R = 0 consists of complete

cases {(x0i, y0i)}, i = 1, . . . , n0; R = 1 consists of cases with missing X but observed Y ,

{y1j, j = 1, . . . , n1}; and R = 2 consists of cases with missing Y but observed X, {x2k, k =

1, . . . , n2}. The missing data to be imputed consists of {x1j, j = 1, . . . , n1} when R = 1 and

{y2k, k = 1, . . . , n2} when R = 2. The total sample size is n = n0 + n1 + n2. We also assume

that the proportion of missing data will be nontrivial in a sense that as n → ∞, n0/n → ρ

and n1/n → ρ1, where 0 < ρ < 1 and 0 < ρ1 < 1 − ρ. We denote Pr(R = 1 | X,Y ) = g1(y),

Pr(R = 2 | X,Y ) = g2(x) and Pr(R = 0 | X,Y ) = 1− g1(y)− g2(x), where parameters in g1

and g2 are distinct from ψ, the parameters in the complete data model. It is easy to show

that f(x | y,R = 1) = f(x | y,R 6= 1) = fX|Y (x | y, ψ2), and f(y | x,R = 2) = f(y | x,R 6=

2) = fY |X(y | x, ψ1).

The sequential regression imputation algorithm assumes a regression model m1(y | x, θ1)

for y given x and m2(x | y, θ2) for x given y respectively. We assume that the regression

models are generalized linear models from the exponential family:

m1(y | φ1, δ1, x) = exp
{[
T1(y)

Tφ1 − b1(φ1)
]
/a1(δ1) + c1(y, δ1)

}
,

m2(x | φ2, δ2, y) = exp
{[
T2(x)

Tφ2 − b2(φ2)
]
/a2(δ2) + c2(x, δ2)

}
,

9



where θi = (φi, δi), i = 1, 2 and the link functions h1 and h2 connect the conditional means

and predictor variables through h−1
1 (
∑U

u=0 θ1uh1u(x)) = b′1(φ1) and h−1
2 (
∑V

v=0 θ2vh2v(y)) =

b′2(φ2).

At iteration t, the algorithm is executed in two steps:

Step 1: θ1
(t) is estimated by regressing {y0i, y1j} on {x0i, x

(t−1)
1j } with model m1, and

the missing values of y, {y
(t)
2k }, are drawn from the conditional distribution m1(y |

{x2k}, θ
(t)
1 );

Step 2: θ2
(t) is estimated by regressing {x0i, x2k} on updated {y0i, y

(t)
2k } with model

m2, and the missing values of X, {x
(t)
1j }, are drawn from m2(x | {y1j}, θ

(t)
2 ).

To be specific, the above two steps calculate the log-likelihood functions at iteration t for

the two models:

l1(θ1 | Xobs, Yobs, X
(t−1)
mis ) =

∑

i

logm1(y0i | x0i, θ1) +
∑

j

logm1(y1j | x
(t−1)
1j , θ1),

l2(θ2 | Xobs, Yobs, Y
(t)
mis) =

∑

i

logm2(x0i | y0i, θ2) +
∑

k

logm2(x2k | y
(t)
2k , θ2),

and estimate the parameters (θ
(t)
1 , θ

(t)
2 ) by solving the score equations:

s1(θ1 | Xobs, Yobs, X
(t−1)
mis ) = ∂l1(θ1 | Xobs, Yobs, X

(t−1)
mis )/∂θ1 = 0,

s2(θ2 | Xobs, Yobs, Y
(t)
mis) = ∂l2(θ2 | Xobs, Yobs, Y

(t)
mis)/∂θ2 = 0.

The completed data set at iteration T consists of {(x0i, y0i), (x
(T )
1j , y1j), (x2k, y

(T )
2k )}. Sup-

pose θ
(T )
1 and θ

(T )
2 are the estimates of θ1 and θ2 respectively. We wish to study the properties

of these estimates as n and T tends to ∞.

When the sample size is large and with infinite number of imputations, the score equations

given above can be approximated by (or tend to) the following equations:

s̃1(θ1 | θ2
(t−1), ψ) = n0

∫∫
∂ logm1(y | x, θ1)

∂θ1

fXY (x, y | R = 0)dxdy

+n1

∫∫
∂ logm1(y | x, θ1)

∂θ1

m2(x | y, θ2
(t−1))dxfY (y | R = 1)dy.

s̃2(θ2 | θ1
(t), ψ) = n0

∫∫
∂ logm2(x | y, θ2)

∂θ2

fXY (x, y | R = 0)dxdy

+n2

∫∫
∂ logm2(x | y, θ2)

∂θ2

m1(y | x, θ1
(t))dyfX(x | R = 2)dx.

Then both s̃1(θ
(t)
1 | θ

(t−1)
2 , ψ) and s̃2(θ

(t)
1 | θ

(t)
2 , ψ) converge to 0 in probability as n→ ∞, which

lead to an approximate iterative algorithm s̃1(θ
(t)
1 | θ

(t−1)
2 , ψ) = 0 and s̃2(θ

(t)
2 | θ

(t)
1 , ψ) = 0.

10



Therefore, the implicit recursive algorithm θ
(t)
1 = s̃−1

1 (θ
(t−1)
2 , ψ), θ

(t)
2 = s̃−1

2 (θ
(t)
1 , ψ) has the

convergence property similar to that of the imputation algorithms asymptotically.

Theorem 1. Suppose that the imputation models are weakly incompatible as defined

in the previous section and the conditional distributions satisfy the following usual

regularity conditions:

1. The density functions m1 and m2 are differentiable with respect to θ1 and θ2

respectively and the differentiation and integration are interchangeable with respect

to (x,θ1) for m1 and (y, θ2) for m2 respectively

2. The mean and the variance of the score functions given above exist under both the

posited (m1,m2) and the true models (fX|Y , fY |X).

Then as the sample size n, the number of imputations m and the number of iterations t

tend to ∞, the regression models m1(y | x, θ
(t)
1 ) → fY |X(y | x, ψ1) and m2(x | y, θ

(t)
2 ) →

fX|Y (x | y, ψ2).

The proof of the Theorem is given in Appendix 1. To illustrate further, we consider,

Examples 1 and 2 described above and assess the convergence properties of the asymptotic

iterative algorithm.

Example 1 (Two Linear Regression Models revisited): Suppose the data (X,Y )

are generated from a bivariate normal distribution BVN(µ,Σ) with the conditional

distributions y | x ∼ N(α10 + α11x, τ
2
12) and x | y ∼ N(α20 + α21y, τ

2
21). where

α11/τ
2
12 = α21/τ

2
21. Suppose data are missing completely at random: π0 = pr(R = 0),

π1 = pr(R = 1) and π2 = pr(R = 2). The imputation model sequence consists of

two linear regression models from Example 1.The asymptotic iterative algorithm is

calculated in Appendix 2. The estimated regression parameters are shown to converge

to θ∗1 = (α10, α11, τ
2
12)

T , and θ∗2 = (α20, α21, τ
2
21)

T . The rate of convergence for the

iterative algorithm is π1π2/{(π0 + π1)(π0 + π2)}.

