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An Efficient Global Trajectory Planner for Highly
Dynamical Nonholonomic Autonomous Vehicles on

3D Terrains
Congkai Shen†, Siyuan Yu†, Bogdan I. Epureanu, and Tulga Ersal∗

Abstract—A novel hierarchical global trajectory planner is
presented to allow highly dynamical nonholonomic off-road
autonomous vehicles to achieve high mobility on 3D terrains.
On complex terrains with uneven topology, designing safe and
feasible vehicle trajectories often demands an understanding
of the vehicle’s dynamical and nonholonomic constraints. Prior
research, however, treats the global planning problem as a path
planning problem without effectively accounting for topology or
dynamical constraints. To address this gap, this paper presents
a three-phase trajectory planning algorithm composed of an A*,
a rapidly exploring random tree (RRT), and a local trajectory
refining (LTR) phase to incorporate dynamical and nonholonomic
constraints on uneven terrain. The algorithm is tested in scenarios
with randomized terrain fields and obstacles to demonstrate
the necessity for all three phases. The algorithm is shown to
have lower cost, higher success rate, and higher computational
efficiency compared to state-of-the-art methods. The algorithm
is then tested by controlling a simulated MRZR vehicle on a 3D
terrain along with a local controller, with comparisons to state-of-
the-art algorithms. It is demonstrated that the new algorithm is
capable of planning dynamically feasible trajectories with lower
cost where the state-of-the-art algorithms fail to perform due to
neglecting dynamical vehicle limitations.

Index Terms—Off-road, navigation and control, motion plan-
ning, obstacle avoidance, sampling algorithm, trajectory plan-
ning, hierarchical planning architecture.

I. INTRODUCTION

Scenarios such as military operations, mining, and planetary
exploration require autonomous vehicles to have off-road navi-
gation capabilities [1]. Such off-road conditions often suggest
an unstructured environment where the flat ground assump-
tion does not hold. Uneven terrain topology could pose serious
hazards to vehicle mobility, especially for large, high-speed
vehicles. Therefore, to realize their full potential in off-road
scenarios, autonomous vehicles need global trajectory planners
that efficiently account for the uneven terrain topology, as well
as the nonholonomic and dynamical constraints of the vehicle.
However, as the literature review below shows, such a planner
does not yet exist. This paper aims to fill this gap.
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A. Background

The ground robotics literature offers various motion plan-
ning methods for 3D terrain navigation. With an emphasis
on computational performance, graph-search based methods
have been developed to provide paths for small robots with
computational efficiency. In [2], an A* algorithm is used to
find a path in irregular triangular meshes. To rapidly re-plan
the path, a D*Lite algorithm was developed [3], which can
plan from the end to the starting position to significantly
shorten the replanning time. To generate fast and smooth
paths using the graph search based technique, a field D*
algorithm was implemented in [4] and validated with Mars
Exploration Rovers [5]. State lattice based approaches have
also demonstrated their real-time applicability in navigating
complex 3D terrain environments via considerations for robot
dynamics and effective search in discretized spaces [6]–[8].
By using a grid as the representation of path points, this
kind of path planner has limited resolution. Therefore, its
utility is also limited for highly dynamical vehicles, i.e., where
nonholonomic constraints play a significant role in the vehicle
behavior.

To explicitly address the limited resolution when planning
on 3D terrains, researchers in [9] used an artificial potential
field (APF) to plan paths for all-terrain wheeled vehicles
and proved that this algorithm can generate near-optimal
trajectories if a global search is given as an initial guess.
However, it is difficult to take hard constraints into account.
Thus, this method inevitably faces the problem of planning
paths that traverse into infeasible areas.

Model predictive control (MPC) has been favored due to
its ability to consider all kinds of constraints simultaneously.
In on-road scenarios, MPC has been successfully applied in
extreme driving conditions by planning trajectories instead of
only paths [10], [11]. MPC has also been extended to off-road
navigation considering deformable terrains [12], 3D topology
[13], and vehicle stochastic traversability [14]. Moreover, there
exists work combining multiple factors that affect vehicle-
terrain interaction, and the controller achieves robustness by
continuously learning the inverse kinodynamics of the off-road
vehicle [15]. Though the MPC method demonstrates success
in this domain of interest, it is typically used as a local planner
and controller for short distances rather than a global planner.

Sampling based planning algorithms such as rapidly explor-
ing random trees (RRT) can provide efficient global planning
solutions under constraints. In [16], researchers relaxed con-
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straints as a cost function to substantially accelerate the solving
time by employing quadratic programming on the connection
of two nodes. To mitigate confusion stemming from high
costs and infeasible outcomes, sampling based methods were
employed to compute a global path, incorporating the hard
constraints of nonholonomic motion and terrain traversability
[17], [18]. Utilizing reinforcement learning to capture the
critical kinodynamic constraints, the Terrain-SBMP (sampling
based motion planning) approach is created to plan paths
for vehicular systems on uneven terrains [19]. To further
improve the success rate of RRT based methods, a hierarchical
motion planning framework is developed in [20] by biasing
the RRT sampling with D*Lite path points. Built upon these
works, a three-phase algorithm that considers the nonholo-
nomic constraints of a wheeled vehicle on 3D topology was
developed in [21]. However, for extreme cases of 3D topology,
planning only a path is not sufficient, as the speed profile can
significantly affect vehicle mobility, as well, and needs to be
co-optimized together with the path.

To extend the RRT based frameworks to perform tra-
jectory planning, nonholonomic constraints, and dynamical
constraints must be considered. To that end, kinodynamic
based motion planning has been applied with success to incor-
porate both constraints in trajectory planning. To improve the
reachability analysis (i.e., nonholonomic constraint settings),
RRT frameworks combined with a learned policy (RL-RRT)
were implemented in [22]. To further consider key dynamical
limits in trajectory planning, NoD-RRT utilized the neural
network based cost function and nonlinear robot dynamics to
plan trajectories [23]. However, these approaches neither have
an efficient computational performance nor offer the capability
to plan trajectories in 3D terrain.

To alleviate the sub-optimal results sampling-based planning
algorithms often yield, researchers have devised a range of
techniques for further optimizing the paths [24]. For example,
the discontinuity in the original paths can be addressed by
utilizing different curves [25]–[27]. To further account for the
kinematic constraints, researchers have developed ways to add
perturbations to the path points and formulated a gradient
descent optimizer [17], [28]. However, these investigations
primarily concentrate on path optimization within kinematic
constraints and lack the dynamical constraints necessary to
address the objective of navigating through highly challenging
3D topologies of this study.

B. Original Contributions

In light of the review above, an important gap is identified
in the literature; namely, a global trajectory planner that effi-
ciently accounts for nonholonomic and dynamical constraints
on 3D terrains does not exist. Addressing this gap is critical
to maximize vehicle mobility.

To address this gap, a novel three-phase algorithm is in-
troduced in this paper inspired by the advantages observed
in hierarchical motion planning frameworks. Specifically, the
three-phase algorithm comprises the A*, RRT, and local tra-
jectory refining (LTR) phases. A* guides the RRT to sample
collision-free trajectories that reach the goal position. Then, a

novel formulation of RRT that incorporates nonholonomic and
dynamical constraints is developed to plan feasible trajectories.
The LTR phase then refines the trajectories to reduce the
trajectory cost. The necessity of each phase is analyzed by
comparing the planning cost under two kinds of obstacle
fields with random terrains. The new planner is then tested
in simulation in a hill climbing scenario and a complex field
together with a local tracker to demonstrate improved mobility.
Finally, the proposed method is benchmarked against state-of-
the-art algorithms to demonstrate its lower trajectory cost.

