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Terrain Adaptive Trajectory Planning and Tracking on Deformable Terrains

James Dallas, Michael P. Cole, Paramsothy Jayakumar, and Tulga Ersal

Abstract—In this work, a novel single-level adaptive trajectory
planner and tracking controller is developed for off-road au-
tonomous vehicles operating on deformable terrains. Trajectory
planning and tracking algorithms often rely on a simplified
vehicle model to predict future vehicle states based upon control
inputs, hence requiring accurate modeling and parameterization.
On off-road deformable terrains this is a challenging task due to
unknown terrain parameters and the complex interactions at tire-
terrain interfaces, which pose issues in continuous differentiabil-
ity, operating conditions, and computational time. To address
these difficulties, in this paper, a neural network deformable
terrain terramechanics model and its implementation within a
terrain adaptive model predictive control algorithm is presented
to improve vehicle safety and performance through more accu-
rate prediction of the plant response. It is shown in simulations
that the neural network is able to predict the lateral tire forces ac-
curately and efficiently compared to the Soil Contact Model as a
state-of-the-art model and is able to yield accurate bicycle model
predictions. It is demonstrated that the implementation of the
neural network within model predictive control can outperform
both a baseline Pacejka-based and a rapidly exploring random
tree controller by improving performance and allowing for more
severe maneuvers to be completed that otherwise lead to failure
when terrain deformations are not explicitly taken into account.
The improved performance achieved through estimating terrain
parameters online in an adaptive controller is highlighted against
the nonadaptive realization. Finally, it is shown the algorithm is
conducive to real-time implementation.

Index Terms—Adaptive control, autonomous ground vehicles,
collision avoidance, model predictive control, terrain estimation,
terramechanics, vehicle dynamics, vehicle safety

I. INTRODUCTION

Military ground vehicles are often required to operate in
off-road environments with deformable terrains, where vehicle
mobility is significantly impacted by the tire-terrain interac-
tion [1]. As a result, military autonomous ground vehicles
(AGVs) must account for these interactions for safe and
high-performance navigation. Because common approaches
to navigate AGVs rely on model based predictions, it is
necessary to model the tire-terrain interaction accurately and
efficiently such that AGVs can realize their full potential, even
in challenging off-road deformable terrains.
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A. Background

One approach for AGV trajectory planning and tracking
is model predictive control (MPC). MPC has successfully
been applied to autonomous navigation for on-road, structured
environments [2], [3], [4]. MPC has also been demonstrated
for trajectory planning and tracking for static obstacle avoid-
ance in unstructured environments, more representative of
off-road military environments, with no lane boundaries or
traffic rules to obey [5], [6]. In [7], the results were extended
to unstructured environments with moving obstacles. While
this research has shown success in obstacle avoidance, the
impact of tire-terrain interaction on deformable terrains is not
considered [6].

In the off-road domain, nonlinear MPC has been utilized for
non-deformable rough terrain navigation [8]. Researchers have
also considered information theoretic MPC and model predic-
tive path integral control method for control of a fifth scale
Auto-Rally vehicle on an outdoor dirt track [9], [10]. While
success has been demonstrated on a dirt track, deformable
terrains are not explicitly considered and divergence in learned
dynamics could pose safety issues in obstacle avoidance. An
MPC tracking controller has also been developed for low speed
Martian rover navigation, where MPC is employed for tracking
an A* path and low level control [11]. Due to the low speeds of
rovers, predictions are based upon linearized kinematic models
and linear Bekker-based terramechanics. In higher speed ap-
plications encountered in military settings, linearized models
can lead to large discrepancies when maximum mobility is
desired. Furthermore, infeasible commands can be generated
in a decoupled planning and tracking algorithm.

Extending these results to deformable terrains is a challeng-
ing task, as state-of-the-art deformable terrain terramechanics
models are often limited in terms of dynamic operation,
computational complexity, or continuous differentiability [1],
[12], [13], [14], [15], [16]. Among existing terramechanics
models, Bekker-based models have emerged as perhaps the
most widely used [1], [17], [13], [14], [15]. In these models
the stresses are calculated over the contact patch between a
rigid tire and the deformable terrain, and integrated to obtain
the forces acting on the tire [14]. To accurately represent
the complex stress distribution generated at the contact patch,
Bekker-based models rely on numerous parameters that de-
scribe the terrain characteristics, such as cohesion and internal
friction angle, to name a few. However, knowledge of these
parameters is limited in vehicle operation, where a vehicle
may be operating on unknown terrains or terrains in which the
properties vary. Furthermore, classical Bekker-based models
are often limited in application to steady-state operation [14].

An extension of Bekker’s method, known as the Soil Con-
tact Model (SCM), discretizes the tire-terrain interaction and
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allows for dynamic operation [1], [18]. However, due to the
discretization and integration of stress, SCM can potentially be
too computationally expensive for real-time applications [16].
In response to this limitation, a Bekker-based SCM surrogate
model has been developed to extend classical Bekker theory to
account for some additional dynamic effects [16]. While the
surrogate model developed in [16] proved sufficient for esti-
mation purposes, the lack of twice continuous differentiability
poses difficulties when utilized in model-dependent navigation
algorithms, such as MPC [6].

As such, a computationally efficient, twice continuously dif-
ferentiable and dynamic terramechanics model for deformable
terrains is still needed for AGV navigation. A potential can-
didate to address this need is neural networks, which have
already demonstrated success in predicting tire forces for on-
road applications [19], [20], [21] and in slip detection on
deformable terrains [22]; however, extending such approaches
to lateral force prediction on deformable terrains is still an
open research area. The efficiency and continuous differentia-
bility of neural networks make them a suitable candidate for a
terramechanics model in off-road model-dependent navigation
architectures. However, such surrogate models will still rely
on numerous parameters that characterize the terrain properties
that are likely to be unknown a priori and hence need to be
estimated online.

As such, a robust MPC navigation strategy must be able to
learn terrain properties online and adapt as new information
becomes available. With regards to this, terrain adaptive MPC
has primarily been considered for navigation in on-road envi-
ronments [23], [24], [25], [26]. Contingent MPC has shown
success in control on icy and snow covered roads [27]. While
this prior work begins to address terrain adaptive MPC, it does
not consider off-road deformable terrains.

Learning has been combined with control in prior works.
For example, in [10] data driven system identification is used
for model predictive path integral control of a fifth-scale
Auto-Rally vehicle. In [28], a data-driven control approach is
developed for optimal tracking for strict-feedback nonlinear
systems and demonstrated on a Van der Pol oscillator. A
disturbance model is learned in [29] for path tracking using
learning-based NMPC that demonstrates success in reducing
path-tracking errors at low speed. Finally, a review of learning-
based MPC is presented in [30]. However, learning-based
MPC is still an open research area for trajectory planning
and tracking when maximum mobility is desired on off-road
deformable terrains.

