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Abstract

Progress toward the fully automated highway will first require that manual

and automatic control be successfully combined. Determining a combina-

tion that preserves the best performance features of human and automatic

control yet allows either driver to cover for the faults of the other is a chal-

lenging problem. In this study, we invited 11 participants to drive a sim-

ulated vehicle through a course with obstacles to investigate the ability of

human-automation teams to cover for human and automation faults. We

developed the automation system using model predictive control and im-

plemented three schemes under which the human would share control with

the automation. In Autopilot, the human driver initiated a takeover with a

button press whereas in Active Safety the automation initiated a takeover

when it anticipated an obstacle collision. In Haptic Shared Control the hu-
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man was free to invoke a transition by activating or relaxing muscles. In

addition, we included two baseline conditions in which control was given in

whole to either the human or the automation. We compared performance in

the five conditions by analyzing obstacle hits and metrics related to driving

maneuvers around the obstacles that were avoided. Relative to individual

human or automatic driver performance, we found that control sharing re-

duced obstacle hits under fault conditions but also occasionally resulted in

obstacle hits under no-fault conditions. Our findings further indicated that

team performance suffered most under Autopilot for automation faults and

suffered most under Active Safety for human faults. Haptic Shared Control

supported the best overall team performance.

Keywords: Haptic shared control, Human-automation interaction,

Intelligent transportation systems, Human Factors

1. Introduction

Human error accounts for an estimated 92% to 96% of traffic accidents

[1]. The self-driving car promises to address this problem by removing human

drivers from the control loop. Undeniably, automation systems are capable

of faster response times, able to handle greater amounts of information, and

able to process information more quickly and in a more repeatable fashion

than human drivers. However, automation systems are subject to faults and

misses as well, even if these rates have not been established given the short

time self-driving cars have been on the road. It is also likely that society will

not tolerate automation faults at the same high rates it currently tolerates

human faults. Human drivers are therefore retained in a supervisory role or
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asked to remain available for immediate control take-over, oftentimes without

warning [2]. Indeed, until self-driving cars are reliable in all foreseeable and

even unforeseeable situations on the road, occasions will arise in which control

must be transferred back to a human driver, perhaps on short notice.

Humans bring capabilities for driving a vehicle that are in large part com-

plementary to the capabilities of automation systems. The human driver

offers superior perception and judgment, is capable of making high-level de-

cisions, brings rich prior experience, and brings an ability to generalize from

one type of experience to another. To combine the capabilities of human and

automatic drivers, one might imagine a scheme in which control authority

is given to whichever agent outperforms the other in each traffic situation

or time interval on the road. Ideally, safety would be guaranteed and the

addition of automation would free attention for the human driver. However,

a clean division and means of transitioning control authority is difficult to

find.

Various schemes for combining the capabilities of human and automatic

drivers have been proposed, differing primarily according to the manner in

which control authority is transitioned between the two agents. Most com-

monly, transitions involve complete transfers of control authority that take

place at discrete instants of time. That is, control authority is transferred

as a lumped whole from human to automation system or back to human.

Depending on the scheme, transfers may be initiated by the human driver,

by the automation system, or by a separate arbitration algorithm [3, 4, 5].

In one common scheme, which here we call Autopilot, the human driver

initiates the transitions, engaging and disengaging automatic control with a
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button-press or other trigger. For example, cruise control is conventionally

engaged with a button press and disengaged with another button press or tap

on the brake. Flight automation systems are likewise engaged by the pilot at

discrete instants of time. In a second scheme, which we call Active Safety, it

is the automation system that initiates a transition of control authority. For

example, automated emergency braking can be initiated when the automa-

tion system detects an impending collision for which human reaction time is

too short [6]. Active safety systems have also been proposed that decouple

the steering rack from the steering wheel during avoidance maneuvers [7, 8].

However, smooth transfer of control authority between an automation

system and human is notoriously difficult. From experience in deploying

automation in aviation systems, we know that human/automation teams are

particularly prone to errors during transfers of control authority [9]. Issues

surrounding control transfer include a protracted time interval required for

full transfer, mis-interpretation or mis-appropriation of responsibility (called

mode errors), and incomplete understanding of vehicle or environment state

(loss of situation awareness) [10, 11, 12]. Transitions involving such issues are

often called “bumpy”, and are implicated in compromises to safety [13, 14].

To support smooth transfers of authority and harness the complemen-

tary features of human and automatic control, researchers have proposed

various schemes under which control may be shared between human and au-

tomation. Rather than complete transfers of control authority that occur at

discrete instants of time, these schemes attempt to form a cooperative team

that involves the human and automation system working together simulta-

neously. Ideally, team performance would exceed the performance of either
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agent acting alone and cognitive workload would be reduced for the human

[15, 16, 17, 18, 19, 20].

The control sharing scheme called Haptic Shared Control takes its inspi-

ration from two humans cooperating on a manual task, for example moving

a piece of furniture [21, 22]. In shared control of steering, the automa-

tion system acts through an instrumented and motorized steering wheel,

but by design acts with a mechanical impedance that is roughly matched

to the impedance of the human driver. The human driver can increase the

impedance by increasing the steering grip and co-contracting the muscles to

override the automation system, and can reduce the impedance by decreas-

ing the steering grip and relaxing the muscles (while keeping hands on the

wheel) to yield control to the automation system. Whether active or relaxed,

the human driver can monitor the actions of the automation system through

haptic feedback [23, 24, 25, 26]. At all times, the final steering maneuver in

Haptic Shared Control depends on the actions and the relative impedance

of both the human driver and the automation system. The automation is

generally designed to have a constant finite impedance but it can also be

equipped with the ability to vary its impedance and to adjust its relative

driving authority [22, 25].

