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ABSTRACT
Motivated by military applications, this work considers connected platoons of ground vehicles
of potentially different sizes and presents a model-free approach for optimizing the speed of the
platoon to adjust the trade-off between fuel economy and mobility as measured by travel speed.
The motivation to seek a model-free solution is twofold: (1) vehicle models that are typically
assumed to be available in model-based methods are not available on-board for military vehicles;
(2) a model-free solution can offer robustness to modeling errors. Therefore, in this paper, the
problem of optimizing the trade-off between fuel economy and mobility of a mixed platoon is
formulated as an optimization problem and solved using the model-free Nelder-Mead approach.
To explore the performance characteristics of this approach, a case study is performed with
two different size vehicles that are representative of military trucks, both in simulation and
in a novel networked engine-in-the-loop setup. The results show that the proposed approach
can achieve the desired balance between fuel economy and mobility in a model-free manner
despite the nonlinearity caused by gear shift deadzones, albeit at the expense of relatively
slow convergence time. In addition, a design guideline for the parameters in the Nelder-Mead
approach is also discussed.
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1. Introduction

Fuel supply is a critical need and a safety concern for the operation of the large U.S. army
vehicular fleet. In a battlefield, up to 80% of logistics comprise large size fuel supply trucks,
which are hard to protect (Hargreaves, 2011). An energy-efficient fleet would reduce refueling
needs and the risk of a war zone operation, thereby saving lives (Aliotta, 2017).

Several possible solutions to achieve better fuel economy are established for single vehicles
such as lightweighting, electrification kits, advanced combat engines, single common powertrain
lubricants and fuel efficient gear oil (Aliotta, 2017; Hoffenson, Arepally, & Papalambros, 2014).
On the other hand, with platooning technology, the whole vehicular convoy including supply
trucks and combat vehicles can be managed to achieve better fuel economy and safety.

Platooning refers to a mode of transportation, in which two or more vehicles form a con-
voy to closely follow each other for the purposes of increased safety, increased utilization of
infrastructure, or reduced aerodynamic drag (U.S. Department of Energy, 2019; Varaiya, 1993).
Several major projects throughout the world illustrate the benefits of vehicle platooning, such as
German truck platooning project KONVOI (Deutschle et al., 2010), the European platooning
project SARTRE (Chan, 2012), the California traffic automation program PATH (Chang et
al., 1993; Rajamani, Tan, Law, & Zhang, 2000; Zabat, Stabile, Farascaroli, & Browand, 1995),
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Figure 1.: The heterogeneous platoon with cooperative adaptive cruise control

the grand cooperative driving challenge GCDC (Englund et al., 2016), the Swedish SCANIA
platooning project (Bergenhem et al., 2012), and the Japanese truck platooning project Energy
ITS (Tsugawa & Kato, 2010; Tsugawa, Kato, & Aoki, 2011).

One important research question in platooning is how to manage a platoon and maximize its
benefits, especially in terms of fuel economy and travel time, if the connected vehicle technology
is leveraged. To that end, different strategies have been investigated to increase fuel economy
during all stages involved in the platooning, including forming/splitting stage and cruising stage.
Regarding the former stage, researchers have developed, for example, a coordination algorithm to
form platoons of several vehicles from neighboring vehicles and increase fuel saving via reducing
the air drag loss (Liang, Mårtensson, & Johansson, 2016). As for the cruising stage, one of the
main strategies is the smart management of the speed profile. For example, Caltagirone, Torabi,
and Wahde (2015) have used a stochastic optimization procedure to optimize the lead vehicle’s
speed profile, which can compensate the disturbance caused by terrain change and achieve higher
fuel efficiency. Nemeth, Csikos, Varga, and Gaspar (2012) have used the H∞ control method to
solve a multi-criteria optimization problem to find a balance between emission, fuel economy,
as well as traveling time criteria. Alam, Mårtensson, and Johansson (2013) have discussed a
cooperative control strategy in a heterogeneous platoon based on preview information, which
can achieve fuel saving in both uphill and downhill segments. Turri, Besselink, and Johansson
(2017) have introduced a framework to generate a fuel-optimal speed profile over different slopes
and correspondingly control the vehicle in a real-time manner. Researchers have also proposed
the use of a periodic switching control method to reduce the overall fuel consumption of the
vehicles in the platoon through a dual-pulse-and-glide operation (Li et al., 2016). Strategies
besides smart management of speed have also been considered. For instance, Turri, Besselink,
and Johansson (2016) have demonstrated a strategy to select the optimal gear that takes the
platoon fuel efficiency into account.