B. Original Contributions
In light of the literature review above, a gap is identi-

fied. Namely, even though MPC has demonstrated success in
both known on- and off-road domains, and adapting to road
conditions in on-road settings, modeling and adaptation for
deformable terrains have not been considered. These limi-
tations are addressed in this work. Specifically, the original
contributions of this work are

1) a novel neural network deformable terramechanics model
satisfying the requirements for use within an MPC frame-
work and its implementation within terrain estimation;

2) a terrain-adaptive single-level trajectory planning and
tracking MPC framework for off-road AGVs operating
on deformable terrains; and

3) high-fidelity simulation based evaluations of the new
framework, with comparisons against the state of the art
and a nonadaptive realization.

To this end, first, a neural network deformable terramechan-
ics model is developed. The model allows for dynamic opera-
tion on deformable terrain while maintaining sufficient fidelity
and satisfying the continuous differentiability requirements
of the optimization solver used in MPC. Second, the neural
network is integrated with a bicycle model, which serves
as the prediction model, and an Unscented Kalman Filter is
utilized to estimate the dominant terrain parameter and update
this prediction model online. Third, the prediction model and
Unscented Kalman Filter are implemented in a single-level
nonlinear MPC framework for simultaneous trajectory plan-
ning and tracking control. Simulations with a plant represented
as an 11 degrees-of-freedom (DoF) military vehicle operating
on a clay SCM terrain demonstrate the utility of the frame-
work. To demonstrate the importance of accurately modeling
the tire-terrain interactions, the neural network deformable
terramechanics model is first benchmarked against an MPC
controller that employs the Pacejka model, as Pacejka models
have also been demonstrated to be suitable for off-road terrains
[31]. A second benchmark compares the MPC controller to
rapidly exploring random trees. Then the importance of terrain
adaptation is highlighted by comparing a nonadaptive and
adaptive neural-network based MPC framework for obstacle
avoidance. The outcomes depict the significance of accurately
modeling the tire-terrain interaction for safe and high mobility
AGVs operating on off-road deformable terrains.

A preliminary version of this work was presented in a
conference [32]. The conference paper only presented the
MPC formulation for deformable terrains, without any terrain
adaptation and without presenting the development of the
neural network based terramechanics model. Compared to the
conference version, this paper presents 1) the development
of the neural network based terramechanics model; 2) the
evaluation of the performance of the neural network based
terramechanics model against SCM as the state of the art
benchmark; 3) the development of the terrain estimator; 4)
the evaluation of the terrain estimation performance; 5) the
development of the terrain-adaptive MPC framework; and 6)
the simulation based evaluation of the new framework against
the state of the art and the nonadaptive formulation.

C. Organization
The rest of the paper is organized as follows. Sec. II

develops the neural network model for deformable terrame-
chanics. Sec. III outlines the MPC framework, including the
formulation of cost, constraints, and vehicle dynamics. Sec.
IV gives a brief overview of the terrain estimator. Sec. V
first describes the simulation setup. Then it demonstrates the
utility of the neural network and the improved performance of
the developed terrain-adaptive MPC for deformable terrains
over Pacejka based and non-adaptive schemes. Finally, Sec.
VI gives the conclusions of this study.



II. NEURAL NETWORK TERRAMECHANICS MODEL

In this work, SCM is utilized as the ground truth, generation
of the training data for the neural network, and serves as
the terramechanics model for the plant model described in
Sec. III-B1. An overview of SCM can be found in [17], [12].
Verification of the model can be found in [18], [33]. Briefly,
SCM relies on discretization of the terrain and, based upon
the deformations at each node, determines relevant stresses
that are then integrated to obtain the tire contact force. The
stresses are based on the well-known Bekker equations, where
the pressure σ is expressed as [34]

σ = (kc/b+ kφ)h
n (1)

and the shear stress τ is expressed as [35]

τ = τmax(1− e−j/k) (2)

with τmax given as

τmax = (c+ σ tanφ) (3)

where b is the tire effective width, h is the sinkage, j is the
deformation, and the remaining variables correspond to terrain
parameters where kc is the cohesive modulus, kφ the frictional
modulus, n the sinkage exponent, k the shear deformation
modulus, c the cohesion, and φ the internal friction angle.
However, SCM is rather complex and may not be suitable for
online application due to the large computational cost [16].

Second, a dynamic Bekker-based surrogate to SCM serves
as a comparison between the neural network performance and
state-of-the-art approaches. Briefly, the Bekker-based surro-
gate calculates the stresses as in Eq. (1) to (3); however,
functions for k, j, and a scaling factor for τmax are determined
to extend traditional Bekker models to dynamic operation.
Once the functions are determined for k, j, and τmax, the
lateral forces are obtained through integrating a quadratic
approximation of the stresses over the contact patch, where
h is determined iteratively by the Newton-Raphson method.
The model is then validated with over 1,500 independent
simulations to show the generalizability of the model. More
information on this surrogate model can be found in [16].

Finally, due to the lack of twice continuous differentiability
of this Bekker-based surrogate model, a neural network is
developed as the third terramechanics model and as one of
the original contributions of the paper. This model is explained
further next.

Similar to the Bekker-based surrogate described in [16],
the inputs considered for the neural network include the
Bekker terrain properties, slip ratio, slip angle, tire velocity,
load, and steering rate, because these variables have been
demonstrated to impact the force generation at the tire terrain
interface. Measurements required to calculate these inputs can
be obtained by a global navigation satellite system/global
positioning system, an inertial measurement unit, and wheel
encoders.

A Latin Hypercube Sampling (LHS) approach maximizing
the minimum distance between points of the neural network
inputs, with the ranges given in Table I, is used in developing
the SCM data set for training the neural network. The input

TABLE I: Neural network input space.

Input Range
Slip ratio -1 to 1 (-)
Slip angle -0.6 to 0.6 (rad)

Longitudinal velocity 2 to 10 (m/s)
Load 500 to 5500 (N)

Steering rate -0.56 to 0.56 (rad/s)
Soil deformation modulus 43000 to 2080000 (N/mn+1)

Sinkage exponent 0.3 to 1.3 (–)
Shear deformation modulus 0.01 to 0.024 (m)

Cohesion 650 to 20700 (Pa)
Internal friction angle 0.105 to 0.66 (rad)

ranges are determined from the expected operating range of
the vehicle, while the terrain parameter space is compiled
from the literature. One difference in the training set is that
an aggregate parameter k∗ = (kc/b + kφ) is used for the
soil deformation modulus as in [17]. The network targets
are generated by propagating the Latin hypercube samples
through the SCM terrain implementation in the modeling and
simulation software Chrono [36]. Once the data is generated,
the data set is split into 70% training, 15% validation, and
15% test sets. Then, the MATLAB Deep Learning toolbox
is used to train the network through Bayesian regularization
backpropagation, a mean squared error performance function,
and hyperbolic tangent sigmoid transfer functions that guaran-
tees twice continuous differentiability, as the neural network
is a composition of continuously differentiable functions.
The hyperbolic tangent sigmoid transfer function is given as
follows:

tansig(x) =
2

1 + e−2x
− 1 (4)

Due to randomness in the weight and bias initialization,
50 neural networks are trained and the network with the
best performance is selected as the terramechanics model,
where all 50 networks correspond to the description given
in the previous paragraph. 2 hidden layers of a total of 14
neurons, with 12 neurons in the first and 2 in the second layer,
with approximately 10,000 Latin hypercube samples achieve
sufficient performance for the purposes of terrain estimation.