Example 2 (Two Logistic Regression Models revisited): Suppose the data

(X,Y ) are generated from a bivariate Bernoulli distribution with pr(X = 0, Y = 0) =

p00, pr(X = 0, Y = 1) = p01, pr(X = 1, Y = 0) = p10 and pr(X = 1, Y = 1) = p11 =

1 − p00 − p01 − p10, with conditional distributions y | x ∼ Bernoulli{(1 + exp(−α10 −

γ12x))
−1} and x | y ∼ Bernoulli{(1+ exp(−α20 − γ21y))

−1}, where γ12 = γ21. Suppose

data are missing completely at random: π0 = pr(R = 0), π1 = pr(R = 1) and

π2 = pr(R = 2). The imputation model sequence consists of two logistic regression

models from Example 2. The asymptotic iterative algorithm is calculated in Appendix

2. The estimated regression parameters are shown to converge to θ∗1 = (α10, γ)
T , and

θ∗2 = (α20, γ)
T where γ12 = γ21 = γ.

11



We now show the results for the possibly compatible models, where the posited condi-

tional models may not agree with the true distributions but may be compatible with some

joint distribution in a subset of the parameter space. The following theorem provides con-

ditions for the convergence of the sequential regression imputation algorithm.

Theorem 2. Suppose a sequential regression imputation algorithm uses possibly com-

patible models m1(y | x, θ1) and m2(x | y, θ2), with pXY (x, y | θ1, θ2) as the joint

distribution only when θ = (θ1, θ2) ∈ ΘC ⊂ Θ1 × Θ2. If pXY (x, y | θ1, θ2, θ ∈ ΘC)

has separable marginal parameters and (θ∗1, θ
∗
2) is the maximum likelihood estimate of

(θ1, θ2) from the joint model, then under the same regularity conditions in Theorem

1 with respect to differentiation/integration and the existence of the mean/variance of

the score functions , m1(y | x, θ
(t)
1 ) → p(y | x, θ∗1) and m2(x | y, θ

(t)
2 ) → p(x | y, θ∗2) as

n, t→ ∞.

The proof of this theorem is given in Part 2 of Appendix 1. Note that if the compati-

bility condition is strictly imposed when θ1 and θ2 are estimated at each iteration, then the

imputation algorithm is a simplified version of a standard Markov chain with convergence

to a stationary joint distribution. However, the sequential regression imputation does not

estimate θ1 and θ2 simultaneously within one iteration, and the compatibility condition is

ignored in the estimation process. For sequences with separable marginal parameters such as

Example 1 and Example 2, since (θ1
∗, θ2

∗) ∈ ΘC holds inherently, according to Theorem 2,

the compatibility condition is approximately satisfied for (θ1
(t), θ2

(t)) after a certain number

of iterations. However, we will show that this is not always true for possibly compatible

sequences without separable marginal parameters.

When a possibly compatible model sequence does not have separable marginal param-

eters, the marginal distributions p(x | θ1, θ2) and p(y | θ1, θ2) from the target joint distri-

bution also depend on regression parameters, and, hence, the log-likelihood functions from

the sequential regression imputation and joint modeling imputation differ. For an heuristic

explanation, consider θ1 from m1 as an example. For any single observation, the log-density

function involving θ1 is log(m1(y | x, θ1)) from the sequential regression model, where as it

is log(m1(y | x, θ1)p(x | θ1, θ2)) from the joint model. Because the distribution of observed

X involves θ1, in general, the log-likelihood functions of θ1 from the joint model and the se-

quential regression differ. Therefore, the two algorithms yield different parameter estimates

and imputation results.

To clarify this aspect further, consider the following simulation examples:

Example 4 (Two Poisson Regression Models revisited): For two Poisson im-

putation models defined in Example 4, the compatibility condition requires that θ11 =

θ21 < 0, and the joint model is m(x, y | θ1, θ2, θ11 = θ21 < 0) = c(θ10, θ20, θ11) exp(θ10y+
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θ20x+θ11xy), where c(θ10, θ20, θ11) is the normalizing constant. The log-density function

involving (θ10, θ11) is − exp(θ10 + θ11x) + (θ10 + θ11x)y from the conditionally specified

model m1, and log(c(θ10, θ20, θ11)) + (θ10 + θ11x)y from the joint model. For three dif-

ferent bivariate count data sets, we applied the same sequential regression imputation

algorithm assuming two conditional Poisson regression models from Example 4 (T , the

number of iterations, is set as 10000):

(1) We generated the complete data from Y ∼ Poisson(2.5) andX | Y ∼ Poisson(exp(3−

0.3Y )), and the data are missing completely at random with n0 = n1 = n2 = 10000.

Sequential regression imputation estimates are approximately θ
(T )
11 = −0.1 and θ

(T )
21 =

−0.2. Although both slope estimates are negative, they are not equal, and the com-

patibility condition is not satisfied.

(2) We generated the complete data from Y ∼ Poisson(2.5) andX | Y ∼ Poisson(exp(−1+

0.3Y )), and the data are missing completely at random with n0 = n1 = n2 = 10000. Se-

quential regression imputation estimates are approximately θ
(T )
11 = 0.2 and θ

(T )
21 = 0.25.

They are neither negative nor equal, and the compatibility condition is not satisfied.

(3) We generated the complete data from a bivariate Poisson distribution ∝ exp(2y +

x−0.3xy), with conditionals Y | X ∼ Poisson(2−0.3X) and X | Y ∼ Poisson(exp(1−

0.3Y )), and the data are missing completely at random with n0 = n1 = n2 = 10000.

Sequential regression imputation estimates are θ
(T )
11 = −0.3 and θ

(T )
21 = −0.3. The

imputation results are compatible since both models are correctly specified.

The simulations show that in general the possibly compatible regression model sequences

with non-separable marginal parameters do not converge to the joint models (Situations

(1) and (2)), unless the conditional distributions are correctly specified (Situation(3)). The

practical consequence of these findings is that to yield approximately unbiased results, both

conditional distributions have to be as close to the corresponding true conditional distribu-

tions as possible to achieve convergence, regardless of compatibility with respect to any joint

distribution. This underscores the importance of model diagnostics to check the conditional

regression model fit to the data.