All of the above-mentioned works rely on vehicle models to improve the fuel economy of
the platoon. While such vehicle models may be ubiquitous in modern commercial vehicles, they
are not readily available on military vehicles, which can hinder the application of model-based
techniques to military platoons. Moreover, modeling errors may raise concerns about robustness.
Hence, model-free platoon management techniques is of interest for military applications. A
model-free approach can also serve as a benchmark for future studies on the value of information
available from models, additional measurements or communications for smart management of
platoons. However, it is still an open research question to investigate how and to what extent
the fuel economy of a platoon of connected vehicles can be improved using model-free methods.

This paper aims to fill this gap by developing and testing a model-free approach to manage
a platoon of connected vehicles and optimize the trade-off between fuel economy and mobility
of the platoon, where mobility is quantified by the platoon travel speed. In particular, a utility
function is formulated that simultaneously considers the fuel economy and speed of the platoon
and it is optimized using the Nelder-Mead approach to achieve a model-free solution (Nelder &
Mead, 1965). This framework relies on the communication of only instantaneous speed and fuel
economy measurements between the vehicles in the platoon and can natively handle platoons of
mixed vehicle types. To test the framework, a platoon of two vehicles is considered as illustrated
in Figure 1, where a medium duty truck is following a heavy duty truck. Simulations and
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networked engine-in-the-loop experiments are utilized to study the effectiveness of the algorithm.
Thus, the first original contribution of this paper is the development and simulation based
and engine-in-the-loop experimental evaluation of a novel model-free strategy to determine the
cruising speed of a connected platoon that can optimally balance the fuel economy and travel
speed. In addition, as the second contribution of this paper, a detailed discussion is presented
on the nonlinearities of the platoon fuel economy curve, which affect the utility function and the
optimization solution in experiments. It is discussed how the hysteresis and discontinuities due
to the gear shift logic increases the possibility of converging to a local extremum point. These
nonlinearities are neglected in previous works, for example, by assuming a smooth relationship
between fuel consumption and vehicle speed (Liang et al., 2016; Nemeth et al., 2012) or ignoring
the hysteresis (Caltagirone et al., 2015). Recommendations are made for selecting the tuning
parameters in the Nelder-Mead optimization algorithm to mitigate the adverse effect of these
nonlinearities on the final optimal solution.

The rest of this paper is organized as follows. In Section 2, an optimal control problem is de-
fined to optimize the fuel economy and travel speed of the platoon. The section also introduces
the way the platoon is formed and how the connectivity between the vehicles is established. In
Section 3, the models used in the bi-vehicular case study are introduced, including the com-
munication architecture, the vehicular dynamics models and corresponding powertrain models.
These models are only needed for the simulation and engine-in-the-loop based evaluations of
the developed strategy. The strategy itself, however, is data driven and model free. In Sec-
tion 4, the optimal control problem is solved using the Nelder-Mead method and results from
the simulation study are reported. In Section 5, the sensitivity to the Nelder-Mead parameters
is analyzed. Section 6 focuses on the the engine-in-the-loop experiments and describes the net-
worked integration of two engine test cells corresponding to the two vehicle types considered for
the case study, as well as the experimental results obtained with this setup. Finally, conclusions
are drawn in Section 7 along with a discussion of future research directions.

2. Model-Free Platoon Speed Management

Fuel economy and mobility are the two important considerations for the long-haul military
trucks with combustion engine powertrains considered in this study. These two factors are
typically in competition with each other. Fuel economy of the platoon MPGp is calculated as
the harmonic mean of the fuel economy values MPGi reported by all the N vehicles in the
platoon, where

MPGi := vp/ṁf,i (1)

is the fuel economy of the ith vehicle (i = 1, 2, ..., N) at the cruising speed of vp with the fuel
consumption rate of ṁf,i. The use of the harmonic mean is in accordance with the Corporate Av-
erage Fuel Economy (CAFE) standard (National Highway Traffic Safety Administration, 2006).
Fuel economy can be increased by decreasing the cruising speed of a vehicle and the aerody-
namic losses while operating the engine at or near its most efficient operating point, whereas
mobility can be improved by increasing the speed. Hence, the simultaneous consideration of
these two factors brings about a trade-off, the balancing of which becomes more challenging if
multiple mixed-type vehicles are considered simultaneously with different engine characteristics.
To address this challenge, the problem is formulated as an optimization problem in this section
and solved using the model-free Nelder-Mead method for a convoy of vehicles traveling together
at the same speed.

