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Abstract— Collision imminent steering is an automotive ac-
tive safety feature designed to swerve and avoid an obstacle on
the road if the vehicle detects a forward collision cannot be
avoided by braking alone. A collision imminent steering system
is formulated in this paper to generate an optimal control
sequence that performs an aggressive lane change maneuver in
the shortest distance possible in a highway driving environment.
The algorithm uses nonlinear model predictive control that
pushes the vehicle to its dynamic handling limits, which are
established through limits on the tire slip angle. Additionally,
the algorithm is developed to leverage active four wheel steering
to improve the performance over traditional front only steering.
Numerical results show a window exists for which the vehicle
can change lanes safely, even at highway speed. A Pareto front is
generated to quantify the trade-off between maximum allowable
tire slip and safe steering distance.

I. INTRODUCTION

Next generation vehicles are able to exploit an increased
amount of sensor information and embedded computing
capabilities, which support more sophisticated active safety
features. One such emerging feature is collision imminent
steering (CIS). In CIS, the vehicle detects when a forward
collision cannot be avoided by braking alone and implements
a steering command to make, if feasible, a lane change
maneuver avoiding the obstacle. The effectiveness of a CIS
system thus relies on the minimum distance required to safely
change lanes, which pushes the vehicle to its dynamic, and
often, nonlinear limits.

In CIS, the optimal steering control sequence or a desired
reference trajectory is not necessarily known a priori. Hence,
the two main technical challenges to be addressed are the
construction of an optimization problem that guarantees
a collision-free stable solution, and solving said problem
for a set of future control inputs, and corresponding state
trajectory, that properly accounts for vehicle nonlinear dy-
namics. To address these challenges, this paper presents an
algorithm that solves for a future steering sequence where the
corresponding predicted vehicle trajectory reflects the vehicle
dynamics and optimizes a set of hard constraints based on a
highway environment. This is accomplished using nonlinear
model predictive control (MPC).

Early implementations of CIS, also referred to as collision
avoidance, use variations of reference trajectory controllers.
Often, a reference trajectory is generated first as a straight
line between two points on a topographic grid, presenting a
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start point and a desired trajectory to the end point. Then,
obstacle avoidance is introduced as a quadratic state penalty
function that a linear controller can minimize online [1].
Alternatively, a reference trajectory can be generated a priori
as a minimum of a potential function where the distance to
an obstacle relates to the potential energy. Then a low level
PID controller can navigate the desired course [2]. A key
characteristic of this category of methods is that they cannot
distinguish between a difficult trajectory and an infeasible
trajectory that crashes into an obstacle. Additionally, they
must use conservative trajectories to ensure the PID con-
troller is capable of following the reference trajectory.

To ensure a controller can follow a reference trajectory at
the dynamic limits of the vehicle, advanced controllers have
been developed. One such approach uses an offline optimal
trajectory planner to generate the theoretical fastest trajectory
through a race course. With a known reference trajectory,
an advanced steering controller, properly accounting for
vehicle nonlinearity, was able to navigate a passenger vehicle
through a race course. While this method can push the
vehicle towards its dynamic limits, the desired reference
course is still required to be generated a priori. Further,
tracking a trajectory that is optimized offline does not always
exploit the full capability of the vehicle [3].

Recent work has made progress towards overcoming these
limitations. Specifically, MPC formulations have been cre-
ated to generate a control trajectory through an unstructured
environment for the purpose of maximizing the mobility of
a vehicle even during obstacle avoidance without a priori
information [4], [5]. However, these formulations are not
designed as an active safety feature to wait until the last
possible instance to intervene, a requirement of CIS.

Researchers also studied methodologies to alleviate the
impact of a collision if it cannot be avoided. One such
example demonstrates a vehicle initiating a spin to mitigate
a T-bone collision by causing a side-side collision [6]. In
this scenario, the initial state is known, and the final vehicle
rotation defined, but the control sequence and progression of
remaining states are not known . In this case, MPC was used
to rotate the vehicle 90◦ in the minimum amount of time,
but did not incorporate specific environmental constraints
relevant to a lane change.