III. MPC FORMULATION

A single-level nonlinear MPC formulation is employed for
the purpose of simultaneous trajectory planning and tracking
in an environment with static obstacles. The optimal control
problem (OCP) formulation is based upon [7], [32] and is
given in general form as follows:

minimize
ζ,ξ,tf

J(ζ(t), ξ(t), ξ(tf )) (5)

subject to ξ̇(t) = V (ζ(t), ξ(t), θ) (6)
ξmin ≤ ξ(t) ≤ ξmax (7)
ζmin ≤ ζ(t) ≤ ζmax (8)
R[ξ(t)] ≤ 0 (9)
S[ξ(t)] ≤ 0 (10)

In the above expression, ζ is the vector of control variables,
ξ is the vector of states, θ is a parameter set representing
terrain conditions, and tf is the final time. Eq. (5) represents



the objective function penalizing the terminal constraints, state
evolution, and control effort. Eq. (6) satisfies the nonlinear
bicycle model representing the vehicle dynamics. Eq. (7) and
(8) are the state and control constraints, respectively. Eq. (9)
represents the conditions for reaching the desired terminal
vehicle state. Finally, Eq. (10) imposes conditions to satisfy
obstacle avoidance. These equations are discussed in detail in
the next subsections.

A. Cost Function
The cost function is defined as

J = wttf

+ wψ

∫ tf

t0

(
sin(ψf )(x(t)− xf )

− cos(ψf )(y(t)− yf )
)2
dt

+

∫ tf

t0

(
wδ̇ δ̇(t)

2 + wJxJx(t)
2
)
dt

+

√
(x(tf )− xf )2 + (y(tf )− yf )2√

(x(t0)− xf )2 + (y(t0)− yf )2 + ε

(11)

where wt, wψ , wδ̇ , and wJx are weightings on the terminal
time, desired vehicle heading, and the control variables steer-
ing rate and longitudinal jerk, respectively, and ε is a small
number that prevents division by zero. The first term seeks
to minimize time-to-goal, an important metric in military and
racing applications. The second term is a soft constraint such
that the vehicle approaches the goal position at the desired
heading. The third term penalizes the control effort over the
prediction horizon. The final term penalizes the distance of the
vehicle’s terminal position from the goal position normalized
with respect to the distance to the goal at the initial point of
the OCP.

B. Vehicle Models
1) Plant Model: The physical vehicle in the simulation-

based validation of the proposed surrogate model, terrain
estimator, and MPC formulation is modeled through an 11-
DoF notional military vehicle with SCM as the terramechanics
model in the Chrono software [36]. The vehicle is composed of
a double wishbone suspension, rack-pinion steering, 4-wheel
drive, and a simple powertrain without a torque converter or
transmission [16].

2) Prediction Model: The vehicle dynamics for MPC pre-
dictions, and for predictions in the Unscented Kalman Filter,
are represented with a 3-DoF bicycle model, as it has been
demonstrated to be of a suitable balance between efficiency
and fidelity for short prediction horizons [37]. Therefore, the
state vector is given as:

z :=



x
y
ψ
u
v
ω
δ
ax


=



global x position of front axle
global y position of front axle

yaw angle
longitudinal speed

lateral speed
yaw rate

steering angle
longitudinal acceleration


(12)

The state evolution of Eq. (6) is then given by:

ż(t, n) =



u(t) cosψ(t)− (v(t) + Lfω(t)) sinψ(t)
u(t) sinψ(t) + (v(t) + Lfω(t)) cosψ(t)

ω(t)
ax(t)

(Fyf(n) + Fyr(n)) /M − u(t)ω(t)
(Fyf(n)Lf − Fyr(n)Lr) /Izz

0
0


(13)

In the above expression, M is the vehicle mass, Izz is the
moment of inertia, and Lf and Lr are the distances from
the center of gravity to the front and rear axles, respectively.
Fyf and Fyr are the lateral forces acting on the vehicle body
generated by the tires at the front and rear axles, respectively.
Two tire models are utilized within the prediction model as
explained next.

3) Terramechanics Model: For an MPC based trajectory
planning and tracking algorithm to successfully complete its
task, two considerations about the prediction model must be
taken into account. First, since MPC relies on the prediction
model to map control inputs to vehicle states, it is required that
the prediction model be of sufficient fidelity with respect to the
plant. Second, to maintain efficiency in the solver such that
real-time implementation can be achieved, twice continuous
differentiability of all functions are required. Resulting from
these two conditions, it is critical that terramechanics models
maintain high fidelity under dynamic conditions while also
satisfying the continuous differentiability requirements of the
solver.

The neural network deformable terramechanics model of
Sec. II satisfies these requirements and is thus employed here
to predict Fy(f,r).

Second, a Pacejka tire model serves as a benchmark to
demonstrate the impact of terramechanics model fidelity. The
Pacejka model is parameterized from on-road experiments
provided by the U.S. Army Ground Vehicle Systems Center for
the light-duty military vehicle under study. While the Pacejka
model could be parameterized for off-road terrains as in [31],
performing such parameterizations is beyond the scope of this
study.

C. State and Control Constraints

The state constraints of Eq. (7) are given as:
xmin

ymin

ψmin

umin

ax,min(u(t))
δmin

 ≤


x(t)
y(t)
ψ(t)
u(t)

ax(u(t), t)
δ(t)

 ≤


xmax

ymax

ψmax

umax

ax,max(u(t))
δmax

 (14)

where the acceleration constraints ax,min(u(t)) and
ax,max(u(t)) are determined to be constants of -2.6 and
1.9 m/s2, respectively, by following the same procedure
described in [6]. The remaining states not given in Eq. (14)
are unconstrained.



The control constraints of Eq. (8) are imposed as maximum
and minimum bounds on the steering rate δ̇ and longitudinal
jerk Jx as: [

δ̇min

Jx,min

]
≤
[
δ̇(t)
Jx(t)

]
≤
[
δ̇max

Jx,max

]
(15)

To ensure a collision free trajectory, hard constraints are
imposed on the vehicle position (x, y). These constraints, Eq.
(10), are given as

(x(t)− xiobs)
2

(ai +m)2
+

(y(t)− yiobs)
2

(bi +m)2
≥ 1 (16)

where, for the ith obstacle, (xiobs, y
i
obs) represents the center

position of the enclosing ellipse with ai and bi as the semi-
major and semi-minor axes, and m represents a safety margin.