In order to achieve a balance between fuel economy as measured in miles per gallon (MPG)
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Table 1.: Parameters of the formulation

Parameter Explanation Value

αF Weights for fuel economy in (2) 1 MPG−1

αM Weights for mobility in (2) 0.004 mph−2

vp,des Desired traveling speed in (2) 60 mph
vp,max Maximum traveling speed in (3) 70 mph
vp,min Minimum traveling speed in (3) 10 mph

Γ Parameter for reflection in Figure 2 0.8
γ Parameter for expansion in Figure 2 1.5
ρ Parameter for contraction in Figure 2 0.5
σ Parameter for shrink in Figure 2 0.5

and mobility Mp as measured in travel speed, a utility function J for the platoon is defined as

J := αFMPGp + αMMp

:= αF
N∑N

n=1
1

MPGi

+ αM(v2
p,des − (vp,des − vp)2).

(2)

In (2), vp,des is the desired speed for the platoon that is assumed to be given based on vehicle
and road conditions and determined independent of any fuel economy concerns. The parameters
αF and αM are introduced as weights that one selects based on their preference between fuel
economy and mobility in a given mission. The higher αM is relative to αF, the more mobility is
emphasized and vp approaches vp,des.

The platoon speed vp is calculated by a centralized optimization algorithm in a server
assumed to be on-board the lead vehicle. Specifically, the optimal final speed for the platoon vp

is calculated by solving the following optimization problem.

max
vp

J(vp)

subject to vp ∈ [vp,min, vp,max]
(3)

To solve the optimization problem (3) in a model-free manner, the Nelder-Mead search
method is employed as a gradient-free heuristic optimization algorithm. A gradient-free strategy
is preferred in this case over a gradient-based one due to the fact that the cost function may
not be continuous due to gear shifts and thus gradients may not be always defined.

The flowchart shown in Figure 2 describes the major steps of the Nelder-Mead method
as used in this work. In this method, a simplex is formed with vertices that represent a set
search points. To seek the best design point, the simplex is transformed iteratively. These
transformations can create a mirror image of the current simplex about the side across the
worst vertex in the current iteration (reflection), stretch the simplex (expansion), compress it
(contraction) or scale it down (shrink). The mathematical expressions for these transformations
are shown in Figure 2 and the details can be found in (Nelder & Mead, 1965).

The speed constraints [vp,min, vp,max] and the weights αM, αF along with the Nelder-Mead
tuning parameters are considered as a set of parameters that can be tuned according to practical
requirements such as an acceptable overshoot and convergence time. These parameters are listed
in Table 1. The impact of these parameters on the algorithm’s performance is discussed more
in detail in Section 5.

Note that this heuristic search algorithm allows the optimization to be performed directly
with the instantaneous fuel economy data from the vehicles as they travel. However, the fuel
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consumption during acceleration or deceleration to vp is different than the fuel required for
cruising at vp,des because of the vehicle inertia. Therefore, the fuel economy measurements need
to be made after the platoon settles at the current vp before the next iteration of vp can be
calculated by the optimization. This, in turn, will cause a slower convergence than model-based
methods. The platoon speed vp is considered to be converged if the speed difference between
two successive optimization iterations is smaller than a threshold. In this work, this threshold
is set as ∆vth = 0.5 mph.