In the context of a lane change maneuver, a linearized
vehicle model was previously used to investigate blended
control for near-collision encounters in [7]. In this work
two lanes were modeled and an MPC controller was used
to change lanes. However, the host vehicle was traveling
significantly slower than highway speeds and the controller
was designed to avoid the vehicle’s dynamic limits, as the
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methodology only addresses linearized system dynamics.
Compared to the state-of-the-art, the CIS system presented

in this paper has two novel contributions. First, an objec-
tive function and set of constraints are derived from the
highway lane environment and vehicle stability analysis in
terms of side slip. Second, a nonlinear MPC formulation is
developed that discretizes the future states in a manner that
ensures the control sequence matches expected states, and the
discretization is C2 smooth for gradient-based optimization.
Combined, these two features allow the optimizer to solve
simultaneously for a matching control sequence and trajec-
tory for a lane change, and said trajectory is guaranteed to
be collision free under the working assumptions.

The remainder of this paper is organized as follows. Sec.
II details the highway driving environment, host vehicle, and
the criteria for a successful lane change. Sec. III defines
the optimization problem and numerical formulation, as well
as details specific to the MPC implementation. Sec. IV
presents the numerical simulation results for the optimal lane
change, and discusses the trade-off of allowable tire slip and
performance using a Pareto front. Conclusions and suggested
future directions are given in Sec. V.

II. HIGHWAY DRIVING ENVIRONMENT AND VEHICLE
DYNAMICS MODEL

A highway driving environment is challenging due to the
speeds at which the CIS maneuver must take place and the
space available to maneuver. The CIS system is intended to
perform an aggressive lane change maneuver when it detects
a forward collision is imminent and the vehicle has passed
the safe braking threshold. The safe braking threshold can be
estimated theoretically by calculating the distance the vehicle
would need to come to a full stop at maximum deceleration.

In limit braking, the vehicle slows at its maximum de-
celeration defined by the coefficient of friction. The results
presented in this paper are based on a coefficient of friction of
0.8 and a vehicle speed of 30 m/s. This coefficient of friction
represents standard tires on dry pavement [6], and this speed
represents 67 mph (108 kph), which is a reasonable highway
speed in The United States. Based on these values, a vehicle
traveling at 30 m/s decelerating to 0 m/s at 0.8g requires a
stopping distance of 57.3 m over 3.82 s.

Alternatively, the proposed CIS algorithm calculates a
set of future control inputs for which the corresponding
trajectory changes lanes in the shortest distance possible. At a
high level, the intended trajectory must satisfy three criteria:
the vehicle must completely change lanes prior to passing
the obstacle, the vehicle cannot exceed the lane boundary of
the lane it changes into, and the vehicle must stabilize in
the next lane. Fig. 1 illustrates a successful lane change, and
mathematical formulation of these three criteria are derived
in Sec. III.

The second notable characteristic of the highway environ-
ment is the space allotted to the lanes. Based on United States
building code, the minimum lane width is set at ylane = 3.7
m, implying a half-width of 1.85 m [8].

The host vehicle is modeled as a 3 degrees of freedom
(3DoF) bicycle model with four wheel steering using the

Fig. 1. A topographical view of a successful lane change. The host vehicle
starts at the left side of the image and travels to the right. The vehicle’s
center of gravity trajectory is depicted as a solid green line. The host vehicle
clears the starting lane boundary before passing the obstacle, stays within
the second lane outer boundary, and has a stable trajectory at the end of the
maneuver.

TABLE I
HOST VEHICLE PARAMETERS BASED ON 2017 BMW 740i. THE UPPER

TABLE IS VALUES FROM MANUFACTURER’S TECHNICAL SPECIFICATION.
THE LOWER TABLE IS VALUES DERIVED AS NEEDED FOR 3DOF MODEL.

Vehicle Parameter Parameter Symbol Value
Vehicle mass m 2041 kg

Weight Distribution - 51.4/48.6 F/R
Wheel Base - 3.2 m

Vehicle Width - 1.8 m
Front wheel to CG distance l f 1.56 m
Rear wheel to CG distance lr 1.64 m

Yaw moment of inertia Izz 4964 kg ·m2

nonlinear Pacejka tire model [6]. This decision is based on
prior work that has shown that this level of detail is sufficient
for MPC-based obstacle avoidance even at the dynamic limits
when obstacles are not significantly wide [9]. Further, four
wheel steering has previously been shown to improve vehicle
tracking of a predefined trajectory [10], and is currently
available in many luxury vehicle models. For this paper, the
3DoF vehicle model is used both as the plant model and
the MPC model as a first step in the investigation of the
proposed concept.