D. Terminal State Constraints

Eq. (9) imposes the terminal state constraints such that the
terminal vehicle position (xt, yt) and yaw ψt are within a
prescribed tolerance σ of the goal position (xg, yg) and yaw
ψg . This is expressed as:xg − σx

yg − σy
ψg − σψ

 ≤

x(tf )y(tf )
ψ(tf )

 ≤

xg + σx
yg + σy
ψg + σψ

 (17)

The remaining terminal states are unconstrained.

E. Solving the OCP

The OCP is implemented in NLOptControl [38], [39] and
solved with IPOPT [40]. NLOptControl performs the transla-
tion from continuous to discrete time using Legendre-Gauss-
Radau (LGR) collocation and Gaussian-Legendre quadrature,
as described in detail in [39]. In addition, NLOptControl
automatically performs the differentiation required to calculate
the Jacobian and Hessian, exploiting sparsity in the Hessian
through reverse automatic differentiation with the acyclic-
coloring method that is faster than the star-coloring method
[41]. Direct collocation is preferred, as shooting methods face
challenges with a large number of variables, and multiple
shooting methods require expensive integration at each iter-
ation and can lead to reduced sparsity. On the other hand,
direct collocation leads to a larger problem, but preserves
sparsity and directly incorporates state constraints at each
collocation point. Within NLOptControl, h, p, and hp methods
are implemented; however, for this work the hp-method based
on LGR collocation is utilized, as it helps prevent inaccuracies
of h-methods and large problem sizes of p-methods [41].
Further details and comparisons of NLOptControl to other
optimal control software packages are given in [41].

IV. TERRAIN ESTIMATION

The parameter to be estimated is chosen as the sinkage
exponent n, because the sinkage exponent is the dominant
terrain parameter [16], [17]. To estimate the sinkage exponent,
an Unscented Kalman filter (UKF) is employed, a detailed
implementation of which is given in [16] and a high-level
overview is given here for completeness as follows.

Suppose a system is given as:

ż(t) = F (z(t), ρ(t)) (18)

y(t) = H(z(t), γ(t)) (19)

where z(t) is the augmented state given by the first six states
of Eq. (12) appended with additional states, one for each
tire, with trivial dynamics representing the sinkage exponent.
The process and observation noise are given as ρ and γ,
respectively. z(t) is obtained through forward Euler integration
of F (z(t), ρ(t)), and H(z(t), γ(t)) is the measurement model,
which is given as the original state vector of the first six states
of Eq. (12). The measurements are obtained by corrupting the
plant model of Sec. III-B1 with Gaussian noise as described in
Sec. V, while the prediction model given by the first six states
of Eq. (13) relies on the neural network to predict the lateral
forces. In other words, the prediction model is the bicycle
model that obtains the lateral forces from the neural network,
and the measurements are obtained from the state vector of
the 11 DoF plant acting on an SCM terrain in Chrono.

To propagate the previous state distribution to the current
state, a number of Sigma Points Z are generated that capture
the statistical distribution of the previous state. Applying Eq.
(18) to Z yields the transformation of Z to the current state.
Effectively, this transformation provides the time evolution of
the statistics, i.e., the current mean state ẑ− and covariance
matrix P−.

Then, the UKF updates the current state and covariance
estimate with current measurements, y(t), as follows:

ẑ(t) = ẑ−(t) +K(y(t)− ŷ(t)) (20)

P (t) = P−(t)−KPŷ(t)ŷ(t)K
T (21)

where ẑ(t) is the measurement corrected state estimate, P (t)
is the updated covariance matrix, K is the Kalman gain, ŷ(t)
is the predicted value of the measurements based upon the
propagation of the state from the previous to current time,
and Pŷ(t)ŷ(t) is the covariance matrix corresponding to ŷ(t).

Intuitively, the UKF compares the output of the prediction
model (Eq. (18)) with measurements to determine the best
estimate of the state. By doing so, the UKF estimates the
sinkage exponent that improves the bicycle model’s predictive
capability as compared to the measurements. A more detailed
discussion of the UKF implementation can be found in [42],
[16].

The UKF terrain estimator runs in parallel with MPC and
updates the MPC prediction model parameters with the current
best terrain estimate each time MPC is called, i.e., upon
initialization of MPC after the plant has simulated the entire
execution horizon.

V. RESULTS AND DISCUSSION

A. Neural Network Terramechanics Model and Terrain Esti-
mation

In this section, the performances of the neural network
terramechanics model and the UKF estimator are evaluated.
Evaluation is performed on two fronts: 1) the ability of the
terramechanics model and UKF estimator to accurately predict



TABLE II: Terrain parameters for the simulated terrain [14].

Parameter Symbol Clay
Cohesive modulus kc 13200 (N/mn+1)
Frictional modulus kφ 692200 (N/mn+2)
Sinkage exponent n 0.5 (–)

Shear deformation modulus k 0.01 (m)
Cohesion c 4140 (Pa)

Internal friction angle φ 0.2269 (rad)

TABLE III: Measurement standard deviations used for sensor simulation.

State Noise (σ)
x 1.2 (m)
y 1.2 (m)
ψ 0.0175 (rad)
u 0.25 (m/s)
v 0.25 (m/s)
ωz 0.0175 (rad/s)

tire forces and the sinkage exponent, respectively, and 2) the
impact these estimated parameters have on improving the
prediction capability of the 3-DoF vehicle model. The first
evaluation provides insight into the performance of the neural
network in predicting tire forces and of the UKF in estimating
terrain parameters, while the second provides an assessment
of the estimation algorithm’s utility for use in MPC schemes.

As an example comparison of the neural network against
SCM, the single wheel test bed is used to sweep the tire
through a range of slip angles where the load is held constant
at 5000 N, the speed is 8.5 m/s, slip ratio is 0.5, and the terrain
is sand. Hence, this produces the common lateral force vs. slip
angle curve. The results of SCM and the neural network are
shown in Fig. 1. While it is evident that the neural network
matches SCM well for the single wheel test bed, it is of more
interest to observe the neural network’s performance as the
vehicle operates. This is further discussed next.

To maintain consistency and a fair comparison with the
terramechanics model developed in [16], the same clay Chrono
simulation is used in the evaluation studies. Briefly, the simu-
lation is performed with the 11 DoF plant model of Sec. III-B1
operating on a clay-like SCM terrain. The parameters used in
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Fig. 1: Neural Network and SCM output on a sand terrain for a load of 5000
N, slip ratio of 0.5, and speed of 8.5 m/s.

TABLE IV: Performance comparison between neural network and Bekker-
based SCM surrogate model in terms of estimated value of and estimation
errors in the sinkage exponent n on clay terrain. Bekker-based SCM surrogate
results are from [16].

Model Initial guess True val. Est. val. % Error
Bekker based [16] 0.7 0.5 0.519 3.8%

Neural network 0.7 0.5 0.505 1%
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Fig. 2: Simulated sinkage exponent estimation for neural network based
terramechanics model (black dashed line) and Bekker-based model of [16]
(blue solid line).

representing the clay terrain are given in Table II. The vehicle
is then subjected to sinusoidal steering commands, steering
fully in both directions, and sinusoidal throttle commands such
that varying speed is achieved. Once the simulation completes,
the measurement data is generated by corrupting the state
vector with additive noise, with standard deviations given in
Table III. More information on the simulation settings and the
steering and velocity profiles can be found in [16].