Thus, the original contribution of this work is a novel hier-
archical global trajectory planner that considers nonholonomic
and dynamical constraints for off-road wheeled vehicles and
plans trajectories effectively and efficiently with a high success
rate on 3D terrains. The significance of this contribution is that
it allows for navigating highly dynamical off-road autonomous
vehicles with high mobility on 3D terrains.

A preliminary version of this work was presented at a
conference [21], considering only the path planning aspect
and with a coarse estimation of nonholonomic constraints.
Compared to [21], this paper newly presents: 1) a global
trajectory planner instead of only a path planner; 2) improved
consideration of kinematic constraints of off-road vehicles;
3) incorporation of dynamical constraints on 3D topology;
4) the development of local trajectory refining for improving
trajectory planning cost; and 5) the simulation and evaluation
of the newly proposed global trajectory planner in high fidelity
simulations against the state-of-the-art formulations.

C. Organization

The rest of the paper is organized as follows. Sec. II
describes the nonholonomic and dynamical constraints as
well as the neural network based cost function used in the
trajectory planner. Sec. III details the topology-aware RRT
algorithm. Sec. IV explains the methodologies of the first
phase (A*) and the third phase (local trajectory refining) and
how the three phases are connected. Together, Sec. II through
Sec. VI-A describe the methodology, and their relationship is
illustrated in Fig. 1. The results and discussions are presented
in Sec. V and VI, where Sec. V shows the computational
efficiency and trajectory cost of the planned trajectories, and
Sec. VI describes the local controller that is used alongside the
trajectory planner and utilizes a high fidelity vehicle simulation
to evaluate the utility of the algorithm. Finally, Sec. VII
concludes the study.

II. NEURAL NETWORK COST FUNCTION & CONSTRAINTS

This section illustrates the core of the topology-aware
RRT to efficiently evaluate cost and constraints as shown in
Fig. 1. The cost function and nonholonomic and dynamical
constraints used in RRT are introduced, where the costs are
described in Sec. II-B and the constraints are demonstrated
in Sec. II-C and II-D. Both cost and kinematic feasibility are
determined through an optimal control problem (OCP), which
is presented in Sec. II-A. The OCP section provides training
and fitting data for Sec. II-C and II-B.
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Fig. 1. Schematic of the proposed approach.

A. Optimal Control Problem Setting

The OCP is formulated such that it combines the tracking
and planning problems, allowing the consideration of vehicle
states ξ and control inputs ζ in the cost function. The OCP is
given in a general form as follows:

minimize
ξ, ζ, tf

J = T (tf ) +

∫ tf

0

I[ξ(t), ζ(t)]dt (1)

subject to ξ̇(t) = V[ξ(t), ζ(t)] (2)
ξmin ≤ ξ(t) ≤ ξmax (3)
ζmin ≤ ζ(t) ≤ ζmax (4)
F [ξ(tf )] ≤ 0 (5)

where J is the total cost function, T (•) and I(•) are nonlinear
cost functions for total time to goal, states and controls
respectively. Eq. (1) is also subject to the constraints in Eq. (2)
to Eq. (5). Eq. (2) is the hard constraint for the vehicle
dynamics detailed in Sec. II-A1. The state and control bounds
are set in Eq. (3) and Eq. (4), respectively. The OCP does
not explicitly take obstacle avoidance into account, because
obstacles are considered in Sec. III. Eq. (5) is the hard terminal
constraint for the vehicle to reach the goal. The expansions of
these expressions are detailed below.

1) Vehicle Model: A kinematic bicycle vehicle model is
used to predict the vehicle behavior on the local plane,
because it is proven to capture the key vehicle nonholonomic
constraints in a computationally efficient way [29].

The state and control vectors are defined as follows:

ξ :=


x
y
ψ
u

 =


x position of center of mass
y position of center of mass

yaw angle
longitudinal speed

 (6)

ζ :=

[
ax
δf

]
=

[
longitudinal acceleration
front tire steering angle

]
(7)

The nonlinear state equation is defined as

ξ̇ =


u(t) cos(ψ(t) + β(δf ))
u(t) sin(ψ(t) + β(δf ))

u(t)
cos(β(δf )) tan(δf )

la+lb
ax

 (8)

β(δf ) = tan−1

(
la

la + lb
tan(δf )

)
(9)

The parameters la and lb are the distances from the front and
rear axles to the vehicle center of mass.

2) Cost Function: The cost function J is expressed as
follows:

J = wttf +

∫ tf

t0

(wδf δ
2
f + waxa

2
x)dt+

∫ sf

s0

wκκ
2dt (10)

The first term minimizes the total time to goal. The second
term regulates the control effort. The last term penalizes the
curvature κ along the path. The parameters wt, wδf , wax ,
and wκ are the corresponding weights for each term. As
a two-point boundary problem, only stage costs are consid-
ered. Adding terminal costs does not affect the result of the
optimization. Hence, the terminal costs are ignored in this
part. However, when concatenating optimal solutions in the
RRT algorithm, the terminal costs become important and are
discussed in Sec III.

3) State and Control Bounds: The state and control bounds
are set based on safety concerns and mechanical limits of
actuators. The state bounds are expanded as:

xmin

ymin

ψmin

umin

 ≤


x
y
ψ
u

 ≤


xmax

ymax

ψmax

umax

 (11)

The control bounds are set similarly as:[
axmin

δfmin

]
≤

[
ax
δf

]
≤

[
axmax

δfmax

]
(12)

4) Terminal State Constraints: Constraints are added on the
terminal state to allow the vehicle to reach the desired terminal
state. They are expressed as:

xf − ϵx
yf − ϵy
ψf − ϵψ
uf − ϵu

 ≤


xf
yf
ψf
uf

 ≤


xf + ϵx
yf + ϵy
ψf + ϵψ
uf + ϵu

 (13)

where •f denotes the terminal state and ϵ• is the allowed
tolerance for the corresponding state.

5) Solution Strategy: The OCP, which is presented in
continuous time in Eq. (1), is solved by transcribing it into
a nonlinear programming through NLOptControl [30] and
solving using Ipopt [31]. For transcription, 10 collocation
points are used with the backward Euler integration scheme.

B. Neural Network Surrogate for Optimal Cost

Though the OCP described in Sec. II-A can be solved
rapidly, it is still computationally expensive. Therefore, a
neural network surrogate model is introduced to approximate
the optimal cost resulting from solving the OCP. The inputs of
the neural network are the terminal states of the vehicle used in
the OCP. To create the data set for training and validating the
neural network, a Latin Hypercube Sampling (LHS) approach
that maximizes the distance between each state is used, with
the ranges reported in Table I. 2,000,000 samples are generated
using LHS and are fed into the OCP. Among the whole set,
the ones that are feasible are collected in the data set and are
then used to train the neural network.
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Fig. 2. Figures for nonholonomic constraints. (A) The state configuration of
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based on the pose of the parent node. (B) The reachable set of θ − ρ − ψ
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After the data set is generated through solving the OCP, it
is randomly partitioned such that 70% is used for training,
15% is used for validation, and 15% is used for testing.
The neural network is trained using Bayesian regularization
backpropagation with hyperbolic sigmoid transfer functions.
100 neural networks that have 2 hidden layers, with 16 neurons
in the first layer and 12 neurons in the second, are trained and
the best one is selected to be used as the cost function for
RRT. The neural network is further validated by a new data
set generated through a uniform sampling of the kinematic
feasibility described in Sec. II-C. The mean accuracy is defined
to evaluate the performance of the neural network surrogate
model as follows:

1

Nn

i=Nn∑
i=1

(
1− |si − s̃i|

si

)
(14)

where Nn is the total number of new data for further valida-
tion, which is set as 3000. si is the true cost of the ith data, and
s̃i is the corresponding cost evaluated by the neural network.
The mean accuracy is 96.6%, which fulfills the purpose of
being a surrogate evaluation of the optimal cost. By adopting
the neural network based cost evaluation, the computational
cost is lowered by approximately 105 times compared to
solving the OCP directly.