When the model sequence is neither weakly incompatible or possibly compatible, then

there is no joint model for the sequence to converge to. However, as we showed in Section 1,

the sequential regression algorithm can still converge. In general, the estimates from sequen-

tial regression imputation algorithms with incompatible models depend on the population

distribution, the missing data mechanism and the regression models. It is difficult, if not

impossible, to obtain analytical results about the convergence except for some examples.

We now describe the results from simulation study designed to study the properties of the

sequential regression algorithm for such incompatible but empirically well-fitting regression

models.

13



4 Simulation Studies for a Bivariate Missing Data

One approach to define a well-fitting regression model is through Kullback-Leibler divergence

measure. For example, the maximum likelihood estimates of the parameters in the regression

model m1(y | x, θ1) can be viewed as an asymptotic equivalent to those obtained by mini-

mizing the relative entropy of the regression model,
∫∫

log[f(y | x)/m1(y | x, θ1)]f(x, y)dxdy

or the Kullback-Leibler divergence between the regression model and the true conditional

density. Since it is asymmetric and does not satisfy the triangle inequality, it is not a metric.

However, the divergence is always positive unless the two distributions are the same, there-

fore it is often used to describe the discrepancy between the two distributions. We calculate

the divergence between the fitted regression model and the true conditional distribution∫
log[f(y | x)/m1(y | x, θ1)]f(y | x)dy at different values of x, and use the divergence curve

to describe the model fitness regarding the true model. For a well-fitting model sequence,

when the divergence curve between each regression model and the true conditional model

is approximately 0, draws from the fitted regression model can be approximately treated as

draws from the true model.

We now use Example 6 to show that a well-fitting incompatible model sequence can be

approximately validly specified:

Example 6 (Two Gamma Regression Models revisited):

y | x, θ1 ∼ Γ(K)−1(θ10 + θ11x)
−KyK−1 exp{−y(θ10 + θ11x)

−1},

x | y, θ2 ∼ Γ(J)−1(θ20 + θ21y)
−JxJ−1 exp{−x(θ20 + θ21y)

−1}.

For the simulation study, we generated data from the following population distribution:

fX(x | ψx) = βKΓ(K)−1x−K−1 exp(−β/x),

fY |X(y | x, ψ1) = Γ(J)−1(αx)−JyJ−1 exp{−y(αx)−1}.

Then X follows a marginal inverse Gamma distribution and Y given X follows a conditional

Gamma distribution. The corresponding conditional distribution of X given Y is

fX|Y (x | y, ψ2) = Γ(K + J)−1(β + y/α)K+Jx−(K+J)−1 exp{−(β + y/α)x−1}.

The following parameters are chosen for the distributions: K = 3, β = 3, J = 5, and

α = 0.25.

We generated 500 data sets of sample size n=50, 100, 200, 500, 1000 and 10,000 from

the bivariate distribution defined by fX and fY |X described as above. Some values were

set to missing based on the following missing at random mechanism: first, data are divided

equally into two random groups. In the first group, y is fully observed and the probabil-

ity of x being observed is pr(x is observed | y) = [1 + exp(−1 − 0.4y)]−1; In the second
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group, x is fully observed and the probability of y being observed is pr(y is observed | x) =

[1 + exp(−.5 − 0.2x)]−1. This sets about 25% of the values of each variable to be missing.

Based on empirical examination of the data, we determined the following four sequential

regression imputation algorithms using different sets of reasonable regression models with

varying degree of incompatibility to impute the missing values:

1. Algorithm 1 uses a possibly compatible regression model set:

m11(y
1/3 | x1/3, θ1) =

1√
2πσ2

12

exp

{
−

(y1/3 − θ10 − θ11x
1/3)2

σ2
12

}
,

m12(x
1/3 | y1/3, θ2) =

1√
2πσ2

21

exp

{
−

(x1/3 − θ20 − θ21y
1/3)2

σ2
21

}
.

2. Algorithm 2 uses an incompatible regression model set:

m21(y
1/3 | x1/3, θ1) =

1√
2πσ2

12

exp

{
−

(y1/3 − θ10 − θ11x
1/3)2

σ2
12

}
,

m22(x
1/3 | y1/3, θ2) =

1√
2πσ2

21

exp

{
−

(x1/3 − θ20 − θ21y
1/3 − θ22/y)

2

σ2
21

}
.

3. Algorithm 3 uses the incompatible regression model set as defined in Example 6:

m31(y | x, θ1) =
yθ12−1 exp(−y(θ10 + θ11x)

−1)

Γ(θ12)(θ10 + θ11x)θ12
,

m32(x | y, θ2) =
xθ22−1 exp(−x(θ20 + θ21y)

−1)

Γ(θ22)(θ20 + θ21y)θ22
.

4. Algorithm 4 uses a weakly incompatible regression model set:

m41(y | x, θ1) =
yθ12−1 exp(−y(θ10 + θ11x)

−1)

Γ(θ12)(θ10 + θ11x)θ12
,

m42(x | y, θ2) =
(θ20 + θ21y)

θ22

Γ(θ22)
x−θ22−1 exp((θ20 + θ21y)/x).

Algorithm 1 and 2 impute the missing values on the cubic root scale, and drawn values

are transformed back to the original scale at the end.

We calculated the Kullback-Leibler divergence curves for all regression models based on

the complete data, or the “Before Deletion” data. The plots in Figure 1 show the divergence

curves for each model from the four sets corresponding to fX|Y and fY |X . From Algorithm

1 to Algorithm 4, the model fitting is gradually improved since the divergence curve is
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gradually closer to 0 for both conditional densities, and both divergence curves reach 0 for

Algorithm 4 as it uses a validly specified model set. In particular, the Kullback-Leibler

divergence between fitted m32 and the true conditional density

∫∫
log

fX|Y (x | y)

m32(x | y, θ̂BD2 )
fXY (x, y)dxdy

from Algorithm 3 is uniformly close to 0 (less than 0.05 given any y); Furthermore, in the

neighborhood of θ∗1,

∫∫
∂ logm31(y | x, θ1)

∂θ1

[
fY (y)m32(x | y, θ̂BD2 ) − fXY (x, y)

]
dxdy = o(1),

which means that fitted m31 (based on Y and imputed X from fitted m32) is also close to the

true distribution. Therefore, we regard m31 and m32 in Algorithm 3 as a well-fitting model

sequence for (X,Y ).

INSERT FIGURE 1 HERE.

Our primary evaluation criterion for imputation performance is the maximum of absolute

difference between the empirical joint distribution based on the “Before Deletion” data and

the “After Imputation” data at iteration T :
∥∥∥F̂ n,T

MI (x, y) − F̂ n
BD(x, y)

∥∥∥
∞

. We evaluated this

conservative distance measure at T=5, 10, 20, 100, 500 and 1000 iterations. We fixed the

number of imputations at 100. For each of 500 data sets, the distance measure was computed

to form a function of n and T .