Table IV summarizes the estimation results, including the
initial guess, true sinkage exponent used by Chrono’s SCM,
along with the UKF estimated value and the percent error
for the Bekker-based SCM surrogate of [16] and the neural
network terramechanics model. Here, the estimated value is
taken to be the converged value at the end of the simulation.
For both terramechanics models the UKF estimator performs
relatively well and estimates the parameter within 4% of its
true value. However, as shown in Fig. 2, the UKF that uses
the neural network reduces estimation error after 19 s of
simulation time, i.e., once the estimator has converged within
10% of the true value, by over 87% as compared to [16] on
average over the remaining simulation time. Also, the neural
network (black dashed line) converges faster compared to the
model of [16] (blue solid line); i.e., within 10% accuracy at
11 s vs. 19 s. This improvement in convergence speed could
prove beneficial in time critical applications, e.g., collision
imminent steering. These findings suggest that, between the
bicycle models using the two terramechanics models, the
one in conjunction with the neural network is preferred for
terrain estimation, since it can achieve a higher level of
estimation accuracy as compared to the bicycle model relying
on the Bekker-based surrogate of [16] while also converging
at a faster rate and having the beneficial property of twice
continuous differentiability. While the UKF does not require
calculation of the Jacobian, and hence does not require the
neural network, the same prediction model should be used by
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Fig. 3: Simulated SCM and neural network lateral forces from estimation on
a clay terrain.
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Fig. 4: Simulated SCM and neural network lateral forces from estimation on
a sandy loam terrain.

both the UKF and MPC to prevent a discrepancy in the best
estimates that could arise from the separate prediction models.

Fig. 3 shows the lateral forces from the front tire acting
on the vehicle body given by SCM and the neural network
running within the estimator. The forces predicted by the
neural network are reasonable as compared to SCM with a
root-mean-squared-error (RMSE) of 109 N. These forces are
obtained from the sinusoidal vehicle simulation on clay, as
discussed at the beginning of this section, and hence are com-
pletely different data than that generated by LHS in training
the neural network. As such, the good agreement observed in
Fig. 3 suggests the network is able to generalize beyond its
training and can potentially be applied to an MPC scheme.
Fig. 4 shows the lateral forces for a sinusoidal simulation
on a sandy loam terrain, demonstrating the force prediction
accuracy on multiple terrains. The sandy loam simulation setup
is based on [16] and the details can be found therein.

The peak computational time for a single UKF iteration of
the bicycle model using the neural network terramechanics
model is 6.9 ms, whereas the peak computation time for the
bicycle model using the Bekker-based surrogate is 10.5 ms
on 16 GB Memory and a single core 3 GHz Intel Core i7
processor running MATLAB R2017a [16]. An optimized C++
version of UKF for the bicycle model using the neural network
has a peak computation time of 0.15 ms. The estimator calls
the bicycle model 17 times per UKF step, meaning the bicycle
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Fig. 5: Simultaneous estimation of sinkage exponent and frictional modulus
for clay sinusoidal simulation.

TABLE V: Mean squared error over entire simulation with 2.5 second
prediction horizon for neural network and Bekker SCM surrogate.

Model Neural Network SCM Surrogate [16]

State n=0.505 n=0.7 n=0.519 n=0.7

x (m)2 0.033 0.045 0.037 0.01
y (m)2 0.067 0.42 0.022 0.15
ψ (rad)2 6.5e-04 0.035 2.45e-04 0.0089
u (m/s)2 1.33e-04 1.33e-04 1.33e-04 1.33e-04
v (m/s)2 0.0068 0.496 0.0047 0.15
ωz (rad/s)2 0.0016 0.078 9.01e-04 0.023

model, and neural network, can be evaluated efficiently and are
conducive to real-time applications.

As a second analysis of the UKF, in addition to solely
estimating the sinkage exponent, the frictional modulus is
estimated simultaneously, as the these two parameters exhibit
the highest sensitivity. The results are shown in Fig. 5,
demonstrating the ability of the UKF to accurately estimate
multiple parameters simultaneously. While the UKF is able to
estimate multiple parameters simultaneously, and results are
shown to demonstrate this capability, the focus of this work
relates to solely estimating the most sensitive parameter, n, in
an MPC setting. Estimating multiple parameters, identifiability
of parameters, and the trade off of the increased computational
load that results from estimating multiple parameters as com-
pared to improved predictive capabilities are subject to future
work.

As such, the results favor the accuracy, computational
efficiency, and twice continuous differentiability of the neural
network over the Bekker based model of [16].

To assess the applicability of the proposed UKF estima-
tor and neural network terramechanics model for predictive
applications, the bicycle model, with the neural network
parameterized by the converged estimates, is used to predict
the vehicle states approximately 2.5 s into the future. This is
chosen to mimic the procedure used by MPC and follows the
same evaluation process as in [16] to allow comparisons.

Table V gives the mean squared error (MSE) over the entire
clay simulation with 2.5 s predictions for the bicycle model
utilizing the neural network terramechanics model and the
model reported in [16] for both the initial guess and converged
value of the sinkage exponent. The baseline for this error
calculation is the 11-DoF Chrono simulation. Utilizing the
converged sinkage exponent for the neural network signifi-



-40 -35 -30 -25 -20 -15 -10

x position (m)

-5

0

5

10

15
y
 p

o
s
it
io

n
 (

m
)

Chrono (True)

n = 0.505

n = 0.7

Fig. 6: Chrono simulation for an AGV on SCM clay terrain with true vehicle
positions from Chrono (blue solid line), bicycle model parameterized by n =
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horizon.

TABLE VI: Obstacle settings for simulation Scenarios 1 and 2 [32].

Obstacle Location Radius Safety Margin
Scen. 1: Obs. 1 (0 m, 2 m) 3 m 1 m
Scen. 2: Obs. 1 (-10 m, 2.5 m) 3 m 1 m
Scen. 2: Obs. 2 (0.1 m, -2.5 m) 3 m 1 m

cantly reduces the MSE in the state prediction as compared to
the initial guess, in some cases by an order of magnitude.
Comparing the state errors associated with the converged
sinkage exponent for the neural network and the Bekker-
based surrogate, it can be seen that the errors of the neural
network are slightly larger than that of the Bekker-based
surrogate; however, the errors for the neural network are still
reasonable, achieving position prediction RMSEs on the order
of 25 cm over a 2.5 second horizon. These results suggest
that the neural network terramechanics model can be suitable
for estimation and is better suited for application in control
due to its accuracy, increased efficiency and twice continuous
differentiability. Furthermore, the reduction in prediction error
achieved through the estimated parameters can potentially
yield better performing model predictive navigation and con-
trol.