C. Nonholonomic Constraints

The trajectory is planned on the local plane originating on
the posture of the parent node; i.e., the vehicle motion between
the parent and the child node is simplified as a 2D motion. By
applying the necessary coordinate transformations, the posture
of the parent node is placed at the origin with the heading
pointing to the positive x direction as shown in Fig. 2-A. As
the position and yaw angle of the parent node become zeros

TABLE I
UNIFORM SAMPLING SETTINGS

Parameters Range Step
ρ [0.8, 4] (m) 0.1 (m)
θ [-1.0, 1.0] (rad) 0.04 (rad)
ψ [-0.35, 0.35] (rad) 0.05 (rad)
u1 [1, 9] (m/s) 2 (m/s)

u2 − u1 [1, 9] (m/s) 2 (m/s)

through this coordinate transformation, only five parameters
are required to have the full knowledge of the states of the
parent and child nodes, which are the speed of the parent
node u1, the distance between the parent and child node ρ,
the angle for locating the position of the child node θ, the
yaw angle difference between the child and parent node ψ,
and the speed of the child node u2.

The nonholonomic constraints can be accounted for by
solving the optimal control problem at each connection. Even
though this solution is reliable, it requires a large computation
time. Another way is to create a lookup table for nonholo-
nomic constraints, moving most of the computational burden
offline. However, a large lookup table also requires large
computational resources for searching, and the states in the
lookup table are discrete. To overcome these problems, the
neural network is a promising method to replace the lookup
table. However, as a black-box method, false positives are
hard to exclude, endangering vehicle safety. Based on the
above considerations, the chosen method in this study is to
use an analytical expression to create a regression model for
the conservative estimation of nonholonomic constraints.

To create a regression model for the nonholonomic con-
straints, i.e., the reachable set, the ground truth is required.
The ground truth is the data that is uniformly sampled in
five parameters following the range given in Table I and
calculated through Sec. II-A to determine feasibility. Because
the vehicle model is the kinematic bicycle model, and only
the steering angle is bounded, the path’s shape is independent
of speed. Thus, the reachable set composed of five parameters
is separated into two parts: one is for the path’s shape as a
function of ρ, θ, and ψ, and the other is for the longitudinal
acceleration boundary as a function of u1, u2, and ρ.

The shape of the reachable set as a function of ρ, θ, and
ψ is shown in Fig. 2-B as the blue region. To regress this 3D
shape, a projection onto the θ-ρ plane is first studied, as shown
in Fig. 2-C. The blue dots are the points that are reachable,
and the 2D blue region is the area that covers all feasible data.
Based on the shape of the upper and bottom boundaries, the
sigmoid function is used for regression as:

θbound =
a1

1 + ea2(ρ−a3)
+ a4 (15)

where θbound is the upper or bottom boundary. The parameters
a1, a2, a3, and a4 are optimized for the maximum area inside
the 2D blue region. Once the projection is regressed, as shown
with the solid red lines in Fig. 2-C, the upper and bottom
surfaces of the 3D reachable set are regressed as third-order



5

polynomial functions of θ and ρ; i.e.,

ψbound =b1ρ
3 + b2ρ

2θ + b3ρθ
2 + b4θ

3 + b5ρ
2+

b6ρθ + b7θ
2 + b8ρ+ b9θ + b10

(16)

where ψbound is the upper or bottom surface, and b1, b2, ..., b10
are parameters optimized to have the maximum volume with-
out exceeding the 3D blue region. The final regression on the
reachable set is shown in Fig. 2-B as the red 3D region.

The existence of the reachable set for u1, u2, and ρ is
due to the constraints on the acceleration. As a result, it is
natural to study the relationship between the acceleration ax
and the direct distance ρ. The acceleration is approximated as
the average acceleration by the following expression:

ax =
u22 − u21

2ρ
(17)

The shape of the reachable set for ax and ρ is shown in Fig. 2-
D as the blue region. Ideally, the upper and bottom boundaries
should be straight lines. However, the direct distance ρ is not
equal to the traveling distance, and thus the approximation of
average acceleration is not exact. The bounds for the acceler-
ation at each time do not imply that the average acceleration
will follow the same constraints. To regress the relationship
between the average acceleration and the direct distance, the
parabolic function is used for the upper and bottom boundary
as follows:

ax,bound = c1(ρ− c2)
2 + c3 (18)

where ax,bound is the upper or bottom boundary shown in
Fig. 2-D, and c1, c2, and c3 are parameters optimized to
cover the maximum area inside the blue region. The resulting
regressed boundaries are shown as the red solid lines in Fig. 2-
D.

D. Dynamical Constraints

The dynamical constraints are used to check whether the
given terrain condition can provide enough force to allow
the vehicle to keep its motion on the 3D terrain. For this
evaluation, the vehicle is simplified as a point mass. The free-
body diagrams from the top and side views are shown in Fig. 3.

Given the shape of the path, the curvature in the 3D path is
calculated by taking the derivative of the heading with respect
to the traveling distance. With the information on terrain shape,
the normal and tangential vectors are known, which form the
positive x and y axes of the vehicle frame. By projecting the
curvature onto those two vectors, the normal and geodesic
curvatures, named κn and κg , are calculated. The normal
force N and the maximum allowable friction force fmax are
calculated by the following equations:

Fc,n = N −Wz (19)

N =Wz + Fc,n =Wz +mu2κn (20)
fmax = µN (21)

where Wz is the weight projected in the normal direction,
Fc,n is the required centripetal force to keep the vehicle’s
motion, m is the mass of the vehicle, and u is the speed
of the vehicle and also the design variable. The coefficient
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Fig. 3. The free-body diagrams of the vehicle driving on terrain. (A) The
free-body diagram from the top view (along the normal direction). The black
solid line is the traveling path. (B) The free-body diagram from the side view
(along the lateral direction). The gray-shaded area is the terrain.

of friction µ determines the total friction that the vehicle
can utilize when accelerating, braking, or turning. Although
knowing its exact value is difficult, recent studies demonstrate
that this parameter can be estimated successfully through on-
board sensors, off-board sensors, and data driven methods
[32]–[34]. Thus, performing such estimations is beyond the
scope of this study.

The first dynamical constraint ensures that the vehicle does
not lift off the terrain; i.e., N ≥ 0. Thus, the inequality for u
is written as follows:

u ≤

{
∞, if κn >= 0√

−Wz

mκn
, otherwise

(22)

Based on the above inequality, u is not constrained if the
terrain is concave, and is bounded by the maximum speed
if the terrain is convex.

The second dynamical constraint checks whether the friction
force is large enough to let the vehicle drive along the curved
path with the given geodesic curvature κg . Suppose the friction
force is large enough; then, the forces along the x and y axes
are summed to allow the accelerated curvilinear motion shown
in Fig. 3-A as follows:

ΣFx = fx −Wx = Fa = max (23)

ΣFy = fy −Wy = Fc,g = mu2κg (24)

where fx and fy are the longitudinal and lateral portions of
friction force, respectively. The total friction force is calculated
as follows:

f =
√
f2x + f2y (25)

By combing Eq. (23)-(25), the second dynamical constraint is
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formed by bounding the total friction force by fmax as follows:

f ≤ fmax√
f2x + f2y ≤ µN (26)√

(Wx +max)2 + (Wy +mu2κg)2 ≤ µ(Wz +mu2κn)

The third dynamical constraint checks whether the torque
provided by the engine is large enough. The corresponding
inequalities are:

τmin

Rw
≤fx ≤ τmax

Rw
τmin

Rw
≤Wx +max ≤ τmax

Rw

(27)

where τmin and τmax are the minimum and maximum output
torque provided by the vehicle engine, and Rw is the wheel
radius.