While the underlying processes and degrees may differ, it is clear that

both human drivers and automation systems are subject to misses, faults, or

errors. A given scheme for combining human and automatic control must be

robust to unanticipated conditions, misses, faults, and errors. As Bainbridge

[27] noted, adding automation may expand rather than reduce problems for

the human operator, especially when faults occur.
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Operators left with the task of monitoring the driving situation and au-

tomation behavior are challenged precisely where their skills are poor—in

maintaining vigilance [28]. Taking over control from an automation system

in unexpected conditions usually requires additional cognitive rather than

manual skills, and skills that may be difficult to develop and maintain [27].

Few studies have compared the response to faults of different control shar-

ing schemes. Yet studies comparing performance across schemes are critical

to determine gross sensitivities to unexpected conditions. Because faults are

often sudden occurrences, schemes that support rapid transitions such as but-

ton presses may hold advantages. On the other hand, schemes that use the

steering wheel as the interface for changing the balance of control authority

rather than a button press might support smoother or earlier transitions.

For example, according to Itoh et al. [29], control sharing methods like

Haptic Shared Control are effective at supporting smooth shifts of authority

during automation-induced faults. The hypothesized mechanism is that the

haptic feedback present in Haptic Shared Control enables the human driver

to quickly understand and fix automation errors or faults by modulating their

impedance [29]. In a 2016 survey conducted by Wolf on 1000 respondents [30],

it was found that a majority of human drivers would not wish to completely

relinquish control to an automation system. Haptic Shared Control also

fulfills this requirement by giving neither the human nor the automation

system full authority at any point of time while driving.

A majority of Haptic Shared Control designs are only concerned with

human automation cooperation at the “operational level” (or the “control

level”) [31, 32]. In automotive systems, cooperation at the “operational
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level” involves collaboratively generating a trajectory or a path using both the

automation and driver inputs to determine the final steering wheel angle [31].

Although such embodiments of Haptic Shared Control still provide a smooth

shift of authority during driving, they can suffer from conflicts between the

driver and the automation that arise when there is a difference between

the actions and intentions of the human driver and the automation system.

Conflicts are undesirable as they can cause annoyance, can deteriorate driving

performance and, in worst-case scenarios, can result in accidents [29, 31].

Even though the conflicts can be dangerous, Itoh et al. [29] maintain

that neither human nor machine should be given the full authority during

driving and that control should still be shared. One way to manage conflicts

while also sharing control is to perform cooperation at a higher “tactical”

level as suggested in [31, 32]. For example, in [26], Mars et al. integrated

the design of Haptic Shared Control system with a driver model that led to

fewer conflicts and more agreements between the driver and the automation

[33].

The surveys in [3] and [4] review the literature on control sharing schemes

such as Autopilot and Active Safety that have appeared in commercialized

vehicles. but do not include an assessment of schemes like Haptic Shared

Control in which control authority is graded on a continuum between hu-

man and automation. Rather than comparing performance across schemes,

studies on control transitions appearing to date have investigated the depen-

dence of performance under one scheme to variation in certain parameters.

For example, Ericksson and Stanton [34] found less erratic driver steering

input in the first 20 seconds after taking over from automation in self-paced
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conditions than in automation-paced conditions. Desmond et al. [35] found

similar degraded performance in the first 20 seconds after resuming control

from automated driving following an automation failure compared to com-

pensating for a wind gust in manual driving.

In this paper we pit the schemes Autopilot, Active Safety and Haptic

Shared Control against one another in a simulated driving scenario in which

faults occur at fixed rates but at unpredictable times. We induce faults simply

by making obstacles invisible to either the human driver or the automation

system. Similar to the implementation in [8, 31] our automation system is

based on Model Predictive Control (MPC) and takes the current steering

angle as an input to plan a path that conforms to the intention of the human

driver to reduce conflicts. In Section 2 we present the details of our MPC-

based automation system and our driving simulator and elaborate on our

implementation of Autopilot, Active Safety and Haptic Shared Control. We

describe an experiment in which we asked 11 participants to drive with the

assist of the automation system under these three control sharing schemes.

To establish baseline performance, we also asked the same participants to

drive the course independently (Manual Control). The automation system

also drove the course independently (Automatic Control). In Section 3 we

present experimental results and follow this with a Discussion and Conclusion

in Sections 4 and 5.
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2. Methods

2.1. Participants

Eleven test participants (10 male and 1 female) between the ages of 23

and 40 years were recruited for the study. Participants did not receive com-

pensation. All participants had normal or corrected-to-normal vision and

signed informed consent in accordance with University of Michigan human

participant protection policies.