The optimization algorithm calculates and transmits vp to all vehicles in the platoon
through a vehicle-to-vehicle communication network using Dedicated Short Range Communica-
tion (DSRC). Each vehicle is assumed to be equipped with a speed controller that can take vp as
a speed setpoint. In particular, a proportional-integral (PI) cruise controller is implemented for
the lead vehicle, whereas a connected adaptive cruise control (CACC) architecture is realized
for the following vehicles to track vp while maintaining a desired distance Sd (see Figure 1)
and string stability (Ploeg, Scheepers, van Nunen, van de Wouw, & Nijmeijer, 2011). A brief
review of CACC including its architecture, the control method applied and its applications is
available in (Z. Wang, Wu, & Barth, 2018). String stability is discussed in various works for
heterogeneous vehicle platoons (C. Wang & Nijmeijer, 2015). Zheng, Bian, Li, and Li (2019)
have studied the behavior of a heterogeneous vehicle platoon under directed acyclic interactions.
Milanés and Shladover (2016) have studied the cut-in response in a string of CACC vehicles.
On the other hand, Z. Wang, Wu, Hao, Boriboonsomsin, and Barth (2017) have discussed the
possible improvement in energy saving and pollutant emission reduction by proposing an ECO-
CACC system. Liu, Shladover, Lu, and Kan (2020) have discussed the potential improvement
in the fuel efficiency on highway using CACC.

The CACC considered in this work is illustrated for the special case of a platoon of two
vehicles in Figure 3. Each vehicle has an internal PI cruise controller to track the given speed
setpoints vL,set and vF,set for the lead and the follower vehicles, respectively. The lead vehicle
speed setpoint vL,set is calculated by the platoon optimizer as vp, whereas the follower desired
speed is calculated in the Laplace domain as

VF,set(s) = VL,set(s) +K(s)Xe(s), (4)

where K(s) = c1s+ c2 is a proportional-derivative (PD) controller and

Xe(s) = XL(s)− P (s)XF (s) (5)

is the vehicles’ distance tracking error. The transfer function P (s) is called the following policy,
which realizes holding a time gap tg between the two vehicles according to

P (s) = tgs+ 1. (6)

Therefore,

Xe(s) = XL(s)−XF(s)− VF(s)tg, (7)

which means the distance between the two vehicles is calculated based on a selected time gap
and the following vehicle speed vF .

3. Vehicle models for validation

The platoon management framework described in Section 2 is model free. However, to evaluate
the framework in simulation and in engine-the-loop experiments, vehicle models are needed to
represent the actual vehicles. This section describes the vehicle models used in this work.

5



Γ(
Calculate Jr

Calculate Je

Calculate Jc

Calculate Js

Order: order the set F = {J0,J1} and corresponding 

V = {u0, u1} for ascending F, denote the ordered F

as {f0, f1} and the corresponding V as {v0, v1} 

u0

u1

v
0
v
1

Δv
th

Figure 2.: Flowchart of Nelder-Mead algorithm

Lead vehicle with

cruise controller
+

-
+K(s)

Follow vehicle with

cruise controller

P(s)

V
L, set

 = V
p

(from platoon optimizer)

X
L

X
e X

F

V
F, set

Figure 3.: The CACC architecture realized for a platoon of two vehicles.

6



In the two-vehicle platoon studied in this work, the lead vehicle is selected as a notional
heavy duty vehicle similar to a military heavy tactical vehicle and is assumed to be followed by a
notional medium duty vehicle, again similar to a military medium duty truck. The specifications
of the vehicles are listed in Table 2 on page 8. A model is developed for each individual vehicle to
estimate the fuel consumption at a given vehicle speed and road condition as described below.

The vehicle longitudinal dynamics at the speed of v and road angle θr with a vehicle mass
of Mv, rolling resistance Cr, and vehicle frontal area Av is described by

Mvv̇ =
Tergrdηd

rw
− CdρAvv

2 −Mvg(Crcosθr + sinθr), (8)

where Te is the engine torque, rg and rd are the gear and differential ratios, rw is the wheel
radius, ηd is the driveline efficiency, ρ is the air viscosity, g is the gravitational acceleration, and
Cd is the drag coefficient. In this work, reductions in Cd due to platooning are ignored. Even
though this may cause an underestimation of vehicle accelerations and MPG, this modeling error
is not relevant due to the model-free and data-driven nature of the optimization framework.
In real applications, the platooning effects on Cd will be embedded in the speed and MPG
measurements. The diesel engine torque is estimated using the injected fuel rate ṁf, compression
ratio rc, the heat specific ratio γ, and the engine torque losses due to friction Tf and pumping
Tp as presented by Hand et al. (2013) using

Te = ξ

(
ṁf

(
1− 1

rγ−1
c

))
− Tp − Tf, (9)

where ξ is represents the combustion efficiency (Hand et al., 2013). The engine friction loss is
calculated from a polynomial correlation with the engine speed Ne,