In summary, three dynamical constraints are derived in
Eq. (22), Eq. (26), and Eq. (27). They are used to ensure the
feasibility of the circular motion corresponding to the normal
and geodesic curvatures, respectively.

III. TOPOLOGY-AWARE RAPIDLY EXPLORING RANDOM
TREE (RRT)

Algorithm 1 RRT

Input: Ns: Number of sampling nodes, ξ0: Vehicle starting
states, ξf : Vehicle ending states, O: Obstacle field, µ: Co-
efficient of friction, B: Map bounding position, P: Terrain
point cloud, TA: A* guidance point.
Output: TP Trajectory Plan.
Main Algorithm:

iteration = 0, t = 0, E = ∅
CreateKNNTerrain(P)
while iteration ≤ Ns and t ≤ Tt do:

ξrand = SampleNode(TA)
ξnearest = FindNearestNode(E , ξrand)
ξnew = Steer(ξrand, ξnearest)
if not Collision(ξnew, · · · ) then

CalculateCost(ξnew, ξnearest)
RegisterNode(ξnew, E)
iteration = iteration + 1

end if
end while

return TP = ExtractMinimalCostTraj(E)

Algorithm 1 describes the proposed RRT formulation for
wheeled vehicles that takes 3D terrain topology into account.
The algorithm is implemented based on the standard RRT
with several modifications made in the functions Calculate-
Cost, FindNearestNode, Steer, and Collision. The terrain
information is assumed to be gained in the form of point
clouds to support a future implementation on a real vehicle.
For computational efficiency, the point clouds are stored in the
form of a kd-tree to speed up the running time of the K-nearest
neighbor search during the planning [35].

In the CalculateCost function, the neural net function
derived in Sec. II-B is used. The neural net function is derived
based on the data generated by the optimal control problem.
As mentioned in Sec. II-A, the cost definition only takes the
stage cost into account. Even though the path between two
nodes is smooth, the concatenated path may not be. To have
a smooth speed profile and path shape in the final trajectory,
three more terms are added to Eq. (10) as follows:

JRRT = J + wy(ρ sin(θ))
2 + wψψ

2 + wu(u2 − u1)
2 (28)

where J is the cost defined in Eq. (10), and wy , wψ , and wu
are weights for the three additional terms. ρ, θ, ψ, u1, and
u2 are states shown in Fig. 2-A, which are distance, angle for
locating the position, yaw angle, speed of parent node, and the
speed of child node. JRRT is the cost defined for RRT planning
and the cost used for Local Trajectory Refining (LTR).

In the FindNearestNode function, a ball tree data structure
is used to speed up the searching procedure. The task of the
FindNearestNode function is to find the tree node ξnearest in
RRT that has the smallest cost connecting to the sampled tree
node ξrand. For the sake of computational efficiency, the cost
definition JRRT is not used for the metric in the ball tree.
Instead, an approximated form is used to mimic the neural net
cost, and the metric for ball tree J̃BT is defined as follows:

J̃BT = J̃ + wy(ρ sin(θ))
2 + wψψ

2 + wu(u2 − u1)
2

J̃ = wt
2ρ

u1 + u2
+ wax

(u22 − u21)(u2 − u1)

2ρ

+ wκ

(
2θ2

ρ
+

2(ψ − θ)2

ρ

) (29)

where the first term in J̃ approximates the penalty on traveling
time in Eq. (10) by assuming that the motion between parent
and child nodes is the uniformly accelerated motion in a
straight line. The second term in J̃ approximates the penalty of
control effort in acceleration. There is no way to approximate
the control effort on steering angle; thus, it is neglected in
J̃ . This negligence does not significantly influence the value
of cost for a small wδf . The last term in J̃ approximates the
penalty on the path curvature. Intuitively, ψ2

ρ should be used
for approximation. However, it is possible that the vehicle
makes an S-turn, making θ non-zero but ψ zero. In that case,
the intuitive approximation method underestimates the cost of
curvature. To take both θ and ψ into account, the assumption
is made that during the first half of the path, the vehicle turns
from 0 to θ with a constant curvature, and during the second
half of the path, the vehicle turns from θ to ψ.

In the Steer function (Algorithm 2), four inputs are given,
which are the randomized node through sampling strategy
ξrand, the existing tree node in RRT ξnearest, the coefficient
of friction µ and the topology information of the terrain P .
The task of the Steer function is to ensure that ξrand satisfies
the nonholonomic constraints and the dynamical constraints
derived in Sec. II-C and II-D. If ξrand violates the constraints,
the Steer function moves ξrand inside the region where the
constraints are satisfied.

The procedure follows the steps below:
1) Check whether the distance between ξrand and ξnearest is
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Algorithm 2 Steer Function

Input: ξrand: Randomized node of vehicle states, ξnearest:
Nearest node of vehicle states, µ: Coefficient of friction,
P: Terrain point cloud.
Output: ξnew New node of vehicles states.
Main Algorithm:

ρ = CalculateDist(ξrand, ξnearest)
θ = GetPolarAngle(ξrand, ξnearest)
ψ = GetYawAngle(ξrand, ξnearest)
if ρ /∈ [ρmin, ρmax] then

ρ = ρmax
end if
θmax, ∆θmin = GetPolarAngleBounds(ρ)
if θ /∈ [θmin, θmax] then

θ = rand([-θmin, θmax])
end if
ψmin, ψmax = GetYawAngleBounds(ρ, θ)
if ψ /∈ [ψmin, ψmax] then

ψ = rand([ψmin, ψmax])
end if
ξnew = MoveInNode(ξnearest, ξrand, ρ, θ, ψ)
SpeedCheck = CheckChildSpeed(ξnew, ξnearest, µ, P)
if SpeedCheck then

ξnew = SetChildSpeed(ξnew, ξnearest, µ, P)
end if

return ξnew

larger than the predefined maximum distance ρmax or
smaller than the predefined minimum distance ρmin. If
so, move ξrand to where the distance equals to ρmax.
Using this setting, RRT is observed to have better
success rate because the tree grows faster under the same
setting of Ns.

2) Use the regressed ρ-θ reachable set shown in Fig. 2-B
to find the maximum and minimum angle in the polar
coordinate system. If the angle θ is outside the feasible
region, then the value of θ is uniformly randomized
between θmin and θmax.

3) Knowing ρ and θ, the boundaries of yaw angle ψ are
determined by the regressed model shown in Fig. 2-C.
The modification on the yaw angle ψ follows a similar
procedure as the previous step. Moving ρ, θ, and ψ
into the feasible region generates a new node as ξnew.
Note that θ and ψ determine the pose of the vehicle and
they are the critical factors restricting the nonholonomic
constraints. By these constraints, the feasible operation
region for the vehicle becomes relatively smaller com-
pared to the total sampling space. Direct projection of
sampled nodes back to feasible sets on θ and ψ would
cause a severe winding phenomenon and result in more
unexplored regions of the whole state space.

4) Once the path’s shape is guaranteed to be feasible, the
next step is to ensure the feasibility of the speed. The
function CheckChildSpeed is used to check whether
the original speed satisfies the constraints regressed in
Fig. 2-D and the dynamical constraints in Eq. (22),

(26), and (27). If not, the speed in ξnew is uniformly
sampled from the feasible region calculated based on the
regressed reachable set and the dynamical constraints in
SetChildSpeed function.

If any step fails, meaning any feasible region in ρ, θ, ψ, or
speed has an empty set, the Steer function returns nothing,
and RRT samples again.