The averaged empirical joint distribution differences over 500 data sets from all four

algorithms with different sample sizes and T=100, 500 and 1000 iterations are summarized

in Figure 2. All algorithms using fewer iterations T=5, 10, 20 yielded larger differences

with similar patterns, so we excluded them in the figure to achieve better visual effect. The

simulation results show that as T and n increases, the empirical joint distribution difference

from each algorithm stabilizes. When T and n are sufficiently large, the average (SD) of the

differences between the before deletion and multiple imputation empirical distributions is

0.0288 (0.006) for Algorithm 1; 0.0257 (0.006) for Algorithm 2; 0.0188 (0.005) for Algorithm

3 and 0.0155 (0.004) for Algorithm 4. The empirical joint distribution difference decreases

from Algorithm 1 to Algorithm 4, indicating that as the model fitting is improved, the

performance is improved as well. Both incompatible but better fitting sets from Algorithm

2 and 3 outperform the possibly compatible set with separable marginal parameters from

Algorithm 1. The simulation study suggests that the validity of the inferences depends more

on the reasonableness of the model fit rather than the model compatibility.

INSERT FIGURE 2 HERE.
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5 Multivariate Missing Data

The appeal of sequential regression is the ability to handle missing values in complex multi-

variate data structure. The sequential regression imputation approach for the p-dimensional

data Y1, . . . , Yp, assumes mi(yi | y[−i], θi), and θ
(t)
i is estimated based on Yi,obs and Y

(t)
[−i]. Al-

though the imputation procedure is similar to bivariate algorithms, complications arise due

to complex missingness patterns.

Consider the situation with three variables, (Y1, Y2, Y3), with all possible item missing

data patterns. The estimate θ
(t)
1 of θ1 in m1(Y1 | Y2, Y3, θ1) is obtained by regressing the

observed values of Y1 on the corresponding subset of Y2 and Y3. The predictor subset consists

of (Y2, Y3) in four missingness groups: 1. both are observed, 2 & 3: one is observed and the

other is imputed, and 4: both are imputed. The predictor variables in the four groups are

generally distributed differently, and then each group plays a different role in estimating θ
(t)
1 .

For a data set with p variables, there are 2p − 1 possible missingness groups, including the

complete cases Ycc. It is difficult to establish results in generality given the complexity of

the joint distribution of the predictors.

5.1 Single variable missingness

We consider single variable missingness pattern where there is at most one variable missing

in any record. There are up to p + 1 missingness groups, and we denote R = i for subjects

with Yi missing and R = 0 for the fully observed group.

During the estimation of each regression model, the subset of Y
(t)
[−i] form up to p patterns,

and the log-likelihood is

li(θi | Yi,obs, Y
(t)
[−i]) = li(θi | Ycc) +

∑

j<i

li(θi | Y[−j], Y
(t)
j ) +

∑

j>i

li(θi | Y[−j], Y
(t−1)
j ).

If there is no missingness in Yj, li(θi | Y[−j], Y
(t)
j ) is absorbed into li(θi | Ycc), therefore we

assume for simplicity that there is missingness in each variable.

The parameter estimate θ
(t)
i is obtained by solving the score equation

si(θi | Yi,obs, Y
(t)
[−i]) = si(θi | Ycc) +

∑

j<i

si(θi | Y[−j], Y
(t)
j ) +

∑

j>i

si(θi | Y[−j], Y
(t−1)
j ) = 0.

Based on θ
(t)
i , Yi,mis is drawn from mi(Yi,mis | Y[−i],obs, θ

(t)
i ), where Y[−i],obs are fully observed.

We now show that in terms of convergence properties, sequential regression imputation al-

gorithms for multivariate missing data with single variable missingness are similar to those

for bivariate missing data, and conclusions in Section 3 can be extended. For weakly in-

compatible model sequences, the following theorem is a generalization of Theorem 1 for the

bivariate case.
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Theorem 3. Suppose p-dimensional data follow a joint population distribution f(y1, . . . , yp |

ψ) with conditional densities {fi(yi | y[−i], ψi), i = 1, . . . , p}. If the sequential regression

imputation algorithm uses a weakly incompatible model sequence {mi(yi | y[−i], θi), i =

1, . . . , p} and satisfies the regularity conditions for the differentiation/integration and

the mean/variance of the score functions, then for i = 1, . . . , p, mi(yi | y[−i], θ
(t)
i ) →

fi(yi | y[−i], ψi), as n, m, t→ ∞.

Proof is given in Part 3 of Appendix 1. Also for possibly compatible models, the following

is the generalization of Theorem 2.

Theorem 4. Suppose that the sequential regression imputation algorithm uses pos-

sibly compatible models {mi(yi | y[−i], θi), i = 1, . . . , p} and satisfies the regularity

conditions in Theorem 3, with θ ∈ ΘC as the subspace of Θ1 × Θ2 × . . . xΘp where

p(y1, . . . , yp | θ1, . . . , θp, θ ∈ ΘC) defines the joint distribution. If the model sequence

has separable marginal parameters and (θ∗1, . . . , θ
∗
p) ∈ ΘC is the maximum likelihood

estimate of (θ1, . . . , θp) based on the joint likelihood, then mi(yi | y[−i], θ
(t)
i ) → p(yi |

y[−i], θ
∗
i ), as n, m, t→ ∞.

For proof, see Appendix 1, Part 4.

In practice, we can also develop well fitting model sequences regardless of model com-

patibility, where Kullback-Leibler divergence can be used to check the model fitting.

6 Discussion

Multiple imputation through specifications of a sequence of conditional regression models is

a convenient approach for handling complex data structures with different types of variables.

Several software packages have been developed to implement this approach and are being

used in several substantive analyses in various disciplines. However, theoretical properties of

this method have not been systematically investigated. One key question is whether using a

set of incompatible conditional distributions leads to convergence or stability of the infinite

imputation completed data statistics. Recently, Li, Yu and Rubin (LYR) (2012) have raised

caution using some theoretical examples. However, these examples differ from the usual

sequential regression setup in many ways. We address these examples in light of the results

given in this paper.

Example 1 in LYR uses a deterministic set of incompatible conditional normal distribu-

tions (that is, the same parameters are used across all updating iterations) to show that

different ordering of updating the iterations leads to different results. However, the sequen-

tial regression does not use deterministic set of conditionals but the parameters themselves

are updated at each iteration. We conducted a simulation study with the complete data
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(before deletion data sets) of size n = 7000 on 3 variables, Y = (Y1, Y2, Y3), from a multi-

variate normal distribution with mean (−1, 0, 1) and the covariance matrix (1 − ρ)I3 + ρJ3

where I3 is an identity matrix of order 3 and J3 is a 3 × 3 matrix of ones. Some values

were deleted such that all possible 7 patterns are represented in the after deletion data.