The increased performance of the bicycle model utiliz-
ing the estimated terrain parameter with the neural network
terramechanics model is depicted in Fig. 6. The position
predictions of the bicycle model for the estimated terrain
parameter n = 0.505 (red dashed line) are much closer (0.26
m RMSE in y deviation as compared to Chrono) to the true
Chrono simulation (blue solid line) as compared to using
the initial guess n = 0.7 (0.65 m RMSE in y deviation as
compared to Chrono) for the sinkage exponent (black dotted
line). It is anticipated that this improved position accuracy can
be beneficial to autonomous obstacle avoidance using MPC.
Assessing this expected benefit systematically is discussed
next.

B. Terrain-Adaptive Obstacle Avoidance

To assess the utility of the terramechanics model and esti-
mator in an MPC scheme, three scenarios are considered. The
first two scenarios motivate the need for a deformable terrain
terramechanics model as compared to an on-road Pacejka
model, while the third scenario depicts the utility of online
terrain estimation. In all scenarios, the 11-DoF notional light-
duty military vehicle operating on a clay SCM terrain in
Chrono acts as the plant [36]. The clay terrain parameters are
given in Table II. For the UKF, the states reported from the
plant are corrupted with random additive Gaussian noise, with
the standard deviations given in Table III, to simulate sensors.
Sensor measurements are updated every 24 ms.

In all scenarios, two prediction models are compared. In
Scenarios 1 and 2, which are presented in [32] and are included
for completeness, the MPC prediction model is given by the
bicycle model of Eq. (13) with Fy(f,r) predicted by either
the Pacejka or the neural network terramechanics model. The
controllers corresponding to these two models are denoted as
P-MPC and NN-MPC, respectively. For these two scenarios,
the terrain parameters for the neural network terramechanics
model are set to the nominal values. In Scenario 3, the bicycle
model of Eq. (13) utilizes the neural network terramechanics
model for both prediction models; however, in one case
the neural network utilizes an initial guess for the sinkage
exponent, whereas in the other case the sinkage exponent
is estimated and updated online based upon the UKF. All
other terrain parameters are assumed to have their nominal
values given in Table II. This represents a realistic scenario,
where terrain classification can be used to determine the terrain
class such as in [43], [44] and set nominal values for the
specific class, and then terrain identification can be used to
hone in on the actual terrain parameters. For this scenario, the
controllers in comparison are denoted as IG-MPC and UKF-
MPC for the controller using only the initial terrain guess and
the terrain adaptive controller, respectively. For all scenarios,
a 0.5 s execution horizon and a variable prediction horizon
based upon time-to-goal is used [6], [7].

In the UKF-MPC, the terrain estimator runs in parallel with
the MPC algorithm and adaptation occurs as discussed in Sec.
IV.

1) Scenario 1: Scenario 1 corresponds to a single obstacle
avoidance, with obstacle information given in Table VI, that
exhibits a simple maneuver for the vehicle.

While this maneuver can be completed by both the NN-
MPC and P-MPC, as depicted by the plant path in Fig. 7, the
impact of the tire model becomes apparent. In particular, the
NN-MPC initiates a more drastic turn early in the maneuver
and then steers back towards the centerline prior to passing
the obstacle. On the other hand, the P-MPC turns later in
the maneuver and continues to drift past the obstacle prior to
turning back in towards the centerline. The difference in the
plant response is because the plant acts in an under-responsive
manner for the P-MPC case. The Pacejka model predicts larger
lateral forces for a given input than is achievable by the plant,
leading to less drastic steering commands and hence an under-
response of the plant.
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Fig. 7: Plant response to neural network based controller NN-MPC (blue) and
Pacejka based controller P-MPC (orange dashed line) for Scenario 1 [32]. Start
and goal positions are in green while obstacles and safety margin are given
by black disks and black dotted circles, respectively. The green dotted line
around the goal represents the tolerance σ on the terminal position.

Fig. 8: Plant longitudinal speed for neural network based controller NN-MPC
(blue) and Pacejka based controller P-MPC (orange dashed line) for Scenario
1 [32].

The difference in the paths becomes important when con-
sidering the performance metrics and formulation of the OCP.
The more drastic initial turn of the NN-MPC allows for the
vehicle to turn back towards the centerline earlier and hence
realign to better reach the target state. This is due to Eq.
(11), which penalizes the deviation from the centerline and
the terminal state, in particular the second term of the cost.
A measure of the deviation from the centerline can be taken
as the integrated absolute area of the deviation from the
centerline, which is 55.5 and 78.2 m2 for the NN-MPC and
P-MPC, respectively. Finally the difference between the goal
and terminal y position of the plant is 0.07 and 0.6 m for the
NN-MPC and P-MPC, respectively, suggesting the NN-MPC
can better achieve the goal position than the P-MPC. The time-
to-goal is 10.2 s for both controllers, in accordance with the
similar longitudinal speed profiles in Fig. 8. Finally, as seen
in Fig. 9, a much smoother steering command is observed for
the NN-MPC (blue) than the P-MPC (orange). The improved
fidelity of the neural network terramechanics model reduces
the prediction error as compared to the Pacejka model. There-
fore, the terminal state at the end of the execution horizon for
the prediction model better replicates that of the plant, leading
to less correction required on the control inputs. Hence, while
both controllers complete the maneuver in similar time, NN-
MPC demonstrates improved performance as compared to P-
MPC in generating smooth steering commands, minimizing
terminal y position, and reducing deviation from centerline.

Fig. 9: Commanded steering angle for neural network based controller NN-
MPC (blue) and Pacejka based controller P-MPC (orange dashed line) for
Scenario 1 [32].
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Fig. 10: Plant response to neural network based controller NN-MPC (blue)
and Pacejka based controller P-MPC (orange dashed line) for Scenario 2 [32].
Start and goal positions are in green while obstacles and safety margin are
given by black disks and black dotted circles, respectively. The green dotted
line around the goal represents the tolerance σ on the final position. Overlap of
NN-MPC and second obstacle’s safety margin is an artifact of line thickness
and does not result from collision.

These results suggest that despite the discrepancy in the
prediction models, the feedback nature of MPC is robust
enough for both formulations to complete the maneuver.
However, as is shown in the next subsection, this may not
be the case in more severe maneuvers.

2) Scenario 2: To exhibit a more severe maneuver, two
circular objects are placed to force the vehicle through a
narrow corridor that requires a high level of fidelity of the
prediction model for the vehicle to successfully navigate. The
locations of the obstacles are given in Table VI.

The plant response to the two controllers is given in Fig.
10. Again, the P-MPC exhibits the under-responsive behavior
of Scenario 1; however, due to the narrow margin of error
in this scenario, the controller is unable to recover from
the plant prediction model mismatch, ultimately leading to
a collision with the second obstacle. On the other hand, the
NN-MPC initially turns wide early in the maneuver followed
by a sharp turn to avoid the second obstacle, allowing for
successful completion of the maneuver. The under-responsive
behavior is also evident from Fig. 11, which shows the P-
MPC controller commands a smaller steering angle than the
NN-MPC controller.