Each participant was instructed on the four conditions Manual Control,

Active Safety, Autopilot, and Haptic Shared Control and given a chance to

familiarize themselves with these conditions in a training session up to 15

minutes long. The name of each condition was displayed on the corner of

the screen during each run. Each participant was asked to complete the four

experimental conditions with three repetitions each. The order of conditions

including repetitions was randomized. The vehicle speed was set constant at

10 m/s, and each test run was about 90 s long.

Participants were informed about the existence of obstacles that would

be invisible to them or not detected by the automation system. They were

instructed that the automation system might be able to help them avoid

obstacles that were invisible to them and that they might be able to avoid

obstacles that were not detected by the automation system.

2.2. Apparatus

We developed a low-fidelity fixed-base driving simulator featuring a mo-

torized steering wheel (see Fig. 1). A DC motor (AmpFlow A28-150, Bel-

mont, CA) was coupled to the steering wheel (Speedway 38 cm solid alu-
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minum wheel, Lincoln, NE) through a timing belt with a 72:15 mechani-

cal advantage, making up to 66 Nm torque available to be imposed on the

human driver. A 10,000 count per revolution optical encoder (US Digital

HB6M, Vancouver, WA) was attached to the steering shaft and the motor

was equipped with a 2048 count per revolution optical encoder (US Digi-

tal HB6M). In addition, the steering wheel was equipped with a red button

within easy reach of a participant’s thumb on the steering wheel. The vir-

tual driving environment was displayed on a 50 cm LCD Widescreen monitor

positioned about 140 cm from the participant.

Figure 1: Fixed base driving simulator: experimental setup.

The computational hardware supporting the driving simulator included

two computers: a PC (Intel Core i7-3770) to support the automation system

and a second PC (Intel Core i5) to support the vehicle model, virtual driv-

ing environment, and control of the motorized steering wheel. Additional

Arduino micro-controllers (Arduino Mega 2560) supported encoder reading
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and production of pulse-width-modulated (PWM) signals for the motor am-

plifier (Robot Power OSMC, Olympia, WA). The Arduino code was cycled

at 350 Hz. The two PCs communicated every 10 ms through a dedicated

User Datagram Protocol (UDP) link. The automation computer received

vehicle states including steering angle and obstacle positions and responded

with a steering angle setpoint. Data including vehicle position and heading,

steering wheel angle, obstacle positions, and motor commands were logged

at 100 Hz. The graphical display was rendered at 20 Hz.

The virtual environment was adapted from [36]. It was created using

the Matlab-Simulink Virtual Reality Toolbox, and appeared as shown in

Fig. 2. It contained a notional High Mobility Multipurpose Wheeled Vehicle

(HMMWV) and a road with various landmarks that provided motion cues

during driving. The vehicle traveled at a constant speed of 10 m/s, and nei-

ther the participant nor the automation system had any control over speed.

The road (in gray) was 8 m wide with a white dashed centerline. Shoulders

of 6 m width (in dark green) were located on either side of the road. The

entire track was 850 m long, with 5 left turns and 4 right turns. An overview

of the track is shown in Fig. 2 (A). Ten cylindrical obstacles with a 2 m

diameter and 0.5 m height were distributed along the track’s centerline at

intervals that were set randomly between 40 and 50 m. A red notch was

visible on the vehicle’s hood as a center reference.

2.3. Automation System Design

We used Model Predictive Control (MPC) to develop an automation sys-

tem capable of steering the vehicle along the track centerline while avoiding

obstacles. The nonlinear MPC formulation described in [37, 38] was adopted.
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Figure 2: (a) Vehicle, track, landmarks, and obstacles in the virtual environment; (b) An

overview of the track; (c) Scene visible to participants.

Input to this system included the vehicle’s state, the position and size of the

obstacles, and data describing the track. To capture the dynamics of the

vehicle, the 3 degrees of freedom dynamic model developed in [39] was used.

This vehicle model has seven states and uses a pure-slip Pacejka tire model

[40] to calculate the lateral forces on the tires. The states include the vehi-

cle’s global position (x, y), lateral speed V (t), yaw rate ωz(t), heading angle

Ψ(t), steering angle δ(t), and longitudinal speed U(t); the control input is

the steering rate δ̇(t). To prevent rollover, the vertical loads on the tires were

constrained to be greater than 1000 N. Load transfer effects were accounted

for in the vertical tire force computations.

The cost function included two terms: a first term to minimize the steer-

ing rate control effort δ̇(t) and a second term to minimize the distance be-

tween position coordinates of the vehicle (x, y) and the coordinates of a clos-

est target point on the track centerline (xt, yt). The cost function is expressed
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as follows:

J =wδ̇

∫ t0+tp

t0

δ̇(t)dt

+ wpath

∫ t0+tp

t0

(x(t) − xt(t))
2 + (y(t) − yt(t))

2dt, (1)

where wδ̇ and wpath were constant weighing terms set to 0.05 and 10.0, re-

spectively, t0 indicated the time at which each MPC computation began, and

tp encoded a time horizon of 6 s.

Elliptical hard constraints ensured that the vehicle avoided collisions with

perceived obstacles [38]. These obstacle avoidance constraints were expressed

as

(x(t) − xobs[i])
2 + (y(t) − yobs[i])

2 > (robs + sm)2,

i = 1, 2, . . . Q, (2)

where robs is the obstacle radius, sm is a safety margin that accounts for

the vehicle’s size and Q is the total number of obstacles. The vectors xobs

and yobs contain the position and radii of the obstacles that are shown to

the automation system. An implementation of the trapezoidal method in

NLOptControl [41] directly transcribed the optimization problem into a non-

linear programming problem, which was then solved using KNITRO [42].