The number of subjects in each pattern was 1000. The missing values were imputed using

the following weakly incompatible models: (1) Y1|Y2, Y3 ∼ N(αo + α1Y2 + α2Y3, σ
2
1); (2)

Y2|Y1, Y3 ∼ N(βo + β1Y1 + β2Y3, σ
2
2); and (3) Y3|Y1, Y2 ∼ N(γo + γ1Y1 + γ2Y2, σ

2
3). The im-

putations were carried out in three different orders (Y1, Y2, Y3), (Y2, Y1, Y3) and (Y3, Y1, Y2).

The number of imputations was fixed at 100 and the number of iterations considered were

T = 20, 50, 200, 500 and 1000. Our results show that the multiple imputation estimates

of the mean and the covariance matrix are unbiased for each of the three orders in which

imputations were carried out. This shows that order of the imputation is irrelevant and

incompatibility does not result in bias as long as each conditional model is validly specified.

Example 3 in LYR uses a grossly misspecified model sequence in the imputation for a

bivariate normal data. When the imputation models are misspecified or the missing data

mechanism is not ignorable, it is difficult to assess whether it is the property of the method

or the effect of misspecification. Even in this case, consider the following situation: suppose

the data are missing at random and the imputer uses the model Y1|Y2 ∼ N(αo + α1Y2, σ
2
1)

and Y2|Y1 ∼ N(βo + β1Y1 + β2Y
2
1 , σ

2
2) then Theorem 1 applies and the sequential regression

imputation algorithm results in the consistent estimator of the joint distribution of (Y1, Y2).

The key, therefore, is not to fix the parameters across the iterations but revise the estimates

based on updating of the imputed values. Thus asymptotically, the observed data tend to

pull towards the consistent model when the joint distribution is embedded in the parameter

space of the conditional distributions. Thus, our investigations suggest that the sequential

regression approach may yield valid results if the conditional distributions fit the data well

even though they may not be compatible with any joint distribution.

There are number of limitations in this study. The investigation was restricted to a

missing data pattern with any subject missing values on at most one variable. This was

mainly to restrict the number of missing data patterns to a manageable number. Further

investigations are necessary to assure that the algorithm will converge and provide valid

results for more complex missing data pattern. We have performed a limited simulation

study to consider more complex pattern of missing data where well fitting incompatible

models were used to impute the missing values. The multiple imputation inferences had

desirable repeated sampling properties even in this situation. However, establishing the exact

conditions for convergence seems to be more complicated and further research is necessary.

On the contrary, using a poorly fitting but compatible model sequence led to inferences with

undesirable properties. Even this simulation study suggests that an imputer has to choose

the models carefully to ensure that each conditional model fits the data well.
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Appendix 1

Part 1: Proof of Theorem 1

Proof: Since weakly incompatible model sequences include two cases, we first prove the

theorem for exactly specified sequences, and assume that the functional forms of m1(y |

x, θ1) and m2(x | y, θ2) correspond to the true conditional densities fX|Y (x | y, ψ1) and

fY |X(y | x, ψ2) respectively. The asymptotic score functions defining the iterative algorithm

can be rewritten as below:

s̃1(θ1 | θ2
(t−1)) =

∫∫
∂ logm1(y | x, θ1)

∂θ1

{
n0fXY (x, y | R = 0) + n1m2(x | y, θ2

(t−1))fY (y | R = 1)
}

dxdy;

s̃2(θ2 | θ
(t)
1 ) =

∫∫
∂ logm2(x | y, θ2)

∂θ2

{
n0fXY (x, y | R = 0) + n2m1(y | x, θ1

(t))fX(x | R = 2)
}

dxdy.

Since the missingness is ignorable, we have

n0fXY (x, y | R = 0) + n1m2(x | y, ψ2)fY (y | R = 1)

= (n0 + n1)fXY (x, y | R 6= 2) = (n0 + n1)m1(y | x, ψ1)fX(x | R 6= 2)

and

n0fXY (x, y | R = 0) + n2m1(y | x, ψ1)fX(x | R = 2)

= (n0 + n2)fXY (x, y | R 6= 1) = (n0 + n2)m2(x | y, ψ2)fY (y | R 6= 1).

It is then easy to show that (ψ1, ψ2) satisfies the asymptotic score equations

s̃1(ψ1 | ψ2) = (n0 + n1)

∫∫
∂ logm1(y | x, θ1)

∂θ1

m1(y | x, ψ1)fX(x | R 6= 2)dxdy

∣∣∣∣
θ1=ψ1

= 0;

s̃2(ψ2 | ψ1) = (n0 + n2)

∫∫
∂ logm2(x | y, θ2)

∂θ2

m2(x | y, ψ2)fY (y | R 6= 1)dxdy

∣∣∣∣
θ2=ψ2

= 0.

Therefore, as n, t → ∞, (θ
(t)
1 , θ

(t)
2 ) → (ψ1, ψ2), which leads to that m1(y | x, θ

(t)
1 ) →

fY |X(y | x, ψ1) and m2(x | y, θ
(t)
2 ) → fX|Y (x | y, ψ2).

We now prove the theorem for validly specified model sequences with extra terms com-

pared to the true conditional densities. Suppose that without loss of any generality we

introduce a parameterization θ1 = (ζ1, ξ1) and θ2 = (ζ2, ξ2) such that m1(y | x, ζ1 = ψ1, ξ1 =

0) = fY |X(y | x, ψ1) and m2(x | y, ζ2 = ψ2, ξ2 = 0) = fX|Y (x | y, ψ2). We need to show that

θ∗1 = (ψ1, 0) and θ∗2 = (ψ2, 0) are the convergent point of the asymptotic iterative algorithm.

Given θ∗2 = (ψ2, 0),

s̃1(θ1 | θ
∗
2) = (n0 + n1)

∫∫
∂ logm1(y | x, θ1)

∂θ1

fY |X(y | x, ψ1)fX(x | R 6= 2)dxdy.
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Since maximizing the likelihood is equivalent to minimizing the relative entropy of the re-

gression model regarding the true distribution, to find the solution to s̃1(θ1 | θ∗2) = 0 is

equivalent to minimize
∫∫

log[fY |X(y | x, ψ1)/m1(y | x, θ1)]fY |X(y | x, ψ1)fX(x | R 6= 2)dxdy.