Algorithm 3 Collision Function

Input: ξnew: New node of vehicles states, ξnearest: Nearest
node of vehicle states, O: Obstacle field, µ: Coefficient of
friction, B: Map bounding position, P: Terrain point cloud.
Output: flag: Collision check boolean.
Main Algorithm:

BoundaryCheck = CheckWithinBoundary(ξnew, B)
FeasibilityCheck = CheckFeasibility(ξnew, ξnearest)
SpeedCheck = CheckChildSpeed(ξnew, ξnearest, µ)
ObsCheck = CheckObsCollisionFree(ξnew, O)
flag = not (BoundaryCheck and FeasibilityCheck and

SpeedCheck and ObsCheck)
return flag

The function Collision (Algorithm 3) checks whether the
newly generated tree node is within the boundaries of the
whole map by using the function CheckWithinBoundary.
It also checks whether the nonholonomic constraints are
satisfied by using the function CheckFeasibility. The dynamic
constraints are evaluated by the CheckChildSpeed function.
The collision with obstacles is checked by the function Check-
ObsCollisionFree. The function Collision returns true if any
of those four checks are false.

IV. THREE PHASE GLOBAL PLANNER (TPP)

The final three-phase global planner (TPP) comprises the
three phases of A*, RRT, and LTR. A* provides the sampling
guidance for RRT. RRT generates a suboptimal trajectory
that obeys the dynamical and nonholonomic constraints as
shown in Sec. III. Finally, the LTR refines the trajectory to
reach lower cost. This hierarchical planner is expected to have
a higher success rate, lower cost, and better computational
efficiency in reasonably long scenarios.

The second phase of the algorithm is detailed in Sec. III.
Thus, this section first describes the remaining two phases. In
particular, the first and third phase of the algorithm are covered
in Sec. IV-A and IV-B, respectively. Then, the hyperparameter
tuning process is explained, and a planning example is given.

A. Path Finding Algorithm A*

The A* path-finding algorithm [36] is executed to find the
shortest path on the 3D terrain. A map with dimensions of l ×
l is discretized into an Ng × Ng grid. The specific values used
in this study are summarized in Table II. The grid configuration
space is restricted to 8-connectivity and the distance metric is
the 3D Euclidean distance as described in [21]. A sketch for
the A* result is shown in Fig. 4-A, where the black disks
are obstacles, the orange crosses are the points in the A*
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Fig. 4. The figures for A* guidance. (A) Illustration of the A* algorithm.
The gray lines form the grid in A*. The black disks are obstacles. The orange
crosses are the solution points provided by A*. (B) Randomization of the
RRT node based on the A* solution. The representation of θA∗ , ρA∗ , and
ψA∗ is based on the X − Y global frame.

TABLE II
SETTINGS IN A* GUIDANCE

Parameters Value
l 120 m
Ng 50

ρA∗,min 0 m
ρA∗,max 15 m
θA∗,min −π rad
θA∗,max π rad
uA∗,min 1 m/s
uA∗,min 9 m/s
σψ

π
4 rad

path, and the green and red dots are the start and goal points,
respectively.

The guidance of A* in the subsequent RRT phase is
sequential instead of the uniform randomization used in the
literature [20]. Suppose there are a total of NA∗ points in the
A* path and NRRT nodes for RRT sampling. The ith sampled
node is guided by the rth point, qr, in the A* path, with
r = ⌊ i

NRRT
NA∗⌋+1. Once the reference point qr is located, an

RRT node is sampled based on this reference point as shown
in Fig. 4-B. The full representation of the posture of a rigid
body is composed of six states in the global frame, which
are the X , Y , and Z positions and pitch, roll, and yaw angles.
However, the Z position and pitch and roll angles are passively
determined by the shape of the terrain, which corresponds
to the vehicle’s steady state. Thus, only three parameters are
free to be randomized. The randomization obeys the following
distributions:

ρA∗ ∼ U(ρA∗,min, ρA∗,max) (30)
θA∗ ∼ U(θA∗,min, θA∗,max) (31)
ux ∼ U(uA∗,min, uA∗,max) (32)
ψA∗ ∼ N(ψA∗,0, σψ) (33)

where ρA∗ is the distance, and θA∗ is the angle in the polar
coordinate system. These two parameters are used to locate
the X-Y position of the sampled node. ux is the longitudinal
speed, and ψA∗ is the yaw angle. ρA∗,min, ρA∗,max, θA∗,min,
θA∗,max, uA∗,min, uA∗,max, and σψ are the hyperparameters, and
their values are shown in Table II. ψA∗,0 is the angle formed
between the previous A* point qr−1 and the next A* point
qr+1, which is assumed to be the average yaw angle in the
current A* point qr. The value of standard deviation σψ is set
to ensure that most sampling of the yaw angle does not form
an obtuse angle with the average yaw angle. Following the
literature [20], the first three randomizations are uniform so
that the vehicle can have an equal possibility of reaching any
combination of location and speed within the hyperparameter
boundaries. In contrast, due to the nonholonomic constraints,
the heading cannot deviate too much from its original value.
Hence, using a normal distribution for heading results in more
feasible connections. In short, the points in the A* path are
sequentially utilized so that RRT can sample around the A*
points to increase the possibility of obtaining feasible nodes.

B. Local Trajectory Refining

As identified in [17] and [21], a local path planner can
be used to effectively optimize the RRT path. This addi-
tional phase demonstrates high efficiency in correcting the
winding phenomenon that is inherent in RRT. In [21], the
local refinement is done by adding small perturbations to the
path points to seek improvements to the cost while obeying
the predefined constraints that are already imposed in the
previous planning phases. This methodology was only used
in path planning algorithms in prior literature. In this work,
a similar methodology is applied in the trajectory planner in
Algorithm 4.

The LTR begins with the TP , the trajectory that is opti-
mized using RRT in Sec. III and strictly obeys the nonholo-
nomic and dynamical constraints. For each iteration, the LTR
algorithm optimizes the trajectory points in random order by
shuffling the array indices. Then, a set of candidate nodes
of vehicle states are created through perturbing the original
trajectory point in the direction of location, speed and yaw
angle with 3 options for each, resulting in a total of 27
nodes. The cost of the trajectory is evaluated 27 times for
each candidate node and the costs are stored in the CostArray.
A new function named FindBestFeasibleStates outputs the
feasible points with the lowest cost. To do that, each candidate
point along with the remaining part of the trajectory needs
to pass the Collision function, with B used as a boundary
check in Collision in Algorithm 3. If the candidate points
cannot optimize the trajectory further, the original trajectory
is returned.

C. Hyperparameter Tuning

There are three categories for the sampling strategies used
during the RRT phase: 1) Sampling at the goal location.
2) Uniform sampling 3) Sampling with A* guidance. The
first and second cases represent the general RRT techniques
for accelerating trajectory generation and exploring the entire
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Algorithm 4 Local Trajectory Refining (LTR)

Input: Ni: Number of maximum iterations, [ϵd, ϵu, ϵψ]:
Adjustable values of vehicle position, speed and yaw angle,
TP : Planned trajectory from RRT, O: Obstacle field, µ: Co-
efficient of friction, B: Map bounding position, P: Terrain
point cloud.
Output: RTP : Refined trajectory plan.
Main Algorithm:

SampleNumber = Length(TP )
OriginalIndexList = 2:SampleNumber
for iteration = 1, · · · Ni do

ShuffledIndexList = Shuffle(OriginalIndexList)
for index in ShuffledIndexList do

Dircs = GetNode(ϵx, ϵu, ϵψ , SampleNumber)
ξindex = TP [index], CostArray = ∅
for dircs in Dircs do

ξcand = GetNewNode(ξindex, dircs)
C = EvaluateCost(TP , ξcand)
CostArray = CostArray ∪ C

end for
ξbest = FindBestFeasibleStates(CostArray, · · · )
TP [index] = ξbest

end for
end for
RTP = TP
return RTP
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Fig. 5. Figures for hyperparameter tuning. (A) The tuning results for RRT
without A* guidance. The best option for endpoint sampling is shown as the
red dot. (B) The tuning results for RRT with A* guidance. In this case, the
endpoint sampling probability is set to its optimal value of 0.1. The probability
of A* sampling is gradually increased from 0 to 0.9. The red dot is the optimal
setting for RRT without A* guidance and the yellow plus sign is the optimal
setting for RRT with A* guidance.

state space. The third case is a new strategy introduced in
this work. The performance of RRT is influenced by the
probability of each case. The hyperparameter-tuning of these
three possibilities is conducted to avoid an unfair weakening of
the benchmark. The possibilities of the three cases are denoted
as p1, p2, and p3, respectively, with

∑3
i=1 pi = 1.
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Fig. 6. Figures for randomized scenarios. (A) The scenario of an open obstacle
field. The gray solid circles are obstacles. The terrain shape is shown as
the contour plot. The greed and red circles are the start and goal points,
respectively. (B) The scenario of a labyrinthine obstacle field.