At the beginning t = t0 of computations, the states of the vehicle, steering

angle θ, and coordinates of obstacles visible to automation were sent from

the driving simulator computer to the automation computer over the network

connection using the User Datagram Protocol (UDP). At t = t0 + ts, where

ts = 0.3 s, the computed cost-minimizing steering trajectory θA was passed

back to the driving simulator and used as a setpoint trajectory for the steering
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wheel. While this setpoint trajectory was used for a period of another ts = 0.3

s, the vehicle state and steering angle were sampled again and the prediction

horizon was shifted forward in time. Using the new values, the next cost-

minimizing steering trajectory was delivered with the next iteration of the

MPC algorithm.

A simple proportional-integral (PI) control law was used to generate the

motor command torque τA as a function of the setpoint trajectory θA gener-

ated by the automation system and the current steering angle θ:

τA(t) = kp(θA(t) − θ(t)) + ki

∫ t

teq

[θA(T ) − θ(T )]dT, (3)

where kp and ki are the proportional and integral gains. teq is defined as the

time instant at which the steering angle θ(t) was found to be equal to the set-

point trajectory θA(t) for at least five consecutive sampling instances. At teq,

the integral term in the control law was reset to zero to prevent unnecessary

accumulation of past errors in the commanded torque. Finally, the steering

controller command τA was passed to the Arduino micro-controller where a

PWM signal was generated and applied to the motor amplifier that produced

the command torque at the motor.

2.4. Experimental Conditions

Our experiment involved three conditions in which control was shared

between a human and automation, called Active Safety, Haptic Shared Con-

trol, and Autopilot. In addition, we included two conditions in which control

was given in whole (without transitions) to either the human, called Manual

Control, or the automation, called Automatic Control.
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Under each condition, participants were asked to follow the road, keeping

as close as possible to the centerline, but to avoid obstacles. Obstacles were

invisible until the vehicle was within 40 meters range. Therefore, with a

constant speed of 10 m/s, the participant had about 4 s to recognize and

avoid an obstacle.

Ten obstacles were encountered on each run, though 2 obstacles chosen

at random were made invisible to the driver (by not showing them on the

monitor). These events were termed “Human Faults”. Another 2 obstacles

on each run were not detected by the automation system (their coordinates

were not passed across the UDP link). These events were termed “Automa-

tion Faults”. That is, of the 10 obstacles encountered in each run, only 6

were “No Fault” obstacles while 2 were “Human Fault” and another 2 were

“Automation Fault” obstacles. The particular obstacles falling into each of

these three bins were randomized in each run. The driver was informed that

2 of the 10 obstacles would not be visible on the screen but would be detected

by the automation system and of the remaining 8 visible obstacles, 2 would

not be detected by the automation.

2.4.1. Manual Control

In the Manual Control condition the driver was solely responsible for

steering the vehicle; the automation system was not involved. The only

torque feedback that the driver received from the motorized steering wheel

was a self-aligning torque associated with the simulated tire-road interaction.
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Table 1: Steering Control Parameters for the Control Conditions

Control Condition kp (V/rad) ki (V/rad/s)

Manual Control – –

Active Safety 55 100

Haptic Shared Control 40 80

Autopilot 40 80

Automatic Control 40 80

2.4.2. Automatic Control

To characterize the performance of the automation system alone, the

MPC-based automation system described above in Section 2.3 drove the

course without any human intervention. The automation system acted on

the physical steering wheel through the motor, producing a steering trajec-

tory that included the influence of the simulator hardware dynamics and PI

control. The control gains listed in Table 1 were used.

2.4.3. Active Safety

In the Active Safety condition, the automation system took over com-

plete control in the presence of obstacles that it detected and deemed likely

to be hit without intervention. The automation system utilized the MPC

algorithm described in Section 2.3. The gains in Table 1 rendered the au-

tomation desired steering angle with a high impedance and ensured that the

automation system could wrest control from the driver whose hands remained

on the steering wheel. The automation system in the active safety condition

was not designed to bring the vehicle back to the path after passing the ob-

16



stacle. In fact, once the vehicle successfully avoided a given obstacle, the

automation system turned off and the driver became responsible for steering

the vehicle back to the centerline.

2.4.4. Autopilot

The Autopilot system utilized the same automation system as the Au-

tomatic Control system, except in this case the human was charged with

monitoring system performance and intervening if they thought the automa-

tion system did not recognize an obstacle. The human could intervene by

grasping the steering wheel and pressing the red button to disengage the

automation system. That is, when the red button was pressed, the control

task was given completely to the human. After driving around the obstacle

in question the human driver could re-engage Automatic Control by pressing

the red button again. A status symbol on the screen indicated whether the

automation system was engaged or disengaged. When the automation sys-

tem was engaged, the motor acted on the steering wheel with the PI gains

shown in Table 1. During such periods, the participant could either relax

and let the motor action determine the steering trajectory or could let go of

the steering wheel.