Since the relative entropy has non-negative values and its minimum 0 is reached if and

only if m1(y | x, θ1 = (ψ1, 0)) = fY |X(y | x, ψ1). Therefore, the asymptotic score equation

s̃1(θ1 | θ2) = 0 holds at (θ∗1, θ
∗
2). The similar arguments apply to m2, and we also have

s̃2(θ
∗
2 | θ∗1) = 0.

Part 2: Proof of Theorem 2

Proof: To determine the target to which the approximate algorithm converges, we first apply

the joint model mXY (x, y | θXY ) to analyze the incomplete data, where θXY = (θ1, θ2, θ ∈

ΘC). Since the joint model has separable marginal parameters, suppose that without loss

of generality we have two parameterizations θXY = (θ1, θX) and θXY = (θ2, θY ) for the joint

model. We use Expectation-Maximization algorithm to obtain the maximum likelihood

estimate θ∗XY = (θ∗1, θ
∗
2). The expectation step calculates

Q(θXY | θ
(t−1)
XY ) =

∑

i

logmXY (x0i, y0i | θXY ) +
∑

j

∫
logmXY (x1j, y1j | θXY )m2(x | y1j, θ

(t−1)
XY )dx

+
∑

k

∫
logmXY (x2k, y2k | θXY )m1(y | x2k, θ

(t−1)
XY )dy,

and the maximization step finds the parameter which maximizes the expected log-likelihood:

θ
(t)
XY = arg maxθXY

Q(θXY | θ
(t−1)
XY ).

The expected step can be approximated by an asymptotic quantity

Q̃(θXY | θ
(t−1)
XY ) = lim

n→∞
Q(θXY | θ

(t−1)
XY )

= n0

∫∫
logmXY (x, y | θXY )fXY (x, y | R = 0)dxdy

+ n1

∫∫
logmXY (x, y | θXY )m2(x | y, θ

(t−1)
XY )dxfY (y | R = 1)dy

+ n2

∫∫
logmXY (x, y | θXY )m1(y | x, θ

(t−1)
XY )dyfX(x | R = 2)dx,

and the maximization step maximizes the asymptotic quantity.

Since θXY
∗ is the convergent point to the asymptotic Expectation-Maximization algo-

rithm, for both parameterizations, score equations hold at the convergent point because the

marginal parameters are separable:

∂Q̃(θ1, θX
∗ | θXY

∗)

∂θ1

∣∣∣∣
θ1

∗

= 0,
∂Q̃(θ1

∗, θX | θXY
∗)

∂θX

∣∣∣∣
θX

∗

= 0;
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and
∂Q̃(θ2, θy

∗ | θXY
∗)

∂θ2

∣∣∣∣
θ2

∗

= 0,
∂Q̃(θ2

∗, θy | θXY
∗)

∂θy

∣∣∣∣
θY

∗

= 0.

We now show that the maximum likelihood estimate θXY
∗ is also the fixed point of the

asymptotic sequential regression imputation algorithm by demonstrating

s̃1(θ1
∗ | θ2

∗) = 0,

s̃2(θ1
∗ | θ2

∗) = 0.

From the Expectation-Maximization algorithm, we assume that the probability functions

are absolute continuous, and we interchange the differential and integral sign. Then

∂Q̃(θ1, θX
∗ | θXY

∗)

∂θ1

= n0

∫∫
∂ logmXY (x, y | θ1, θ

∗
X)

∂θ1

fXY (x, y | R = 0)dxdy

+n1

∫∫
∂ logmXY (x, y | θ1, θ

∗
X)

∂θ1

m2(x | y, θ2
∗)dxfY (y | R = 1)dy

+n2

∫∫
∂ logmXY (x, y | θ1, θ

∗
X)

∂θ1

m1(y | x, θ1)dyfX(x | R = 2)dx

= n0

∫∫ (
∂ logm1(y | x, θ1)

∂θ1

+
∂ logmX(x, θ∗X)

∂θ1

)
fXY (x, y | R = 0)dxdy

+n1

∫∫ (
∂ logm1(y | x, θ1)

∂θ1

+
∂ logmX(x, θ∗X)

∂θ1

)
m2(x | y, θ2

∗)dxfY (y | R = 1)dy

+n2

∫∫ (
∂ logm1(y | x, θ1)

∂θ1

+
∂ logmX(x, θ∗X)

∂θ1

)
m1(y | x, θ1)dyfX(x | R = 2)dx

= n0

∫∫
∂ logm1(y | x, θ1)

∂θ1

fXY (x, y | R = 0)dxdy

+n1

∫∫
∂ logm1(y | x, θ1)

∂θ1

m2(x | y, θ2
∗)dxfY (y | R = 1)dy

+n2

∫∫
∂ logm1(y | x, θ1)

∂θ1

m1(y | x, θ1)dyfX(x | R = 2)dx

= s̃1(θ1 | θ2
∗) + n2

∫∫
∂ logm1(y | x, θ1)

∂θ1

m1(y | x, θ1)dyfX(x | R = 2)dx.

Then the asymptotic score equations holds at θXY
∗:

s̃1(θ1
∗ | θ2

∗)

=
∂Q̃(θ1, θX

∗ | θXY
∗)

∂θ1

∣∣∣∣
θ1

∗

− n2

∫∫
∂ logm1(y | x, θ1)

∂θ1

m1(y | x, θ1)dyfX(x | R = 2)dx

∣∣∣∣
θ1

∗

= 0.
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Similarly, s̃2(θ2
∗ | θ1

∗) = 0 can also be obtained.

Part 3: Proof of Theorem 3

Proof: As in Theorem 1, we first prove the theorem for exactly specified model sequences,

where mi(yi | y[−i], θi = ψi) = fi(yi | y[−i], ψi) for i = 1, . . . , p. We need to show that for each

regression model, the asymptotic score equation s̃i(ψi | ψ[−i]) holds.

Denoting ui(yi | y[−i]) = ∂ log(mi(yi | y[−i], θi))/∂θi and ni the sample size of each miss-

ingness group, then the asymptotic function for the ith model given θ∗[−i] = ψ[−i] is as

s̃i(θi | ψ[−i]) = s̃i(θi | R = 0) +
∑

j 6=i

s̃i(θi | ψj, R = j),

where

s̃i(θi | R = 0) =

∫
· · ·

∫
ui(yi | y[−i])n0f(y1, . . . , yp | R = 0)dy1 · · · dyp,

and for j 6= i,

s̃i(θi | ψj, R = j) =

∫
· · ·

∫
ui(yi | y[−i])njmj(yj | y[−j], ψj)f(y[−j] | R = j)dy1 · · · dyp

=

∫
· · ·

∫
ui(yi | y[−i])njf(y1, . . . , yp | R = j)dy1 · · · dyp.