Tf =
Vd

4π
(c0 + c1Ne + c2N

2
e ), (10)

with Vd as the engine cylinder volume and c1, c2 and c3 as the model parameters. At a specific
gear level (GL), the engine speed Ne is calculated based on the vehicle speed from (8) assuming
the torque converter is in locked position. The vehicle gear shifting logic is designed to calculate
GL at time step k based on the previous gear level, the engine speed Ne and the commanded
pedal angle θped using

GL(k) = fgl(Ne, θped,GL(k − 1)), (11)

where fgl represents the shift logic designed for acceptable driveability and such that the engine
operates always between the speed lines shown in Figure 4. The maximum and minimum engine
speed (ω) for each line shown in Figure 4 are a function of GL(k), as listed in Table 2. The
pumping loss Tp is calculated based on the exhaust (Pem) and intake (Pim) manifold pressure
difference at each operating condition

Tp =
Vd
4π

(Pem − Pim). (12)

The manifold pressures in (12) are calculated from the engine filling dynamics. Details of the en-
gine model and tuning its parameters can be found in (Hand et al., 2013; Salehi, Stefanopoulou,
Kihas, & Uchanski, 2016).

The desired injected fuel ṁf in this work is calculated by the vehicle cruise controller such
that the vehicle tracks the desired speed Vset.

ṁf,i(s) =

(
KI

s
+Kp

)
(Vi,set(s)− Vi(s)) , i = {lead, follow} (13)
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Figure 4.: Illustration of the designed gear shift strategy. The gear shift (up or down) happens
when the engine operating point goes out of the hatched area.

Table 2.: Specifications of the lead and follow vehicles

Heavy Duty Vehicle Medium Duty Vehicle

Engine Family Detroit Diesel DD13 Ford Powerstroke
Vehicle Mass (kg) 36287 10112

Gearbox 6 speed 6 speed
Vehicle frontal area, Av(m2) 10 3.58

Drag Coefficient, Cd(−) 0.7 0.36
Rolling Coefficient Cr(−) 0.008 0.0034

[Pd1, Pd2, Pd3] % [0,0,100] [0.15,0.45,0.8]
ωdn,min (rpm) 800 750
ωdn,max (rpm) [1150,1150,1150,1150,1100,1050] 1600
ωup,min (rpm) [1800,1350,1300,1250,1200,1200] 1400
ωup,max (rpm) [1900,1800,1750,1600,1500,1500] [2600,2800,2800,2900,3000,3100]

Finally, one can calculate the vehicle fuel economy MPG = v/ṁf from (8) - (13).
Figure 5 shows the results of the fuel economy and gear level at different vehicle speeds

for both the lead and following vehicles assuming θr = 0 when both acceleration from v0 =
10 mph and deceleration from v0 = 70 mph are simulated. The vehicle fuel economy varies
discontinuously at the instants of gear shift as shown in Figure 5a. Also a hysteresis is observed
in the fuel economy curve that reflects the hysteresis in the gear shift logic, which is applied
commonly in automatic shift logics to improve driveability and avoid chattering at the speed of
gear change.

4. Simulation Results

Optimization results on a flat terrain including the utility function J , vehicle speed, and fuel
economy are shown in Figure 6 for two different test scenarios with different initial speeds
using the parameter values listed in Table 1. As Figure 6 shows, it takes about 10 steps for the
optimization algorithm to calculate the optimal speed of 44 mph for both cases of initial speed
(vp,0 = 20 mph and vp,0 = 60 mph). These 10 steps are taken in approximately 1500 seconds
due to the requirement that data from the vehicles are collected only after the platoon fuel
consumption reaches a steady state condition (i.e. vL ≈ vF ≈ vp and ∆ṁf ≈ 0) every time a
new speed setpoint is issued and the lead vehicle’s large payload increases the settling time. The
steady state condition was realized by adding a conservative waiting time to a data collector
in simulations after each change in the speed setpoint. This convergence time is considered
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(a) Fuel economy calculated for both vehicles in

acceleration and deceleration test (simulation results).

(b) Gear level comparison between two vehicles. The

shifting speed depends on the vehicles’ acceleration.

Figure 5.: Fuel economy and gear level comparison between the lead and follow vehicles. The
ovals with the arrows indicate the corresponding y-axes.

acceptable for the purposes of this work and even for long-haul missions, but could be improved
by minimizing the wait time through a smart detection of when steady state has been reached.
Furthermore, for a platoon with lighter vehicles with shorter settling times, the convergence
time is expected to be shorter.