2.4.5. Haptic Shared Control

In the Haptic Shared Control condition, the participant kept both hands

on the steering wheel and was free to act at any time. Likewise, the automa-

tion system was free to apply torque throughout a run. When the driver

decided to take over control, they could increase their impedance and im-

pose higher torques on the steering wheel. Conversely, the driver could yield
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control to the automation system by decreasing their impedance (relaxing)

and applying a lower torque on the steering wheel. As in the other condi-

tions, the automation system used the vehicle states as inputs to its MPC

algorithm to generate control action using the motor coupled to the steer-

ing wheel. The steering controller gains were selected so that the participant

could easily override, or “edit” the automation system’s command (see Table

1).

2.5. Performance Metrics

Three metrics were defined to quantify driving performance and enable

comparison across conditions and participants. The first metric, Obstacle

Hits, was simply the number of obstacle collisions that occurred within a

given run. Another two metrics, called Approach Distance and RMS Lateral

Deviation, were defined to characterize driving performance around the ob-

stacles that were successfully avoided as shown in Fig. 3. Both Approach

Distance and RMS Lateral Deviation were defined with reference to points

A and B, A being the point at which the vehicle trajectory first deviates by

more than 1 m from the centerline, and B the point at which the vehicle

trajectory arrives again within 1 m of the centerline (see Fig. 3). The Ap-

proach Distance is defined as the distance along the centerline from point

A to the center of the obstacle O. For each point sampled at 10 ms along

the vehicle trajectory, the closest point on the centerline was interpolated.

Lateral deviation was then defined as the closest distance to the centerline,

for each evenly sampled point on the vehicle trajectory. The RMS Lateral

Deviation was the root mean square of the lateral deviation between points

A and B. Note that Approach Distance and RMS Lateral Deviation were
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computed only for obstacles that were not hit.

A

B

O

Obstacle
Track

Centerline
1 m 

Threshold

Crossing
Threshold

Crossing
Threshold

Vehicle
Path

Approach
Distance

(a)

e1

en

RMS Lateral

Deviation

A

B

(b)

Figure 3: A typical obstacle avoidance trajectory taken by a participant is used to define

the performance metrics Approach Distance and RMS Lateral Deviation. (a) The track

centerline and vehicle path are used to define the location of points A and B that lie on

the vehicle path at a lateral distance of 1 m from centerline when the vehicle approaches

and departs the obstacle. The distance between point A and obstacle center O along the

centerline is defined as the Approach Distance. (b) Starting at point A on the vehicle

path, the lateral deviation is denoted by e1, then e2 and so on until the lateral deviation

at point B is denoted by en. RMS Lateral Deviation is then the root mean square of the

values of lateral deviation between points A and B.

2.6. Data Analysis

The present study employed a 3 × 3 factorial design, with the two fac-

tors being: Control Sharing Condition (Active Safety, Haptic Shared Control,
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and Autopilot) and Fault Type (No Fault, Human Fault, and Automation

Fault). The Control Sharing condition was varied between trials and the

Fault condition was varied within trials. The dependent measures were: (1)

the percentage of Obstacle Hits, (2) the RMS Lateral Deviation, and (3) the

Approach Distance. Data analysis was performed using Generalized Linear

Mixed Modeling method in IBM SPSS Statistics version 25. The Obsta-

cle Hit metric was analyzed using the binary logistic regression procedure

whereas the RMS Lateral Deviation and Approach Distance were analyzed

using the linear modeling procedure. The Control Sharing condition and

Fault Type were chosen as independent factors. A p-value of 0.05 was set to

determine significance. Post-hoc, sequential Bonferroni method was applied

to determine significant differences.

3. Results

3.1. Obstacle Hits

Each of our eleven participants and the automation system, when driving

by themselves, were able to drive the course keeping close to the centerline

and without hitting obstacles. And as expected, without seeing or detecting

obstacles, our eleven participants and the automation system drove right

through the obstacles located on the centerline. Thus the best case scenario

for forming a human-automation team under conditions in which at least one

agent saw every obstacle could be expected to produce perfect performance.

However, this was not the case.

As shown in Table 2 and Table 3, a lower percentage of obstacles were hit

in the three Control Sharing conditions in comparison to the 20% obstacles
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Table 2: Obstacle Hits for each Control Sharing Condition separated by Fault Conditions

No Fault Human Fault Automation Fault All Fault Conditions

Obstacles Hit %Hits Obstacles Hit %Hits Obstacles Hit %Hits Obstacles Hit %Hits

Active Safety 3/198 1.5% 19/66 28.8% 0/66 0% 22/330 6.7%

Haptic Shared Control 1/198 0.5% 3/66 4.5% 2/66 3% 6/330 1.8%

Autopilot 5/198 2.5% 4/66 6.1% 1/66 1.5% 10/330 3%

All Control Conditions 9/594 1.5% 26/198 13.1% 3/198 1.5% 38/990 3.8%

Table 3: Obstacles Hits for Baseline Conditions separated by Fault Conditions

No Fault Human Fault Automation Fault All Fault Conditions

Obstacles Hit %Hits Obstacles Hit %Hits Obstacles Hit %Hits Obstacles Hit %Hits

Manual 0/264 0% 66/66 100% – – 66/330 20%

Automatic 0/24 0% – – 6/6 100% 6/30 20%

that were hit in both the Manual Control and the Automatic Control condi-

tions. Considering only Fault Conditions, in the Manual Control condition,

100% of the obstacles that simulated Human Faults were hit whereas only

4.5% were hit in the Haptic Shared Control, 6.1% were hit in the Autopilot,

and 28.8% were hit in the Active Safety condition. Likewise, in the Auto-

matic Control condition 100% of the obstacles that simulated Automation

Fault were hit whereas only 3% were hit in the Haptic Shared Control, 1.5%

were hit in the Autopilot, and no obstacles were hit in the Active Safety

condition. Between control sharing conditions, the Active Safety condition

resulted in the highest percentage of obstacle hits (6.7%) whereas the Haptic

Shared Control condition resulted in the lowest percentage of hits (1.8%).