The vehicle parameters used in this work are based on
a luxury sedan and are reported in Table I. Most of these
parameters are readily available from manufacturer’s pub-
lished technical specifications and remaining parameters are
estimated for a sedan [11].

Recall that the intention of the system is to change lanes
in the shortest distance possible. The 3DoF model only
considers the vehicle’s CG position; thus the lane change
criteria must be adjusted to include the vehicle half width to
avoid body clipping. The lane change threshold, ythreshold, is
set at 3.25 m, corresponding to 1.85 m for lane half width
plus 0.9 m for vehicle half width plus 0.50 m as a buffer.
Similarly, the outer lane boundary, youter, is set at 4.15 m,
corresponding to 5.55 m for one and a half lane widths minus
0.9 m for vehicle half width minus 0.50 m as a buffer.

As an initial simplification, the CIS system only has
control over the steering and is not allowed to modify
the vehicle speed. Accordingly, the 3DoF vehicle model is
modified to maintain constant longitudinal velocity. Further,
all longitudinal forces in the vehicle frame are simplified to
zero as they are significantly smaller than the lateral forces.

The states of the vehicle model are detailed in (1), control
input in (2), and simplified vehicle dynamics in (3).
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Here, Fy,( f ,r) is the tire force in the lateral frames of the
front and rear tires, respectively. Additionally, the global
coordinate frame is aligned such that the x axis is parallel to
the lane, and y axis is perpendicular to the lane.

The tire lateral force is calculated in (4) based on the
Pacejka tire formula. The tire parameters and variables are
defined in Table II. These tire properties are chosen to
represent a tire with maximum grip of 0.8g, peak lateral
force at 12◦ slip, and 10% force relaxation at high slip. The
parameter l is taken as l f for front wheel velocities and −lr
for rear wheel velocities, in accordance with vehicle yaw
rate.

Fy = µFzσy

σy =−
Vy

Vx
sin(C arctan(B

Vy

Vx
))

Vx = u cos(δ )+(v+ωl)sin(δ )
Vy =−u sin(δ )+(v+ωl)cos(δ )

(4)

(3) and (4) dictate the nonlinear system dynamics. In the
next section, the system dynamics are used to develop an
MPC formulation for the CIS maneuver.

III. OPTIMAL CONTROL PROBLEM AND MODEL
PREDICTIVE CONTROL FORMULATION

The MPC implementation developed in this work uses a
direct shooting method solved using forward Euler integra-

TABLE II
TIRE PROPERTIES

Tire Parameter Parameter Symbol Value
Coefficient of Friction µ 0.8

Tire Property B 13
Tire Property C 1.285

Tire Longitudinal Velocity Vx
Tire Lateral Velocity Vy

tion expressed as follows.

x(ti+1) = x(ti)+ ts
dx
dt

∣∣∣
t=ti

x(t0) =
[

0 0 0 u0 0 0 0 0
]T (5)

There are two distinct phases of the MPC: propagating
the dynamics forward and evaluating the resulting trajectory.
The differential equations describing the vehicle dynamics
do not have a closed form solution. Therefore, a numerical
integration scheme is used, and the MPC is developed
to handle the explicit integration points. This formulation
incorporates the system dynamics constraints automatically
in the forward Euler method; thus they are not explicitly
defined in the optimization problem.

Piecewise constant control inputs are used to simulate
modern automotive communication networks that use loop
timing. The algorithm solves for a series of constant front
steering and rear steering rates, where each pair is executed
by the vehicle for a time length of tc. The algorithm uses a
prediction horizon of length th, which can be a non-integer
multiple of tc. Additionally, the forward Euler method uses
an integration time step of ts, which should be an integer
divisor of tc. For this implementation, an integration time
step of ts = 10 ms and a control input length of tc = 100 ms
are used, as 10 Hz is a reasonable loop time in automotive
applications. Offline analysis showed 10 ms integration steps
as fine enough to accurately simulate the dynamics without
excessive computational cost. In the absence of a general
method for determining the proper time horizon in MPC,
numerical testing was performed and th = 2.51 s was found
to work well for this scenario.

The mathematical representation of the objective function
and constraints are derived in the following subsections.