Since the missingness is ignorable, we have

p∑

j=0,j 6=i

njf(y1, . . . , yp | R = j) = (n−ni)f(y1, . . . , yp | R 6= i) = (n−ni)mi(yi | y[−i], ψi)f(y[−i] | R 6= i),

and the asymptotic function can be rewritten as below:

s̃i(θi | ψ[−i]) = (n− ni)

∫
· · ·

∫
ui(yi | y[−i])mi(yi | y[−i], ψi)f(y[−i] | R 6= i)dy1 · · · dyp,

and it is easy to show that the asymptotic score equation holds:

s̃i(ψi | ψ[−i]) = (n−ni)

∫
· · ·

∫
ui(yi | y[−i])mi(yi | y[−i], ψi)f(y[−i] | R 6= i)dy1 · · · dyp

∣∣∣∣
θi=ψi

= 0.

Therefore, as n, t → ∞, θ
(t)
i → ψi, which leads to that mi(yi | y[−i], θ

(t)
i ) → fi(yi | y[−i], ψi),

for i = 1, . . . , p.

We now prove the theorem for validly specified model sequences with extra terms com-

pared to the true conditional densities. As in Theorem 2, suppose that without loss of any

generality we introduce a parameterization θi = (ζi, ξi) such that mi(yi | y[−i], ζi = ψi, ξi =
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0) = fi(yi | y[−i], ψi). We need to show that {θ∗i = (ψi, 0), i = 1, . . . , p} is the convergent

point of the asymptotic iterative algorithm.

Given that θ∗j = (ψj, 0) for j 6= i,

s̃i(θi | θ
∗
[−i]) = (n− ni)

∫
· · ·

∫
ui(yi | y[−i])fi(yi | y[−i], ψi)f(y[−i] | R 6= i)dy1 · · · dyp.

As in Theorem 2, to find the solution to s̃i(θi | θ∗[−i]) = 0 is equivalent to minimize∫
· · ·
∫

log[fi(yi | y[−i], ψi)/mi(yi | y[−i], θi)]fi(yi | y[−i], ψi)f(y[−i] | R 6= i)dy1 · · · dyp. Since

the relative entropy has non-negative values and its minimum 0 is reached if and only if

mi(yi | y[−i], θi = (ψi, 0)) = fi(yi | y[−i], ψi). Therefore, the asymptotic score equation

s̃i(θi | θ[−i]) = 0 holds at (θ∗1, . . . , θ
∗
p) for any i = 1, . . . , p.

Part 4: Proof of Theorem 4

Proof: As in Theorem 2, we first apply the joint model p(y1, . . . , yp | θ) to analyze the

incomplete data to determine the convergent point. Denote Q̃(θ | θ(t−1)) the expected log-

likelihood from the Expectation-Maximization algorithm, where θ = (θ1, . . . , θp) ∈ ΘC . For

i = 1, . . . , p, denote θM,[−i] the parameter of the marginal joint model of Y[−i] from the joint

model, then because of the separability of marginal parameters, θM,[−i] is distinctive from θi
and θ = (θi, θM,[−i]) is a parameterization of the joint model. Since θ∗ = (θ∗1, . . . , θ

∗
p) is the

maximum likelihood estimate, ∂Q̃(θ | θ∗)/∂θ|θ=θ∗ = 0. On the other hand, because marginal

separability ensures that

∂ log p(y1, . . . , yp | θi, θM,[−i])/∂θi = ∂(log(mi(yi | y[−i], θi)))/∂θi = ui(yi | y[−i]),

we have

∂Q̃(θi, θ
∗
M,[−i] | θ

∗)/∂θi =

∫
· · ·

∫
ui(yi | y[−i])n0f(y1, . . . , yp | R = 0)dy1 · · · dyp

+

∫
· · ·

∫
ui(yi | y[−i])

p∑

j=1

[
njmj(yj | y[−j], θ

∗
j )f(y[−j] | R = j)

]
dy1 · · · dyp

= s̃i(θi | θ
∗
[−i])

+ni

∫
· · ·

∫
ui(yi | y[−i])mi(yi | y[−i], θ

∗
i )f(y[−i] | R = i)dy1 · · · dyp.

Therefore, the asymptotic score equations hold at θ∗ as for all i = 1, . . . , p,

s̃i(θ
∗
i | θ

∗
[−i])

=

[
∂Q̃(θi, θ

∗
M,[−i] | θ

∗)/∂θi − ni

∫
· · ·

∫
ui(yi | y[−i])mi(yi | y[−i], θ

∗
i )f(y[−i] | R = i)dy1 · · · dyp

] ∣∣∣∣
θ∗i

= 0.
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Therefore, as n, t→ ∞, θ
(t)
i → θ∗i , which leads to thatmi(yi | y[−i], θ

(t)
i ) → pi(yi | y[−i], θ

∗
i ),

for i = 1, . . . , p.

Appendix 2

Examples

Example 1 (Two Linear Regression Models revisited): Suppose the data follow

a bivariate normal distribution (x, y)T ∼ N(µ,Σ), where µ = (µx, µy)
T and

Σ =

(
τ 2
x ρτxτy

ρτxτy τ 2
y

)

and its conditional distributions are

y | x ∼ N(α10 + α11x, τ
2
12),

x | y ∼ N(α20 + α21y, τ
2
21)

with α11/τ
2
12 = α21/τ

2
21. The missing data mechanism is assumed to be missing com-

pletely at random: π0 = Pr(both X and Y are observed), π1 = Pr(Y is observed and

X is missing) and π2 = Pr(X is observed and Y is missing).

The estimated regression parameters converge to θ∗1 = (α10, α11, τ
2
12)

T , and θ∗2 =

(α20, α21, τ
2
21)

T . Based on the approximate iterative algorithm

(
θ

(t)
11 , θ

(t)
10 , σ

2
12

(t)
)T

= s̃−1
1

(
θ

(t−1)
21 , θ

(t−1)
20 , σ2

21
(t−1)

)
,

(
θ

(t)
21 , θ

(t)
20 , σ

2
21

(t)
)T

= s̃−1
2

(
θ

(t)
11 , θ

(t)
10 , σ

2
12

(t)
)
,

the Jacobian matrices Ds̃−1
1 and Ds̃−1

2 are calculated as follows:

Ds̃−1
1 (θ∗2) = r1





α11

α21
− 2α2

11 0 −α11

τ2
x

−α11

α21
µx + 2α2

11µx − α11µy −α11 −α11

τ2
x
µx

−2(1 − α11α21)α11τ
2
y 0 α2

11




,

Ds̃−1
2 (θ∗1) = r2





α21

α11
− 2α2

21 0 −α21

τ2
y

−α21

α11
µy + 2α2

21µy − α21µx −α21 −α21

τ2
y
µy

−2(1 − α21α11)α21τ
2
x 0 α2

21




,
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where r1 = π1(π0 + π1)
−1 and r2 = π2(π0 + π2)

−1.