On the other hand, between Fault Conditions, Human Fault resulted in the
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Figure 4: (a) Percent obstacle hits by Control Condition, (b) Percent obstacle hits by

Fault Condition. The asterisks on the lines linking two bars indicate a significant difference

between two conditions.

highest percentage (13.1%) whereas both Automation Fault and No Fault

resulted in an equal percentage of hits (1.5%).

Analysis on the Obstacle Hit data indicated that the Control Sharing

condition was not a significant predictor of an obstacle hit (F (2, 981) =

0.923, p = 0.398). Fault Condition, on the other hand, had a significant

main effect on the likelihood of a hit (F (2, 981) = 6.555, p = 0.001). Post-hoc

comparisons indicated that the possibility of an obstacle hit for the Human

Fault condition was significantly higher than for both the Automation Fault

(p = 0.023) and for the No Fault (p = 0.018) conditions (also indicated in

Fig. 4 (b)). However, since the interaction effect between Fault Condition

and Control Sharing condition was also found to be significant (F (4, 981) =

2.579, p = 0.036), it was difficult to generalize the effect of Fault Condition
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Figure 5: Percent Obstacle Hits (a) for each Fault Condition grouped by Control Condition

and (b) for each Control Condition grouped by Fault Condition. The asterisks on the lines

linking two bars indicate a significant difference between two conditions.

on all control conditions. To further understand this, we looked at the simple

main effect of Control Sharing condition on obstacle hits for each of the three

Fault Conditions and of Fault Condition on obstacle hits for each of the three

Control Sharing conditions.

Our analysis showed that only for the Human Fault condition, Con-

trol Sharing condition had a significant effect on the likelihood of a hit

(F (2, 981) = 7.265, p = 0.0007). Post-hoc sequential Bonferroni test revealed

that for the Human Fault condition, Active Safety had a higher likelihood

of an obstacle hit than Autopilot (p = 0.001) and Haptic Shared Control

(p = 0.0007) conditions. For any other Fault Type, the Control Sharing

Condition had no effect. Likewise, only for the Active Safety condition, the
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Fault Condition had a significant effect on obstacle hits (F (2, 981) = 10.032

, p < 0.0005). Post-hoc test revealed that for Active Safety, the Human Fault

condition was found to result in a higher number of hits than Automation

Fault (p < 0.0005) and No Fault (p < 0.0005) conditions. The results of

post-hoc tests for the simple main effects analysis are summarized in Figure

5. Hence the main effect of Fault Type was only due to the large number

of hits in the Active Safety condition for Human Fault and therefore this

effect could not be generalized to the Haptic Shared Control and Autopilot

conditions.

3.2. RMS Lateral Deviation

The RMS Lateral Deviation was used to gauge which control sharing con-

dition resulted in the most “efficient” maneuver around the obstacles. The

means of RMS Lateral Deviation are presented in Table 4 for all the Control

Sharing conditions including Manual and Automatic conditions. As men-

tioned earlier, the RMS Lateral Deviation was only computed for obstacles

that were successfully avoided. Therefore a lower value of RMS Lateral De-

viation for a condition indicates that the participant found it relatively easier

to use that control scheme to make an efficient maneuver around the obsta-

cle. This becomes more apparent when we look at the trajectories presented

in Fig. 6 and compare them with the numbers in Table 4. A lower mean

value of RMS Lateral Deviation for a condition in Table 4 corresponds to a

lower spread (indicated in grey) of trajectories for that condition in Fig. 6,

and to an average trajectory (indicated by black solid line) that deviates less

from the centerline.

Since the case of Automation Fault was not possible in the Manual Con-
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Figure 6: Plots depicting driving trajectories around the obstacles computed across all 11

participants for each control condition and fault condition. The black solid line indicates

the 50th percentile of lateral deviation. Two traces enveloping the black solid line shade

the 5th to 95th percentile intervals for the lateral deviation. Obstacles are shown to scale

by red half ellipses.

Table 4: Means and Standard Errors (S.E.) of RMS Lateral Deviation for all Control

Conditions separated by Fault Conditions

No Fault Human Fault Automation Fault All Fault Conditions

Mean S.E. Mean S.E. Mean S.E. Mean S.E.

Active Safety 2.71 0.07 2.83 0.12 2.69 0.10 2.74 0.07

Haptic Shared Control 2.41 0.07 2.17 0.10 2.87 0.10 2.48 0.07

Autopilot 2.40 0.07 2.33 0.10 3.15 0.10 2.63 0.07

All Control Conditions 2.51 0.05 2.44 0.08 2.90 0.08 2.62 0.06

No Fault

Mean S.E.