TABLE III
TERRAIN RANDOMIZATION SETTINGS

Parameters Values
roughness factor 50

width 120 m
length 120 m
height 10 m

maximum slope 0.289 rad
first filter radius 1 px

second filter radius 2 px

Terrain topology and obstacle field layout play significant
roles in characterizing the mobility challenges in 3D terrain
navigation. Therefore, scenarios are generated for tuning and
testing by randomizing these characteristics.

The terrain topology is generated using midpoint displace-
ment fractals, which can produce realistic terrain heightmaps
[37]. Terrain generation is performed in Matlab R2022a, where
the terrain shape is defined by roughness factor, width, length,
height, and maximum slope. The specific settings used are
reported in Table III. The roughness factor is used to define the
standard deviation of Gaussian randomization in the process
of midpoint displacement fractals. Once the randomization is
finished, a Gaussian smoothing filter is applied twice with
different filter radii as shown in Table III.

As for the obstacle field, two categories are considered. The
first category of obstacle field is an open obstacle field. It
features randomly sized obstacles that are dispersed randomly
across the terrain as illustrated in Fig. 6-A. This category
represents areas with scattered rocks and plants. The second
category of obstacle field is a randomly generated labyrinthine
obstacle field. It represents a structured obstacle field as
illustrated in Fig. 6-B.

The tuning for the benchmark “RRT without A* guidance”
only involves p1. The probability p1 is exhaustively searched
from 0 to 1 with 0.05 increments. For each value of p1,
the planner is tested in 300 scenarios, with 150 labyrinthine
obstacle fields and 150 open obstacle fields, each one with a
randomized terrain field. The failure rates of the benchmark
algorithm and the planning times are shown in Fig. 5-A. The
optimal selection for p1 is based on the prioritization of the
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Fig. 7. Example planned trajectory by TPP: (A) The planned path (blue
line) from TPP. Green lines are RRT branches, yellow line is the planned
path directly from RRT and orange crosses are the A* points for guidance.
(B) The speed profile before and after LTR. (C) Illustration that the planned
trajectory strictly obeys the dynamical constraints.

minimum failing rate over the minimum planning time. Based
on this prioritization, p1 = 0.1 is selected as the best choice
in the benchmark.

For a fair comparison, p1 is kept at 0.1 in the proposed TPP
algorithm, and an additional exhaustive search is conducted
for p3 with the same prioritization. The results are shown in
Fig. 5-B, and the optimal selection for p3 is found as 0.55.

D. Planning Example

After hyperparameters are tuned, a typical example demon-
strating the planning process in an open obstacle field is shown
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Fig. 8. The statistics for the A* guidance test. (A) Success rate. (B) Solve
time. (C) Normalized cost.

in Fig. 7. The terrain field here is set as Z = 5 cos(X9 ) cos(
Y
15 ).

The planned path is plotted in Fig. 7-A along with the
candidate tree branches. By design, TPP tends to sample more
points around the A* guiding point as seen from the darker
green color of those regions. Based on the hyperparameters
chosen in Sec. IV-C, there is still a 35% chance that the
algorithm uses a uniform random sampling strategy so that the
whole operation space is explored. In Fig. 7-B, a comparison
of the speed profile is made for the inclusion of LTR. Initially,
the speed is low and jittery by the end of the second phase,
whereas it is higher and smooth after the LTR phase. As
discussed in Sec. IV-B, the algorithm still follows the con-
straints that are prescribed in RRT. This is demonstrated in
Fig. 7-C, where the planned acceleration obeys the dynamical
constraints posed by torque and friction limits.

A more in depth analysis of the planning performance is
given in Sec. V.

V. PLANNING RESULTS

The section includes two parts, namely, Sec. V-A and
V-B, which demonstrate the necessity of each phase. In all
tests, statistical analysis is done through ANOVA with the
significance threshold of 0.05. For multiple comparisons, the
Tukey posthoc test is adopted for pairwise comparisons. In
the bar charts representing the results of these tests, the level
of significance is depicted by the number of asterisks; i.e., ∗
indicates p < 0.05, ∗∗ indicates p < 0.01, ∗ ∗ ∗ indicates
p < 0.001, and ∗∗∗∗ indicates p < 0.0001. The results are
obtained on a I7-12700K desktop with 32 GB memory.

A. A* Guidance Test

To test the effectiveness of A* guidance, two algorithms
are compared in the randomized labyrinthine obstacle field:
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(1) the proposed algorithm TPP (i.e., A*+RRT+LTR), and
(2) RRT+LTR as the benchmark. The reason for using the
labyrinthine obstacle field is to emphasize the advantage that
the first phase can provide. The open obstacle field tends
to conceal algorithm benefits, as the solution is easy to find
without guidance.

Each algorithm is run once in 100 randomized scenarios.
The results of the success rate and the solving time statistics
are shown in Fig. 8-A and B. The success rate of the
proposed algorithm is 100%, whereas the benchmark’s success
rate is 15% lower. Moreover, with the guidance of A*, the
solving time decreases by around 1.2 s and the difference is
statistically significant.

The normalized trajectory costs of the two algorithms are
also compared to study the effect of biased sampling as shown
in Fig. 8-C. The cost values of TPP are used as the baseline
for normalization. The biased sampling introduces around 2%
cost increase for the proposed algorithm when compared to
RRT+LTR, which is acceptable compared to the improvements
in success rate and solving time.

These results show the benefits of A* guidance as the
increased success rate and decreased solving time. However,
the increased normalized cost of the proposed algorithm
implies that the biased sampling sacrifices the trajectory cost
of RRT. Nevertheless, this shortcoming is deemed minor and
thus acceptable.

B. Local Trajectory Refining Test

To test the effectiveness and efficiency of local trajectory
refining (LTR), four algorithms are compared in the open
obstacle field. All four algorithms are guided by A*. The
benchmarks are A*+RRT, A*+RRT*, and A*+RRT*+LTR,
and the target algorithm is the proposed framework TPP. Each
algorithm is run once in 100 randomized scenarios.

The results of mean normalized cost are shown in Fig. 9-
A. The cost values of A*+RRT are chosen as the baseline
for normalization. A*+RRT* has a lower cost than A*+RRT
by 15% with statistically significant difference. However, after
applying the LTR, the costs dropped to around 0.35 without
any statistically significant difference between them.

The mean solving times are also compared as shown in
Fig. 9-B. The mean solving time of A*+RRT* is more than
three times larger than that of A*+RRT, and is 50% larger
than that of TPP. The mean solving time of A*+RRT*+LTR
is the largest.

In this test, all algorithms succeed on all the testing scenar-
ios; i.e., the success rate is 100% for all algorithms. Therefore,
a comparison plot is not provided.