A. Objective Function: Distance to Clear Obstacle

The CIS system is designed to minimize the x distance
traveled when the vehicle safely crosses into the next lane.
This formulation allows a higher level controller to wait
as long as possible before overriding the human driver.
Numerically, this discrete lane change event occurs at the
vehicle’s x position when the vehicle’s y position exceeds
ythreshold. The x position when crossing the threshold is
found through a linear interpolation between the integration
points before and after crossing, represented by xk and xk+1,
respectively. Thus, the objective function is expressed as
follows.

xobj(xk,xk+1) = xk +
yk+1− yk

xk+1− xk
(ythreshold− yk) (6)

B. Nonlinear Tire Constraint

Often, the lateral force of modern automotive tires relaxes
at high slip angles. As a result, local minima occur that can
be challenging for gradient based optimization. To avoid lo-
cal minima when solving the MPC optimization, constraints
are implemented on the tire slip angle.

Fig. 2 plots the normalized tire force versus the tire slip
angle for pure longitudinal velocity. In this model, the front
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Fig. 2. The lateral force in the tire frame is plotted in solid blue, and
the lateral force in the vehicle frame is plotted in dashed blue. Due to the
coordinate transformation, at high slip angles the vehicle lateral force decays
faster than the tire lateral force.

and rear tires have the same normalized performance, but
actual tire force will vary due to differences in weight
distribution. For this tire model, only the lateral force is
considered; the longitudinal tire force is assumed to be zero.

Additionally, the normalized lateral force in the vehicle
frame is plotted, which is the tire lateral force rotated by
cos(δ ). At small angles, the tire lateral force mirrors to the
vehicle lateral force, but at high slip angles the vehicle lateral
force decays faster than the tire lateral force with increasing
slip angle.

Fig. 2 shows there are two local minima of the lateral
forces. For δ ∈ [0◦,35◦], the minimum lateral forces occur
at 0◦ and 35◦. As a result, at high slip angles, gradient based
optimization would have numerical difficulty. For example,
if the tires are at 20◦ steering angle, then they create a lateral
force in positive y, causing a turn. If the optimizer wanted
to return the vehicle to straight, the gradient information of
the vehicle lateral force would indicate reducing lateral force
is achieved by increasing the steering angle. This causes a
local minima where the optimizer would not command the
steering angle to zero.

Without any countermeasures, entering this local mini-
mum is highly likely because the algorithm is designed
to push the vehicle to its dynamic limits. As a result, a
new constraint is introduced to avoid local minima in the
tire force. In Fig. 2, the steering angle and slip angle are
equal, because the vehicle is traveling purely straight ahead.
When the vehicle experiences a non-zero lateral velocity
and yaw rate, this is not necessarily true; see, e.g., Fig. 3
showing differences in the tire and vehicle forces due to three
variations in the lateral velocity. Note the steering angle that
produces the peak lateral force shifts as a function of the
lateral velocity, and by extension, yaw rate.

The stable tire region is where dFy
dδ

> 0, because this is
the region where the gradient information can return the
steering wheels to neutral. Fig. 3 shows simply limiting the
steering angle does not ensure the optimizer remains in the
stable region. By introducing lateral velocity, the tire force
and vehicle force plots are translated and slightly stretched.
For given lateral velocities and yaw rates, there is a neutral
steering angle where the tires do not generate lateral force.
The slight stretching effect means limiting the steering angle
to ±8◦ of the neutral steering angle does not ensure a stable
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Fig. 3. The same variables of Fig. 2 are plotted, but for variations in
vehicle lateral velocity. For this example, vehicle yaw rate is zero.

tire region, either. When the vehicle is traveling straight
forward, the difference in steering angle where the peak tire
force and peak vehicle force occurs is approximately 4◦.
However, when lateral velocity is introduced, the steering
angle for peak vehicle force changes, and the difference
between peak tire and vehicle force angles changes, as well.

Defining the tire stability constraint by dFvehicle
dδ

> 0 ensures
the steering angle is stable and that the optimizer can make
full use of the peak vehicle lateral force. However, numerical
simulation of the lane change maneuver shows only moderate
lateral velocity and yaw rate. Separate analysis of various
combinations of lateral velocity and yaw rate shows that
limiting the slip angle to αpeak = 8◦ maintains stability. While
this does not allow the optimizer to make maximum use of
the available tire force, there are diminishing returns near
the peak slip angle. 8◦ allows for the use of 98% of peak
tire force, improves computational cost, and suits the Pareto
front analysis in Sec. IV.