Manual 2.63 0.025

Automatic 2.41 0.063

trol condition (because automation was absent), and the case of Human Fault

- which resulted in hits - was removed while computing the metric, only the

case of No Fault was pertinent for the Manual Control condition. Likewise,

only the case of No Fault was pertinent for the Automatic Control condition.

Looking at the means presented in Table 4, in the No Fault case, RMS Lateral
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Deviation values with Haptic Shared Control and Autopilot were lower than

Manual Control condition and was similar to the Automatic Control con-

dition whereas RMS Lateral Deviation with Active Safety was higher than

all other control conditions. These observations indicate that sharing con-

trol using schemes such as Haptic Shared Control and Autopilot can indeed

maintain or reduce RMS Lateral Deviation when compared with Automatic

and Manual driving.
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Figure 7: Mean RMS Lateral Deviation. The RMS Lateral Deviation is defined in Fig. 3.

(a) Mean RMS Lateral Deviation for the three control conditions, (b) Mean RMS Lateral

Deviation for the three Fault Conditions. Error bars are ± 1 standard error of the mean.

The asterisks on the lines linking two bars indicate a significant difference between two

conditions along with the respective p values.

Unlike Obstacle Hits, the Control Sharing Condition significantly affected

the RMS Lateral Deviation (F (2, 915) = 7.709, p < 0.0005). As shown in

Fig. 7 (a), between the three Control Sharing conditions, Haptic Shared

Control had significantly lower RMS Lateral Deviation and consequently
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Figure 8: Mean RMS Lateral Deviation (a) for each Fault Condition grouped by Control

Condition and (b) for each Control Condition grouped by Fault Condition. Error bars

are ± 1 standard error of the mean. The asterisks on the lines linking two bars indicate a

significant difference between two conditions.

better maneuvering efficiency than Active Safety (p < 0.0005) and Autopi-

lot (p = 0.049). Fault Condition also had a main effect on RMS Lateral

Deviation (F (2, 915) = 26.04, p < 0.0005) and, as shown in Fig. 7 (b),

the RMS Lateral Deviation for the Automation Fault condition was signif-

icantly higher compared to the Human Fault (p < 0.0005) and No Fault

(p < 0.0005) conditions. The effect of interactions on the RMS Lateral

Deviation was also found to be significant (F (4, 915) = 9.83, p < 0.0005).

Simple main effects analysis showed that the Control Sharing Condition had

a significant effect on RMS Lateral Deviation for each Fault Condition: Hu-

man Fault (F (2, 915) = 11.681, p < 0.0005), Automation Fault (F (4, 915) =
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6.727, p = 0.001), and No Fault (F (4, 915) = 12.125, p < 0.0005). More-

over, Fault Condition had a significant effect on RMS Lateral Deviation

for Autopilot (F (2, 915) = 29.284, p < 0.0005) and Haptic Shared Control

(F (4, 915) = 6.727, p = 0.001) conditions.

Post-hoc analysis indicated that Active Safety had significantly better ma-

neuvering efficiency than Autopilot (p = 0.0009) around the obstacles that

simulated Automation Faults whereas Autopilot had significantly better ma-

neuvering efficiency than Active Safety around the obstacles that simulated

Human Faults (p = 0.0008) and in the cases of No Fault (p < 0.0005) (Fig. 8

(b)). However, overall differences (averaged over three fault conditions) be-

tween Active Safety and Autopilot were found to be insignificant (p = 0.087)

(Fig. 7 (a)). Other significant differences resulting from the post-hoc tests

for the simple main effects analysis are summarized in Fig. 8.

3.3. Approach Distance

The Approach Distance was used to gauge the human driver’s prepared-

ness to give up or take over the driving authority during obstacle avoidance.

The value of approach distance indicated how early the human-automation

team deviated from the track to avoid the obstacle. For instance, a lower ap-

proach distance implied that during obstacle avoidance, the human-automation

team took more time to deviate from the track. However, since the behav-

ior of automation near the obstacles was fixed, a lower Approach Distance

indicated that the human driver was primarily responsible for the additional

delay in deviating from the track. In particular, the driver was either un-

prepared to take over the driving authority or was unprepared to give away

the driving authority to automation which resulted in late deviation from
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the track. The means of Approach Distance for all conditions are summa-

rized in Table 5. Note that the mean Approach Distance for a condition

corresponds to the Approach Distance value of the mean driver trajectory

for that condition in Fig. 6.

Table 5: Means and Standard Errors (S.E.) of Approach Distance for all Control Condi-

tions separated by Fault Conditions

No Fault Human Fault Automation Fault All Fault Conditions

Mean S.E. Mean S.E. Mean S.E. Mean S.E.

Active Safety 11.52 0.47 8.98 0.70 11.00 0.62 10.50 0.47

Haptic Shared Control 12.12 0.47 11.92 0.62 9.73 0.62 11.25 0.45

Autopilot 11.62 0.47 11.24 0.62 8.30 0.63 10.39 0.46

All Control Conditions 11.75 0.31 10.72 0.48 9.68 0.47 10.72 0.41

No Fault

Mean S.E.