The eigenvalues of r−1
1 r−1

2 Ds̃−1
1 ×Ds̃−1

2 can be solved by the following characteristic

equation:

(λ− 1)
(
λ− ρ2

) (
λ− ρ4

)
= 0.

The eigenvalues of the rate matrix Ds̃−1(θ∗) are r1r2, r1r2ρ
2 and r1r2ρ

4. Since 0 ≤

ρ2 ≤ 1 holds for any bivariate normal data, the largest eigen value of Ds̃−1(θ∗) is

π1π2(π0 + π1)
−1(π0 + π2)

−1, which is the global rate of convergence for the iterative

algorithm.

• (Two Logistic Regression Models revisited) Suppose the data (X,Y ) come from a

bivariate Bernoulli distribution with pr(X = 0, Y = 0) = p00, pr(X = 0, Y = 1) = p01,

pr(X = 1, Y = 0) = p10 and pr(X = 1, Y = 1) = p11 = 1 − p00 − p01 − p10, where the

corresponding conditional distributions are

y | x ∼ Bernoulli
[
(1 + exp(−α10 − γ12x))

−1] ,
x | y ∼ Bernoulli

[
(1 + exp(−α20 − γ21y))

−1] .

The parameters from the conditional distributions satisfy the compatibility condition

γ12 = γ21. The missing data mechanism is assumed to be missing completely at random:

π0 = Pr(both X and Y are observed), π1 = Pr(Y is observed and X is missing) and

π2 = Pr(X is observed and Y is missing).

The estimated regression parameters converge to θ∗1 = (α10, γ12)
T , and θ∗2 = (α20, γ21)

T .

Based on the approximate iterative algorithm

(
θ

(t)
12 , θ

(t)
10

)T
= s̃−1

1

(
θ

(t−1)
21 , θ

(t−1)
20

)
,

(
θ

(t)
21 , θ

(t)
20

)T
= s̃−1

2

(
θ

(t)
12 , θ

(t)
10

)
,

the Jacobian matrices Ds̃−1
1 and Ds̃−1

2 are calculated as follows:

Ds̃−1
1 (θ∗2) =

π1

π0 + π1





1 0

− p11
p01+p11

p00
p10+p00

− p11
p01+p11



 ,

Ds̃−1
2 (θ∗1) =

π2

π0 + π2





1 0

− p11
p10+p11

p00
p00+p01

− p11
p10+p11



 .
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The eigenvalues of Ds̃−1
1 ×Ds̃−1

2 are π1π2(π0 + π1)
−1(π0 + π2)

−1 and

π1

π0 + π1

π2

π0 + π2

[
p00

p10 + p00

−
p11

p01 + p11

] [
p00

p00 + p01

−
p11

p10 + p11

]
.

Then the eigenvalue ofDs̃−1(θ∗) with largest absolute value is π1π2(π0 + π1)
−1(π0 + π2)

−1,

which is the asymptotic global rate of convergence for the iterative algorithm.

Example 2 (Conditional Exponential): Suppose (X,Y ) are two positive continu-

ous variables, and two imputation models are

m1 : y | x, θ1 ∼ Exp (θ1x) ,

m2 : x | y, θ2 ∼ Exp (θ2y) .

At iteration t, we apply m1 on {(x0i, y0i), (x
(t−1)
1j , y1j)} to estimate θ

(t)
1 by maximizing

the following likelihood:

L
(t)
1 (θ1 | (x0i, y0i), (x

(t−1)
1j , y1j)) ∝ θn0+n1

1 exp{−θ1(
∑

i

x0iy0i +
∑

j

x
(t−1)
1j y1j)}.

By solving the score equation ∂lnL
(t)
1 /∂θ1 = 0, we have

θ
(t)
1 =

n0 + n1∑
i x0iy0i +

∑
j x

(t−1)
1j y1j

. (1)

Then the missing values of Y are drawn from y
(t)
2k | x2k ∼ θ

(t)
1 x2k exp{−θ

(t)
1 x2ky}.

Since x
(t−1)
1j | y1j ∼ Exp(θ

(t−1)
2 y1j), by central limit theory we have p lim

∑
j x

(t−1)
1j y1j =

n1/θ
(t−1)
2 . We also denote E0 = E[x0iy0i] = E[XY | R = 0], and then p lim

∑
i x0iy0i =

n0E0. Therefore, the following relation holds by applying the asymptotic approxima-

tions on Eq. (1):

θ
(t)
1 ≈

n0 + n1

n0E0 + n1/θ
(t−1)
2

. (2)

Similarly, model 2 is applied on {(x0i, y0i), (x2k, y
(t)
2k )} to obtain the parameter estima-

tion

θ
(t)
2 =

n0 + n2∑
i x0iy0i +

∑
k x2ky

(t)
2k

(3)

and the approximate relation

θ
(t)
2 ≈

n0 + n2

n0E0 + n2/θ
(t)
1

. (4)
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Eq. (2) and (4) define an approximate iterative relation between θ1 and θ2. The fixed

point to this approximate algorithm can be calculated by solving the two equations:

θ∗1 = θ∗2 =
1

E0

. (5)

By taking Taylor expansion of Eq. (2) and (4) at the fixed point, we have

θ
(t)
1 − θ∗1 ≈

θ∗1
2

n0 + n1

n1

θ∗2
2 (θ

(t−1)
2 − θ∗2),

θ
(t−1)
2 − θ∗2 ≈

θ∗2
2

n0 + n2

n2

θ∗1
2 (θ

(t−1)
1 − θ∗1).

Therefore, the parameters around the fixed point are updated approximately according

to

θ
(t)
1 − θ∗1 ≈

n1

n0 + n1

n2

n0 + n2

(θ
(t−1)
1 − θ∗1), (6)

θ
(t)
2 − θ∗2 ≈

n1

n0 + n1

n2

n0 + n2

(θ
(t−1)
2 − θ∗2). (7)

The derivative n1n2(n0 + n1)
−1(n0 + n2)

−1 is the rate of convergence for the approxi-

mate iterative algorithm.
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Figure 1: Kullback-Leibler divergence curves between fitted regression models and true con-
ditional densities of four sets of models for Example 6.
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Figure 2: Maximum of absolute difference between empirical distributions based on multiply

imputed data and before deletion data,
∥∥∥F̂ n,T

MI (x, y) − F̂ n
BD(x, y)

∥∥∥
∞

, from four imputation

algorithms plotted as a function of sample size n=50, 100, 200, 500, 1000 and 10000 and the
number of iterations T = 100, 500, 1000 for Example 6.
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