A small overshoot/undershoot is observed for the platoon reference speed vp in each test
scenario. This small overshoot is a result of the particular selection of the parameters used in
this case study. This set of parameters is preferred, because the minor aggressiveness that causes
the overshoot is also observed to help avoid local optima as discussed in detail in Section 5.

Simulation test results are summarized in Figure 7. Compared with initial speed vp,0 = 20
mph and desired cruising speed vp,des = 60 mph, the optimized speed vp = 44 mph has 19.3% and
4.9% utility improvement, respectively. The utility improvement over the initial speed is achieved
through 40.0% more mobility with 2.2% less fuel economy, whereas the utility improvement over
the desired speed is due to 18.4% more fuel economy at the cost of 7.5% mobility. Hence, the
proposed method is capable of achieving a balance between fuel economy and mobility. Due to
the existence of gear shift hysteresis, the utility and fuel economy of the platoon is different in
acceleration and deceleration cases as discussed in Section 4 and 5. However, Figure 7 shows
that the optimization algorithm has successfully approached the maximum point in the utility
curve at the speed of 44 mph for both initial speeds considered. The discontinuity and hysteresis
observed in Figure 7 leads to the discussion about dependency of the final speed on the Nelder-
Mead parameters in the following section.

A second simulation is performed for a varying road grade condition. In particular, opti-
mization results including the utility function J , vehicle speed, and fuel economy are shown
in Figure 8 for a scenario with a step increase in road grade and using the same parameter
values as the flat terrain case. The road grade increases from 0% to 1.5% at t = 3000 s and it is
assumed that the on-board sensors are able to detect this change to reinitialize the algorithm.
Note that only the information that there is a change in the road grade is needed to trigger the
reinitialization, and not the actual grade value. A fuel economy drop is observed in the figure
after t = 3000 s. The optimal cruising speeds found by the algorithm for the two different road
grades are demonstrated and compared with their corresponding utility functions in Figure 9.
The model-free algorithm is able to achieve the new optimal operating point after the road
grade changes. Because the fuel economy is significantly reduced after the grade change, the
algorithm correctly exploits this opportunity to increase mobility instead to maximize utility.

Finally, to provide a sense for the sensitivity of the results to the utility function weights,
Figure 10 shows the results for the flat road scenario under various weights αM while keeping
αF constant. As the relative weight on mobility increases, the optimal speed approaches the
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Figure 6.: Simulation results from testing the proposed platoon speed management for
different initial speeds.

Platoon Final Speed
 for v = 20 mph and 60 mph

Figure 7.: MPG and utility functions of the platoon during acceleration from 10 mph and
deceleration from 70 mph. The final speeds obtained with the platoon speed management

from the initial speeds of 20 mph and 60 mph are shown with red dots that overlap.
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Figure 8.: Simulation results from testing the proposed platoon speed management with a step
increase in road grade.
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Figure 10.: Sensitivity analysis for αM. The diamonds represent the optimization results from
the algorithm.

desired speed and the algorithm is able to find the optimal solution in each case.

5. Sensitivity Analysis of the Nelder-Mead Parameters

In this section, the impacts of various parameters of Nelder-Mead on the performance of the
algorithm are discussed. These parameters control the performance of the four Nelder-Mead
optimization steps, namely, reflection, expansion, contraction and shrink as shown in Figure 2.
Hence, this section serves as a guideline for designing the Nelder-Mead algorithm in model-free
platoon speed management.

Figure 11 shows the impact of the expansion parameter γ on the speed and corresponding
utility when the initial speed is 20 mph. As the expansion parameter γ increases, the algorithm
adopts a more aggressive behavior, typically leading to a shorter rise time in speed, but also
a higher overshoot. Here, rise time is the time at which the speed has reached 90% of the
final speed value. On the other hand, the settling time, defined as the time at which the speed
enters and remains within 2% of the final value, varies without a clear trend as summarized in
Figure 12. With a γ as low as 1.2, the overshoot in speed reduces as Figure 11 shows, but the
chance of being trapped in a local optimum also increases. Similar to the expansion parameter
γ, increasing the reflection parameter Γ increases overshoot, but reduces the rise time, which is
also illustrated in Figure 12.