The results show that employing RRT* can provide tra-
jectories with lower cost than using RRT alone, but RRT*
still falls short of having a higher trajectory cost than that
of TPP. Additionally, using RRT* unavoidably increases the
computational burden of the algorithm, making it slower than
the TPP. In the TPP framework, using RRT* instead of RRT
as the second phase does not decrease the trajectory cost,
but approximately doubles the solving time. In this regard,
LTR is found to be a more efficient way to generate a lower
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Fig. 9. The statistics for the local trajectory refining test. (A) Comparison of
normalized cost. (B) Comparison of solving time.

cost trajectory than RRT*, and TPP is found to be the best
combination considering the computational performance and
trajectory cost.

VI. TRACKING RESULTS

This simulation validates the proposed global planner’s
capability of planning a dynamically safe trajectory. To do that,
a local controller is developed to track the planned trajectories
and is described in Sec. VI-A.

The multi-body simulation engine Project Chrono is utilized
as the simulator for validation. The vehicle model represents
an MRZR 4 powered by a gasoline engine [38]. During the
simulation, the global trajectory is planned once at the onset
and is then tracked by the local controllers to follow the
planned path and speed. The benchmark is the path planning
framework presented in [21]. In the benchmark scenarios,
because the benchmark path planner does not plan the speed,
two speed settings, namely 5 m/s and 9 m/s, are used for
tracking, referred as the low-speed and high-speed modes.

The simulation study is divided into three cases. In the first
case, two challenging slopes are designed, testing the impor-
tance of speed planning. In the second case, a challenging hilly
terrain together with a symmetric obstacle field is designed
to validate the capability of making complex coordinations
between steering and speed in off-road navigation. In the third
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Fig. 10. Diagram for look-ahead PID controller. The blue line is the planned
path. The red point pl is the look-ahead point. The green point pq is the
queried point, which is closest to the look-ahead point on the planned path.

case, the algorithms are tested on 100 randomized labyrinthine
obstacle fields, validating the correspondence between the
planned cost and the actual cost, and also evaluating the
performance of the algorithms through the cost definition in
Sec. II-B. In all cases, the coefficient of friction of the terrain
field µ is set to 0.6 to mimic the friction forces in sandy
loam. These three cases together demonstrate the importance
of considering nonholonomic and dynamical constraints for
trajectory planning.

A. Local Controller

A look-ahead proportional-integral-derivative (PID) con-
troller is used to steer the vehicle along the planned paths.
The formulation of the controller is as follows:

δact(t) =

{
δPID(t), if |δPID(t)| < δact,max

δf,max sign(δPID(t)), otherwise
(34)

δPID(t) = Kp,lel(t) +Ki,l

∫
el(t) +Kd,l

del(t)

dt
(35)

where δact is defined as the actual front tire steering angle
input and δPID is the output of the PID controller. A maximum
steering angle δact,max of π

9 rad is allowed in accordance with
the mechanical steering limits of the vehicle. Here Kp,l,Ki,l

and Kd,l are gains of the PID controller. To maintain vehicle
stability while avoiding corner-cutting behavior, an adaptive
look-ahead distance is used to find the tracking point. The
steering controller is illustrated in Fig. 10, where el is the
error in path tracker, dl is the look-ahead distance, pl is the
look-ahead point and pq is the tracking point. The tracking
point is governed by:

dl(t) =

{
dl,p(t), if dl,min < dl,p(t)

dl,min, otherwise
(36)

dl,p(t) = u(t)tl (37)

where u(t) is the current speed of the vehicle and tl = 1 s is
the look-ahead time. The look-ahead distance is lower bounded
by dl,min = 1 m to avoid unstable behavior.

A feedback and feedforward control mechanism as in [39]
is adopted for the speed controller. Given the path and the
speed profile, the acceleration is derived, and two references
are given to the speed controller, namely, the speed reference
ur(s) and the acceleration reference ar(s), both functions of
the traveling distance s. The feedforward part directly calcu-
lates the required force to follow the reference acceleration as

follows:

FFFW = mar + Fdrag (38)
Fdrag =WX (39)

where FFFW is the required force in the feedforward part, and
Fdrag is the force that needs to be compensated and equals to
the weight projected on the x axis of the vehicle frame.

The feedback part is a proportional controller for the error
between the current speed and the reference speed as follows:

FspeedFB = kspeed(u− ur(s)) (40)

where kspeed is the proportional gain.
With the knowledge of two forces, the total required longi-

tudinal force is estimated as follows:

F = FFFW + FspeedFB

= mar +WX + kspeed(u− ur(s))
(41)

Given the required longitudinal force, the command on the
throttle pedal is calculated. In Project Chrono, a simple
powertrain is utilized, and thus the output engine torque is
proportional to the throttle pedal command. Thus, the throttle
pedal command has a linear relationship with the required
longitudinal force as follows.

cthrottle =
F

Fmax
(42)

where 0 ≤ cthrottle ≤ 1 is the throttle pedal command, and Fmax
is the maximum longitudinal force that can be achieved with
full throttle.

B. Challenging Slopes

Two challenging slopes are designed with analytical expres-
sions of their height (Z coordinate) as a function of the X
coordinate. This case mimics the scenarios when the vehicle
is climbing a hill. One slope is expressed as Z = 3

1+e−1.5·X ,
and the other as Z = 9

1+e−0.3·X . The first slope is short but
steep, which is prone to make the vehicle lift off the terrain
at the top of the hill. The second slope is smoother but long,
which imposes difficulty in climbing up.

The simulation results of the first slope are shown in Fig. 11-
A. Without the consideration of dynamical constraints, the
vehicle guided by the benchmark path planner with 9 m/s flies
over the terrain at the top of the hill, imposing danger, as all
wheels lose contact with the terrain. During this flight period,
control over the vehicle is completely lost. The proposed
global trajectory planner is aware of the importance of limiting
the maximum speed, which is bounded by the maximum cen-
trifugal force that overcomes gravity as described in Eq. (22).
Therefore, it can achieve a safe climb. Achieving a similar
result with the benchmark planner requires the user to select
a suitable speed. In this case, a speed setpoint of 5 m/s gives
a satisfactory result, but the benchmark algorithm has no way
of designing this speed.

In the second slope, as shown in Fig. 11-B, the bench-
mark path planner with 5 m/s speed fails due to insufficient
momentum to overcome gravity. Even when the throttle is
commanded at 100% at the end, the traction force is still
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Fig. 11. The tracking results for challenging slopes. (A) Results in the short and steep slope. The three columns represent the results of the benchmark path
planner with 5 m/s, benchmark path planner with 9 m/s, and the proposed three-phase trajectory planner, respectively. The first row shows the shape of the
simulated path in the X-Z plane. The second row shows the profile of the simulated longitudinal speed along the X-axis. (B) Results in the long and smooth
slope. The configurations are the same with (A).

smaller than the gravity force, causing the vehicle to slide
back. In contrast, the proposed planner evaluates the required
momentum successfully and accelerates more before the hill,
preventing the vehicle from losing mobility before reaching
the top. A similar result can be obtained with the benchmark
planner at 9 m/s speed, but again, the algorithm is not capable
of planning this speed on its own.

These results emphasize the importance of speed planning to
safely navigate the vehicle in the off-road context and demon-
strate the speed planning capability of the TPP framework.

C. Challenging Terrain

The challenging terrain is designed as Z =
−9 sin

(
X
15

)
sin

(
Y
15

)
to represent a hilly topology. An

obstacle field is placed to impose navigation challenges and
is designed to be symmetric about the line between the start
and goal positions to make comparisons between left and
right oriented paths fair.