The slip angle is defined in (7), and corresponding slip
angle constraint in (8).

α = δ − arctan(
v+ωl

u
) (7)

α(ti)≤ αpeak ∀ t ∈ [t0, th] (8)

The slip angle constraint on the front and rear tires
is enforced at every integration point in the state trajec-
tory. Depending on the number of integration points used,
there can be a significantly large number of constraints,
which increases the computational complexity. Alternatively,
a switching quadratic function is introduced as a constraint
aggregation method. In general, a set of constraints enforced
at each integration point is represented as a single constraint
shown in (9).

g(ξ , ξpeak) =
n

∑
i=1

H(ξi−ξpeak) (ξi−ξpeak)
2 (9)

(9) uses the Heaviside step function, H(x), which is zero
for arguments below zero and one for arguments above zero.
This switching aspect allows the constraint to be a quadratic
with respect to the set of ξ that violate the ξpeak parameter.
Additionally, this constraint aggregation is C2 smooth, which
is well suited for gradient based optimization. (9) is non-
negative and equal to zero when all ξ states are below ξpeak.



As a result, this constraint is posed as an equality constraint
for numerical optimizer efficiency.

C. Lane Constraint

Previously in Sec. II, the outer lane criterion was described
and a numerical value for the outer threshold derived from
the lane and vehicle widths. Based on the global coordinate
frame’s alignment with the lanes, the outer lane bound-
ary constraint is enforced purely based on the vehicle’s y
position. The lane constraint is represented in (10). Using
the same constraint aggregation as the slip angle, the lane
boundary constraint is implemented following (9).

y(ti)≤ youter ∀ ti ∈ (t0, th] (10)

D. Stable Terminal State

In the context of highway driving environment, it is
important for the final trajectory to return to a stable tra-
jectory in the next lane. A candidate trajectory is considered
stable in this work if the vehicle is traveling purely straight
ahead in the next lane at the end of the prediction horizon.
Specifically, a stable trajectory is defined by (11).

xstable =
[

x ylane 0 u0 0 0 0 0
]T (11)

The stable state is defined recursively with regards to the
terminal x position. This implies the optimizer does not seek
to adjust the final x position, which is consistent with the
evasive maneuver; the optimizer only looks to reduce the
x position when crossing the obstacle, not the terminal x
position. Matching the enforced seven states at the final
integration step are introduced as seven equality constraints.

E. Steering Rate and Steering Angles

The final constraint set is to address the physical limita-
tions of the vehicle. Specifically, the front and rear wheels
are both steering angle and rate limited. Typical front wheels
have a steering angle range of ±35◦, i.e., δfront,max = 35◦.
As an approximate benchmark for the rate limit, a human
driver is estimated to traverse three complete rotations of
the steering wheel, spanning full left to full right, in approx-
imately 1.0 s. The corresponding 70◦ of tire steering gives an
approximate allowable steering rate of δ̇front,max = 1.2 rad/s.

Rear wheels in active rear steering vehicles are not con-
sciously controlled by the driver, but rather by an on-board
controller that manages a drive-by-wire system. Active rear
steering equipped vehicles have smaller ranges of motion
on the rear wheels, approximately δrear,max = 10◦, and lower
steering rates, approximately δ̇rear,max = 0.6 rad/s.

This CIS formulation can handle conventional steering
architectures by setting the rear steering rate at 0 rad/s.

F. Optimization Problem

The optimization problem is posed in (12) by incorpo-
rating the previously defined objective function and various
constraints. The constraint on steering rate does not use the
same constraint aggregation in (9), because the steering rate

is a linear constraint with respect to the design variables and
thus implemented as bounds in numerical optimization.

min
u

xob j(xk,xk+1)

subject to g(y, youter) = 0
g(α front, αpeak) = 0
g(α rear, αpeak) = 0
g(δ front, δfront,max) = 0
g(δ rear, δrear,max) = 0
x(th)i− (xstable)i = 0 ∀ i ∈ [2,8]

|δ̇ f (ti)| ≤ δ̇front,max

|δ̇r(ti)| ≤ δ̇rear,max

(12)

IV. NUMERICAL RESULTS

(12) is transcribed into Python for a proof-of-concept
numerical simulation. Based on the limits for peak slip angle
shown in Sec. III-B, αpeak is set at 8◦. An open source
implementation of SLSQP is used to solve the nonlinear
optimization problem, and solves in approximately 7 minutes
on a Chromebook hardware platform using a Intel Celeron
1.60 GHz processor.