Finally, Fig. 13 depicts the longitudinal speed profile of the
plant. The NN-MPC initially accelerates from x position of
-30 m to -20 m, then decelerates until the vehicle reaches 0



Fig. 11: Commanded plant steering angle for neural network based controller
NN-MPC (blue) and Pacejka based controller P-MPC (orange dashed line)
for Scenario 2 [32].
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Fig. 12: response to neural network based controller NN-MPC (blue) and
RRT* (orange dashed line) for Scenario 2. Start and goal positions are
in green, while obstacles and safety margin are given by black disks and
black dotted circles, respectively. The green dotted line around the goal
represents the tolerance σ on the final position. Overlap of NN-MPC and
second obstacle’s safety margin is an artifact of line thickness and does not
result from collision.

m, and finally accelerates until the vehicle reaches the goal.
The commanded vehicle acceleration is due to the cost on the
time-to-goal, which forces the vehicle to accelerate if possible.
In the case of the deceleration from -20 m to 0 m, the decrease
in the speed shifts weight to the front tires, which allows for
larger lateral forces to be generated from the front tire steering.
Additionally, the decreased speed allows for more time for the
vehicle to maneuver around the obstacles in this challenging
area. Once the vehicle is in a position to clear the obstacles,
NN-MPC again commands the vehicle to accelerate.

As another comparison to state-of-the-art planners, the same
simulation is run using rapidly exploring random trees (RRT*)
as the planner. For this simulation, the plant is commanded to
have a constant speed of 6 m/s, which is near the top speed of
the NN-MPC simulation, and Chrono’s built in steering and
speed controllers are used for path following. Fig. 12 shows the
plant response for NN-MPC (blue) and RRT* (orange dashed
line). RRT* deviates from the NN-MPC path significantly and
commands a path that goes wide around the obstacles, as
RRT* has no notion of the cost used in MPC. This leads
to an integrated deviation from the centerline of 44.71 and
443.65 m2 for NN-MPC and RRT*, respectively. The terminal
y position error for NN-MPC is 0.18 m and 2.6 m for RRT*.
Finally, consistent with RRT* having a higher average speed,
the time-to-goal for RRT* is 13.4 s, whereas the time-to-goal

Fig. 13: Plant longitudinal speed response to neural network based controller
NN-MPC (blue) and Pacejka based controller P-MPC (orange dashed line)
for Scenario 2 [32].

TABLE VII: LHS input range for Scenario 3.

Input Min Max
Obstacle 1 Position (x,y) (-15, -7) (-1, 7)
Obstacle 2 Position (x,y) (1, -7) (15, 7)

Obstacle Radius 0.5 3
Sinkage Exponent (n) 0.4 1.0

for NN-MPC is 14.5 s.
3) Scenario 3: In this scenario, the vehicle must avoid two

obstacles to assess the utility of the terrain estimator. Unlike
the first two scenarios, a Monte Carlo simulation is conducted
in this case with variations in obstacle radii and locations as
well as initial guess for the sinkage exponent. To determine the
number of samples necessary to obtain statistically significant
results, G* Power is used with a paired sample t-test, effect
size of 0.5, significance level of 0.05, and a power of 0.8,
giving a total of 27 samples [45]. Then, LHS is used to
determine the positions and radii of the two obstacles, along
with the initial guess for the sinkage exponent. The LHS input
range is given in Table VII, with the samples maximizing the
minimum distance between points.

The IG-MPC assumes no estimation takes place and hence
fixes the sinkage exponent to the initial guess, while UKF-
MPC estimates the sinkage exponent and updates the predic-
tion model as the simulation runs. Ultimately, the scenario
assesses the utility of the estimator to improve prediction
model fidelity and its impact in an MPC setting. Due to the
location of the obstacles, the estimator converges to within
10% of the true terrain parameter in only 8 of the 27 cases.
This is because the obstacle locations, generated by LHS,
often do not force the vehicle to induce significant dynamics
for sinkage exponent identification, i.e., there is no persistent
excitation. In cases where the estimator does not converge, the
estimated value still approaches the true terrain parameter as
compared to the initial guess.

An example of a case from the simulations where the
estimator fails to converge to the true value is shown in Fig.
14 and 15. As seen in Fig. 15, the estimator starts at an
initial guess for the sinkage exponent of 0.9 and approaches
the true value until the x position reaches -10 m, at which
point the estimator appears to stabilize around a value of
0.65. In comparing with the vehicle position of Fig. 14, the
vehicle is turning in avoidance of the first obstacle until an x
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Fig. 14: Plant response to UKF-MPC (blue) and IG-MPC (orange dashed
line) for a case without persistent excitation in Scenario 3. Start and goal
positions are in green while obstacles and safety margin are given by black
disks and black dotted circles, respectively. The green dotted line around the
goal represents the tolerance on the final position.

Fig. 15: Estimated sinkage exponent for the case in Fig. 14 is shown in black.
True sinkage exponent is shown as red solid line and 10% error bounds on
the true value are shown as red dashed lines.

position of about -10 m, after which the vehicle drives along
the centerline until the goal is reached. Thus it is apparent
that the estimator is approaching the true terrain parameter
when the vehicle is maneuvering around the first obstacle, but
once the vehicle passes the first obstacle, the induced lateral
dynamics are insufficient for the estimator to gain meaningful
information, relating to lack of persistent excitation. If the
lateral force acting on the vehicle is zero, no estimation can
take place, as the impact of the terrain parameter on the vehicle
response enters through the lateral force Fy(f,r).

Fig. 16 and 17 demonstrate one of the LHS simulations
where the estimator converges to the true terrain parameter.
As seen in Fig. 16, the maneuver is more challenging than
the case of Fig. 14, requiring the vehicle to deviate from
the centerline to avoid the obstacles. This more challenging
maneuver causes the controller to command a more drastic
steering input, shown in Fig. 18, hence inducing sufficient
lateral dynamics for estimation.

In comparing the UKF-MPC to IG-MPC, Fig. 16 shows that
both controllers follow a similar path, but the UKF-MPC turns
more aggressively back towards the centerline near the end of
the maneuver, reducing the cost associated with the second
term of Eq. (11). This causes the integrated absolute area of
the deviation from the centerline to be 104.4 and 117.05 m2

for the UKF-MPC and IG-MPC, respectively. The terminal
y position error of the vehicle is 1.39 m and 2.34 m for the
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Fig. 16: Plant response to UKF-MPC (blue) and IG-MPC (orange dashed line)
for a case with persistent excitation in Scenario 3. Start and goal positions are
in green while obstacles and safety margin are given by black disks and black
dotted circles, respectively. The green dotted line around the goal represents
the tolerance on the final position.

Fig. 17: Estimated sinkage exponent for the case in Fig. 16 is shown in black.
True sinkage exponent is shown as red solid line and 10% error bounds on
the true value are shown as red dashed lines.