The results of TPP and the benchmark path planner with
5 m/s and 9 m/s speeds are shown in Fig. 12. TPP successfully
navigates the vehicle to the goal as shown in Fig. 12-A.
The planner recognizes the limitation in maximum available
friction force, and thus intentionally turns around the first
obstacle, avoiding large bank angles. After the first obstacle,
the vehicle navigates to approach the hill with the most gentle
slope. The second column of Fig. 12-A plots the actual speed

of the vehicle along the actual path with a color map. The
color from dark to bright represents the speed from low to
high. TPP plans a low speed where the terrain has large bank
angles and the vehicle makes large turns, showing its capability
to understand the limitation of maximum speed bounded by the
maximum centrifugal force along the geodesic curvature that
the available friction force can overcome. The third column of
Fig. 12-A compares the planned versus tracked speed. With
TPP, the vehicle can track the planned speed well due to the
consideration of the dynamical limits in the planning.

In Fig. 12-B, using the benchmark planner at 5 m/s, the
vehicle is navigated to track along the path that has large bank
angles, because the planner lacks consideration of dynamical
constraints. On the first convex hill, the vehicle is laterally
dragged down by gravity due to insufficient traction, further
causing the vehicle to lose mobility before it climbs. As a
result, the vehicle loses control at the end of the first convex
hill and crashes into an obstacle.

In Fig. 12-C, using the benchmark planner at 9 m/s, the
vehicle traverses through the first convex hill, though there
are large deviations in path tracking. The vehicle starts losing
control when moving down at high speed, and cannot reach
the goal.

These results demonstrate the capability of TPP to make a
complex coordination of speed and steering for a purposeful
exploitation of vehicle dynamics to navigate successfully. The
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Fig. 12. Tracking results on the challenging terrain with (A) the proposed three-phase planner, (B) the benchmark path planner with 5 m/s, and (C) the
benchmark path planner with 9 m/s. For each subplot, the first column shows the result of path tracking performance. The terrain topology is depicted by
the contour plot. The black circles are the obstacles. The dashed black rings are the safety margin considering the half-width of the vehicle and the tracking
error. The green and red circles are the start and goal points. The second column shows the speed performance. The speed is overlaid on the path with a
color map. A lighter color represents a faster speed. The third column shows the tracked speed vs. planned speed.

importance of the capability is underlined by the inability
of the benchmark algorithm to achieve similar performance,
neither at 5 m/s nor at 9 m/s.

D. Randomized Scenario

The algorithms are tested in 100 randomized scenarios to
evaluate their actual cost performance. To find the correlation
between the planned cost and actually tracked cost, A*+RRT
is used as an additional benchmark.

The statistics are shown in Fig. 13-A. Except for the path
planner with 9 m/s, all algorithms have a 100% success rate.
When the vehicle makes U-turns, the available friction is not

sufficient to let the vehicle track the path with 9 m/s, making
the vehicle slide and lose control. This could ultimately result
in crashes or complete loss of mobility.

In terms of the actual tracking cost metric, the four groups
all have a statistically significant difference between each
other. The cost values are normalized based on the cost of
the proposed method. The benchmark path planner with 5 m/s
has the second lowest cost due to its faster speed than the
two phase algorithm, while the benchmark path planner with
9 m/s has the largest value because the vehicle consistently
loses control and slides more than the other algorithms. The
biggest difference between each algorithm lies in the time-to-
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Fig. 13. The results in the randomized scenario. (A) Statistics of the tracking results in the randomized scenario: success rate, tracking cost, mean time to
goal, and planned vs. tracking cost. (B - E) An example randomized scenario. (B) Results with the proposed three-phase algorithm. (C) Results with A*+RRT.
(D) Results with benchmark path planner with 5 m/s, and (E) Results with the benchmark path planner with 9 m/s.
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goal metric, which highlights the speed benefit of TPP. The
planner with 9 m/s has the smallest value when it is successful,
but it also has the largest failing rate. Thus, considering both
safety and mobility, TPP has the best performance. Without
the LTR phase, A*+RRT results in the longest traveling time.

To further demonstrate the benefits that are gained from
adding LTR, a plot that compares the planned and actual costs
is provided. Because the TPP uses LTR to refine the trajectory,
it has lower cost. This benefit extends to the actual cost, as
the actual cost is significantly lower with TPP compared to
A*+RRT.

An example showing the typical performance of each
controller is provided through Fig. 13-B to E, representing
TPP, A*+RRT, benchmark planner with 5 m/s and benchmark
planner with 9 m/s. For each algorithm, a planned path versus
tracked path is given in the first figure. The second plot is the
speed plot along the path where the color on the path indicates
the speed. The last plot is the planned speed versus the actual
speed.

TPP plans lower speed when the vehicle encounters large
turns and speeds up when the planned path is straight.
A*+RRT has lower speed and more speed oscillation com-
pared to TPP due to the higher trajectory cost of the planned
trajectory. The vehicle takes 100 s to reach the target, resulting
in a higher actual cost than TPP. For the benchmark planner
with 5 m/s, the vehicle also succeeds in completing the path.
The consideration of only the nonholonomic constraints is
sufficient for navigating the vehicle at low speed when the
terrain is not challenging. In this case, the vehicle takes
60 s to travel to the goal, which is around 15 s longer
than that of TPP. In the benchmark planner with 9 m/s,
the vehicle first shows large deviations of the actual path
from the planned path and then crashes into the obstacles.
This demonstrates the importance of considering dynamical
constraints when the vehicle is traveling at high speed. In this
case, the consideration of only the nonholonomic constraints
is not enough.

Thus, concluding from these results, the benefit of adding
LTR is further demonstrated by showing the improved tracking
cost as well as the mean time to goal. The ability to take
dynamical constraints into account is shown by maintaining a
100% success rate while achieving higher mobility than that
of the benchmark planner with 5 m/s speed. The proposed
global planner is able to fulfill its task of planning dynamically
feasible trajectories while increasing mobility on off-road 3D
terrains.

VII. CONCLUSIONS

This work develops a novel three-phase algorithm for global
trajectory planning on off-road 3D terrains. Its novelty lies in
the hierarchical three-phase architecture designed for lower
trajectory cost, computational efficiency, and success rate.
The time-efficient design considers the nonholonomic and
dynamical constraints for vehicle safety and mobility.

The importance of the three-phase framework is demon-
strated by showing the contribution of each phase one by one.
The contribution of the first phase, namely A* guidance, is

shown by comparing the algorithms with and without A*.
The results validate that the success rate of finding a feasible
trajectory is greatly increased with the sampling guidance. The
contribution of the third phase, namely LTR, is demonstrated
by comparing the algorithms with and without LTR, and
also by replacing RRT with RRT*, which is known for its
asymptotic optimality. With statistically significant differences
in the planning cost and solving time, it is shown that
adding LTR is an efficient way to smooth the trajectory
to gain a solution with lower cost. The contribution of the
second phase is demonstrated in high-fidelity simulations as
accounting for the nonholonomic and dynamic constraints.
The proposed algorithm is compared to a state-of-the-art
global path planning algorithm. It is shown that the proposed
algorithm successfully navigates the vehicle in challenging
slopes and terrains, while the benchmark fails in at least one
of the tasks. The results show that the constraints included
in the proposed planner can successfully avoid losing contact
with the terrain or losing control due to the lack of friction
force or engine torque, thereby improving vehicle safety. Then,
the proposed algorithm is tested in randomized terrain and
obstacle fields. Vehicle safety is further validated through a
perfect success rate. The ability of the proposed algorithm
to plan a trajectory with high mobility is also validated by
showing the low tracking cost and short mean time to the
goal.

Therefore, the proposed algorithm is an important step
toward off-road 3D navigation due to its high success rate and
ability to account for vehicle safety and mobility constraints
in a computationally efficient way.

Future work involves taking the terrain roughness and
traversability into account, such as rock, vegetation, and mud.
Adaption to uncertainties due to incomplete or inaccurate
terrain information as well as partial observability is expected
to make planning more robust. The computational performance
can be further improved by applying parallel computing to the
third phase. A more sophisticated design of the local controller
can be used for better tracking performance. Finally, testing
the algorithm experimentally on a physical vehicle is also of
interest.
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