Fig. 4 shows four concurrent plots as the vehicle carries
out the optimal trajectory. The top pane shows the x-y
trajectory of the CG. The solid orange block represents the
obstacle that fully blocks the lane and is located just as the
optimal trajectory has completely left the original lane. The
star on the CG trajectory at the crossing of the obstacle
denotes the crossing of ythreshold. After clearing the obstacle,
the center line of the next lane is plotted in a green dashed
line to show the desired stable trajectory at the end of the
maneuver. Additionally, the outer lane threshold is shown
with a red dashed line with the x-y trajectory coming close
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Fig. 4. The four concurrent plots, plotted against x position of the maneuver,
show the various states and control inputs during the aggressive lane change.



to the limit. The second plot shows the steering angle of
the front and rear tires, as well as vehicle yaw angle, plotted
against the x position of the trajectory. The vehicle makes an
aggressive turn to the left to initiate the maneuver, but then
varies the steering angle to maintain the front and rear slip
angles at their limits. The third plot shows the instantaneous
slip angle on the front and rear tires. The algorithm attempts
to push the tires to the peak lateral force as quickly as
possible in the trajectory, then turns back to avoid exceeding
the lane boundary. The fourth plot details the control input
for each time interval tc. The rear wheel steering command
reaches both the steering angle and steering rate constraint,
implying the assumed mechanical performance of the rear
steering mechanism is a limiting factor. It is feasible that the
system performance could be improved by improving the
capabilities of the rear steering system.

For the vehicle model described, the optimal lane change
requires 31.0 m to safely change lanes, 46% less than the
57.3 m required by limit braking. By this result, there is 26.3
m of travel after which the vehicle cannot brake in time, but
can swerve safely to avoid the collision.

An important result of the optimal solution versus an
expected response from a human driver is when the vehicle
initiates the first turn to the right. In the case of the optimal
solution, the vehicle begins to turn to the right prior to
clearing the obstacle. This is arguably counter-intuitive to
the average human driver, as a panic reaction is likely to
be to hold the left turn until the obstacle is cleared. The
optimizer does not hold the left turn, because then the later
state trajectory would push beyond the lane boundary. The
optimizer is likely able to outperform a common driver, and
certainly a distracted driver, because the optimizer appro-
priately balances current and future actions with later state
trajectory predictions.

The slip angle can be a crude measure of the aggressive-
ness of the maneuver, because higher slip angles generate
higher lateral forces. This implies a direct trade-off in
maximum allowable slip angle versus distance to clear, as
lower slip angles cannot initiate the turn as aggressively. By
varying the maximum allowable slip angle and reevaluating
(12), a Pareto front is generated in Fig. 5.

The effect of diminishing returns in increasing the max-
imum allowable slip angle is evident in the Pareto front.
At higher slip angles, there is only a slight improvement in
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Fig. 5. Increasing the maximum allowable slip angle improves the
effectiveness of the CIS system, but with diminishing returns.

performance. However, even at small allowable slip angles,
the distance to clear the obstacle outperforms limit braking.

V. CONCLUSION
In this work, a CIS algorithm is formulated as a nonlinear

control problem to change highway lanes in the shortest
distance possible. This work incorporates specific constraints
on the environment to ensure an optimal solution is collision
free and avoids crossing the outer lane boundary. Addition-
ally, constraints addressing nonlinearity of the tire forces are
developed to avoid local minima during the optimization.

The resulting optimal trajectory changes lanes in a distance
significantly shorter than limit braking, showing that a win-
dow exists where the vehicle cannot simply brake to avoid
collision, but can swerve to safely change lanes. Additionally,
it is shown there are diminishing returns of the effectiveness
of the algorithm when pushing to the vehicle handling limits.

Future work is focused on expanding the context to curved
roads, investigating alternative problem formulations such as
minimizing the peak slip angle in the predicted trajectory,
and improving the computational speed.
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