UKF-MPC and IG-MPC, respectively. This is due to an under-
responsive plant in the IG-MPC case, which commands a
smaller magnitude steering angle input than the UKF-MPC as
shown in Fig. 18. Additionally, both UKF-MPC and IG-MPC
follow a similar commanded speed profile as shown in Fig. 19,
but UKF-MPC commands a slightly larger longitudinal speed.
This leads to a time-to-goal of 10.28 s and 10.49 s for the
UKF-MPC and IG-MPC, respectively.

Finally, in all 27 simulations, both IG-MPC and UKF-MPC
are able to successfully complete the maneuver, but UKF-
MPC significantly outperforms IG-MPC in two performance
metrics. Various performance metrics, representative of terms

Fig. 18: Commanded plant steering angle for UKF-MPC (blue) and IG-MPC
(orange dashed line) for the case in Fig 16.



Fig. 19: Plant longitudinal speed response to UKF-MPC (blue) and IG-MPC
(orange dashed line) for the case in Fig 16.

TABLE VIII: IPOPT solve times for each scenario [32].

Case Mean Peak
Scenario 1: P-MPC 0.11 s 0.15 s

Scenario 1: NN-MPC 0.28 s 0.44 s
Scenario 2: NN-MPC 0.26 s 0.35 s
Scenario 3: IG-MPC 0.35 s 0.6 s

Scenario 3: UKF-MPC 0.35 s 0.59 s

in Eq. (11), are shown in Fig. 20 for IG-MPC and UKF-
MPC. These metrics are compared for statistically significant
difference using the Analysis of Variance (ANOVA) with a
significance level of 5%; i.e., if the p value resulting from
ANOVA is p < 0.05, then the null hypothesis that there
is no statistically significant difference between the metrics
is rejected with 95% confidence, implying that utilizing the
estimator makes an impact. Based on this analysis, significant
improvement is achieved by UKF-MPC as compared to IG-
MPC in integrated absolute deviation area from the centerline
(p < 0.001) and terminal y position (p < 0.01), corresponding
to the second term of Eq. (11). In the case of time-to-goal
(p > 0.1) and mean solve time (p > 0.1), no noticeable
improvement is observed. This is likely because the controller
does not force the vehicle to diverge between different routes,
leading to similar time-to-goal between UKF-MPC and IG-
MPC. Finally, in terms of the time integral of the absolute
steering rate, the UKF-MPC induces a significantly larger
cost in the third term of Eq. (11) as compared to IG-MPC
(p < 0.0001), as the steering rate is the trade-off of improved
centerline tracking.

These results suggest that despite both IG-MPC and UKF-
MPC being able to successfully complete the 27 maneuvers,
the improved prediction fidelity of UKF-MPC improves per-
formance of the autonomous navigation algorithm. A sample
size much larger than 27 is needed to determine the edge
cases similar to Scenario 2, where the difference between the
two formulations manifests itself not only in performance but
also safety. Such an investigation is subject to future research
and needs to overcome the computational expense of the plant
simulations.

4) Computational Performance: Table VIII reports the
mean and peak solve times for each scenario and controller
on an Intel Xeon E-2176G 3.7 GHz processor and 16 GB
RAM. In the case that the vehicle is unable to complete

the maneuver, no solve time is reported. The reported solve
times exclude spikes in solve time, e.g. when IPOPT returns
restoration failure. However, the peak solve times of each
simulation often occur at iterations near the spikes, e.g., at
the iteration after a restoration failure. In such cases control
commands from previous MPC iterations are applied. Such
spikes occur infrequently, approximately 5% of the MPC
iterations, and occur for both the Pacejka and neural network
model, suggesting the errors are not necessarily a result of the
terramechanics model.

As seen in Table VIII, when controllers are able to success-
fully complete the maneuver, the peak solves times are less
than the execution horizon, resulting in real-time capability. On
average, NN-MPC demands roughly 2.5 times more computa-
tional cost than the P-MPC, which is the trade-off against the
higher fidelity terramechanics model. No noticeable difference
in computational cost is observed between the UKF-MPC and
IG-MPC of Scenario 3.

Despite the increased solve time of the NN-MPC, the higher
fidelity improves performance (Scenario 1 and 2) and safety
(Scenario 2). In addition, UKF-MPC improves performance
at no noticeable increase in computational cost (Scenario
3). Thus these results favor the adaptive neural network
terramechanics model in situations where vehicles operate near
mobility limits, such as off-road military applications. Finally,
the speed range of these simulations are consistent with the
current expected operating range for off-road AGVs, which is
5 m/s for complex terrain and 10 m/s for open terrain, as set by
the RACER program of the US Defense Advanced Research
Projects Agency (DARPA).

VI. CONCLUSION

This work develops a novel terrain-adaptive MPC frame-
work for simultaneous trajectory planning and tracking for
AGVs operating on off-road deformable terrains. The novelty
is in the development of neural network terramechanics mod-
eling for dynamic operation and its utilization within terrain
estimation and the MPC prediction model, along with the
utilization of terrain adaptation in MPC. These two contribu-
tions allow for more accurate force prediction during trajectory
planning and tracking on deformable terrains. It is shown that
the neural network achieves comparable accuracy to state-
of-the-art dynamic terramechanics models while reducing the
peak computation time. The results suggest the neural network
terramechanics model is able to predict tire lateral forces
with sufficient accuracy for the problem of terrain estimation
and control. It is demonstrated that the neural network in
combination with a UKF leads to comparable accuracy in
sinkage exponent estimation as compared to state-of-the-art
methods while also satisfying the differentiability requirements
of optimal control and offering reduced computational time.
It is demonstrated that the estimated terrain parameters can
significantly reduce the prediction errors of a 3-DoF bicycle
model when the neural network terramechanics model is
parameterized according to the estimated sinkage exponent.
Therefore, it is concluded that the neural network terrame-
chanics model and its implementation within the estimator are
an important advancement toward off-road AGVs.



(a) Time to goal (s). (b) Solve time (s). (c) Steering effort (rad). (d) Terminal lateral error (m). (e) Centerline deviation (m2).

Fig. 20: Performance metrics for Scenario 3 of mean value and standard error of mean difference.

The utility of the neural network terramechanics model
is then demonstrated in MPC, where it is shown that the
model improves performance and safety of MPC while also
remaining computationally efficient by satisfying the differ-
entiability requirements of the optimizer. It is shown that
this expands the AGV operational domain. Furthermore, the
utility of terrain estimation is highlighted in an MPC set-
ting, demonstrating improved performance metrics through
achieving higher fidelity prediction models as compared to
the plant. Therefore, it is concluded that the developed terrain-
adaptive MPC framework for simultaneous trajectory planning
and tracking is an important step in enabling high mobility
AGVs operating on off-road deformable terrains.

Future work considers extending the algorithm to rough,
3D terrains. It is also of interest to experimentally validate the
algorithm. Formally evaluating the stability properties of the
developed MPC formulation is also identified as in important
future research direction.
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