On the other hand, the effect of the contraction parameter ρ on the final results is not
significant for the ranges considered. This is because the contraction process does not occur
frequently in this case. The same conclusion also applies to the shrink parameter σ; those
results are omitted for brevity.

In summary, the suggested parameter intervals for this problem are as follows: 0.7-1.2 for
the reflection parameter Γ, 1.5-2 for the expansion parameter γ, 0.25-0.75 for the contraction
parameter ρ, and 0.25-0.75 for the shrink parameter σ. Within these ranges, the parameters
can be tuned as explained above to adjust the trade-off between avoiding overshoots, achieving
faster convergence, and increasing the chance of avoiding local optima.

6. Experimental Validation

Experimental validation is performed using two engine test cells with diesel engines representa-
tive of the two vehicle types considered in this study. Specifically, one test cell is equipped with
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Figure 11.: Platoon speed vs. time when the initial speed is 20 mph for different expansion
values.

Figure 12.: Sensitivity of the Nelder-Mead rise and settling times to the parameters γ and Γ.
The rise time decreases while no clear trend is observed for increasing γ and Γ.

Figure 13.: Illustration of the connected testbed system. Solid lines indicate cable connections,
whereas dashed lines represent connections over the Internet.
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Figure 14.: Simulation vs. experimental data: Exp 1 and Exp 2, v0 = 20 mph, γ = 2

an inline 6-cylinder 12.8L diesel engine for a heavy duty truck (the lead vehicle, LV), whereas
the other one is equipped with a V8 6.7L diesel engine corresponding to a medium duty truck
(the following vehicle, FV). Both test cells have engine-in-the-loop simulation capability, i.e.,
the engines can run in closed-loop with vehicle models running in real time (Kim et al., 2014).
To emulate the connectivity between the vehicles in the platoon, the networked hardware-in-
the-loop simulation paradigm is leveraged (Ersal et al., 2011; Ersal, Brudnak, Stein, & Fathy,
2012; Ersal, Gillespie, Brudnak, Stein, & Fathy, 2013).

In particular, the two test cells are connected over the Internet to emulate a network of two
connected vehicles as illustrated in Figure 13. In this setup, the first node comprises the heavy-
duty engine coupled with a dSPACE system simulating the heavy-duty lead vehicle model.
The coupling between the engine and the dSPACE system is such that the dSPACE system
commands the pedal and engine speed and receives the engine torque measurements from the
engine. Furthermore, the dSPACE system communicates with the server PC (node 3), receives
the platoon speed setpoints and returns the actual speed and the instantaneous fuel rate of
the heavy-duty vehicle. The second node has a similar architecture as the first node, except
that a PC with a BBK-PCI card is used instead of a dSPACE system to simulate the medium-
duty following vehicle dynamics in real time in closed-loop with the medium-duty engine. Node
2 sends the medium-duty vehicle’s speed and instantaneous fuel rate to the server over the
Internet and receives the platoon speed setpoint. Similar to the simulation case, the recording
and exchange of data is executed after the platoon reaches the desired steady-state speed. The
information exchange over the Internet is done using the User Datagram Protocol (UDP). The
Quality of Service (QoS) of the network used in this work is high to the extent that the packet
delays are negligible and there are no packet drops.

Four engine-in-the-loop experiments are performed from the same initial platoon speed of
v0 = 20 mph; two experiments with the expansion parameter γ = 2 for validation purposes
(Experiments 1 and 2), and two experiments with γ = 1.5 to demonstrate the implications of a
poorly tuned algorithm (Experiment 3 and 4).

Figure 14 shows the comparison between the experimental results and the simulation results
for Experiment 1 and 2. The utility trends between the simulation results and experimental
results are similar, albeit the absolute values are different, which is expected due to errors in
modeling the engines in the simulation study. Note that this good agreement in the performance
of the algorithm between the simulation and experimental results is achieved without any re-
tuning when transitioning from simulations to experiments. Moreover, the iteration trajectories
are consistent between the two experiments, demonstrating good repeatability despite the noise
that can be observed in the fuel economy measurements shown in the third plot of Figure 14.
Hence, the results highlight the robustness benefits of the proposed formulation.
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Figure 15.: Simulation vs. experimental data: Exp 3 and Exp 4, v0 = 20 mph, γ = 1.5. An
inappropriate Nelder-Mead parameter set leads to local optimum.

On the other hand, Figure 15 illustrates the results when a poorly tuned Nelder-Mead with
γ = 1.5 is chosen for Experiment 3 and 4. In this case, not only there is a larger difference
between the simulation and experimental results, but also the repeatability of the experimental
results is lower. In particular, in the Experiment 4, the algorithm chooses a path significantly
different from the other three experiments. This is caused by the increased sensitivity of the
algorithm to the noise in data collection due to a poor choice of γ. Specifically, during the
data acquisition process, even after the system reaches the steady state, the fuel economy
measurement varies due to noise as pointed out previously. As shown in Figure 16, this affects
the utility values of Step 3 and Step 5 for both Experiment 3 and Experiment 4 even when their
speed values are the same. The utility value of Step 3 is less than the utility value of Step 5
in Experiment 3, while the utility value of Step 3 is greater than the utility value of Step 5 in
Experiment 4, which leads to an expansion step in Experiment 3 in contrast to a contraction step
that happens in Experiment 4. The relatively conservative setting of the expansion parameter
as the one used in Experiment 4 renders the algorithm more sensitive to noise, which leads to
a local optimum. As shown in Step 5 of the optimization for the Experiment 4, the algorithm
decides to decelerate rather than the continuous acceleration observed in Experiment 1, 2 and 3.
The algorithm is thus finally trapped into a local maximum caused by the gear shift nonlinearity.

The convergence to local maximum is not observed with the larger expansion coefficient of
γ = 2. As discussed in Section 5, with increased γ, the search space expands with relatively more
aggressive overshoots and undershoots. However, the chance to converge to a global optimum
increases. With small γ, a moderate search speed is obtained, giving rise to increased chance
to be trapped in a local maximum. Hence, for practical reasons, a larger value of expansion
parameter γ is appreciated at the cost of larger overshoot.

The experimental results in Figure 16 show that the algorithm converges in about 20 steps
at most when the optimization setting is aggressive, compared to the 10 steps observed for
simulations in Figure 7. These 20 steps are taken in around 2100 seconds. This long convergence
time is because the algorithm needs to wait between the iterations for the platoon to settle to
the new steady state and a conservative wait time was adopted in the experiments to ensure
testbed safety. Furthermore, the convergence speed in terms of time reported here is significantly
influenced by the very slow dynamics of the lead vehicle due to its very large mass. Convergence
speeds are expected to reduce with minimized wait times to proceed to the next speed setpoint
after steady state has been reached and in platoons of lighter vehicles. Nevertheless, increasing
the convergence speed is identified as an important future research direction.

Finally, the model-free algorithm successfully manages to increase the utility in all cases,
including the Experiments 3 and 4 despite the challenges described above due to a relatively
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Figure 16.: Exp 3 and Exp 4, Step 2 to Step 5, v0 = 20 mph, γ = 1.5. In Exp 4, the utility at
Step 5 is smaller than utility at Step 3 despite a speed increasing, thus a contraction happens

in contrast to Exp 3 where an expansion happens at Step 6.

poor choice of γ.

7. Conclusion

A model-free framework for managing the speed of a platoon to adjust the balance between
fuel economy and mobility as characterized by travel speed is presented. The framework relies
on an optimization formulation with a linear combination of the fuel economy and mobility
metrics. This optimization problem is solved using the Nelder-Mead approach in a data-driven,
model-free manner. A case study is performed both in simulation and using networked engine-
in-the-loop experiments on an example platoon of two vehicles, and both the simulation and
experimental results confirm the advantages and disadvantages of the developed method.

In particular, the algorithm is found effective in increasing utility (i.e., the objective function)
without the need for any vehicle or powertrain model. However, due to its data-driven nature
and the need to collect these data in steady-state, it requires to wait until the end of the transient
period after each iteration to perform the data collection, which can prolong its convergence in
terms of time, especially for the heavy duty vehicle with very large payload considered in the
presented case study. Although the algorithm improves utility continuously and one does not
need to wait until it converges to reap its benefits, the convergence time may be too long in
certain applications, e.g., if continuous disturbances prevent the platoon from reaching steady
state for extended periods of time. Even though the convergence times are expected to be
smaller for lighter vehicles, improving the convergence time is identified as an important future
research direction.
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