Manual 11.38 0.26

Automatic 10.32 1.12

Looking at the means of Approach Distance presented in Table 5, we

see that out of all Control Conditions, the Haptic Shared Control condition

had the highest Approach Distance whereas the Automatic Control had the

lowest Approach Distance value. Note that the Approach Distance was low

in Automatic Control condition not because automation was “unprepared”

but because it was designed to minimize the lane keeping error. Therefore,

the Approach Distance metric only indicates the behavior of automation near

the obstacles but does not tell much about the performance of automation

in the Automatic Control condition. The second highest mean Approach

Distance after the Haptic Shared Control condition was seen in the Autopilot

condition which was followed by the Active Safety and the Manual condition.

These observations indicate that sharing control using any scheme increases

the Approach Distance when compared with Automatic and Manual driving.
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Figure 9: Mean Approach Distance. The Approach Distance is defined in Fig. 3. (a)

Mean Approach Distance for the three Control Sharing Conditions (b) Mean Approach

Distance for the three visibility conditions. Error bars are ± 1 standard error of the mean.

The asterisks on the lines linking two bars indicate a significant difference between two

conditions along with the respective p values.

The results for the analysis of Approach Distance are summarized in Fig.

9 and Fig. 10. The effect of control condition on Approach Distance was

found to be statistically significant (F (2, 915) = 3.43, p = 0.033). Through

the post-hoc tests it was found that the mean Approach Distance for the

Haptic Shared Control condition was significantly higher than the Autopilot

condition (p = 0.047). The Fault condition also had a significant effect

on Approach Distance (F (2, 915) = 21.07, p < 0.0005). The post-hoc tests

revealed that all three Fault conditions were significantly different from each

other. The Automation Fault condition was found to have a significantly

lower Approach Distance than the Human Fault (p = 0.013) and the No Fault

(p < 0.0005) conditions. Furthermore, Approach Distance for the Human
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Figure 10: Mean Approach Distance (a) for each Fault Condition grouped by Control

Condition and (b) for each Control Condition grouped by Fault Condition. Error bars

are ± 1 standard error of the mean. The asterisks on the lines linking two bars indicate a

significant difference between two conditions.

Fault condition was significantly lower than the No Fault condition (p =

0.006). Finally, the effect of interaction of the independent factors was also

found to be significant (F (2, 915) = 6.67, p < 0.0005). Through simple main

effect analysis, it was found that Control Sharing Condition had a significant

effect on Approach Distance both for Human Fault condition (F (2, 915) =

7.618, p = 0.0006) and for Automation Fault condition (F (2, 915) = 7.34, p =

0.0008). Post-hoc tests for Control Condition further revealed that in the

case of Automation Faults, the Autopilot condition had significantly lower

Approach Distance than the Active Safety (p < 0.0005) condition. In the

case of Human Faults however, the Active Safety condition had significantly

lower Approach Distance than both the Autopilot (p = 0.007) and the Haptic
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Shared Control (p < 0.0005) conditions. These results are summarized in

Fig. 10 (b). Fault Condition also had a significant effect on the Approach

Distance for all the Control Sharing Conditions. The post-hoc results for

Fault Conditions are summarized in Fig. 10 (a).

4. Discussion

In this driving simulator study our goal was to compare the obstacle

avoidance performance of human/automation teams under three Control

Sharing Conditions in the presence of simulated faults. Faults were simulated

by partitioning the visibility of obstacles among the human driver and the

automation system. That is, certain obstacles were visible to the automation

but invisible to the human (Human Fault), certain obstacles were visible to

the human but invisible to the automation (Automation Fault) while the rest

were visible to both human and automation (No Fault). Performance under

the three Control Sharing Conditions and under the three Fault Conditions

were then analyzed in a 3×3 study. To further understand the role of each

agent in the Control Sharing Conditions, they were compared against two

baseline driving conditions that did not involve any control sharing: Manual

Control and Automatic Control. All analyses were undertaken on three per-

formance metrics that focused on distinct aspects of the obstacle avoidance

task. The Obstacle Hits metric was used to compare driving safety; higher

obstacle hits corresponded to lower safety. Approach Distance was used to

gauge the human driver’s preparedness to give up or take over driving au-

thority during obstacle avoidance; a lower approach distance indicated that

around the obstacle the human driver was either unprepared to take over
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the driving authority or was unprepared to give away the driving authority

to automation. Finally, RMS Lateral Deviation was used to compare the

driver’s maneuvering efficiency around the obstacle; lower RMS lateral de-

viation indicated that the maneuver was performed more efficiently without

excessive lateral deviation from the centerline.

In terms of Obstacle Hits, two agents driving together were found to be

better than either agent driving alone. With only one agent driving (as in

the Manual and Automatic baseline conditions), a fault led unconditionally

(100%) to an obstacle hit. With two agents sharing control, between 0%

and 28.8% of faults led to an obstacle hit, depending on the Fault Condition

and the Control Sharing Condition (see Table 2). In one sense this was

encouraging, but in another quite disappointing. If each obstacle was seen

by at least one agent in the Control Sharing Conditions, and each agent

acting alone was capable of avoiding No Fault obstacles, as established in

the baseline conditions, one might have expected zero obstacles to be hit in

the Control Sharing conditions. It appears that transitions of control and

an associated need for time to acquire situation awareness, communication,

or negotiation between the two agents led to difficulties in handling Human

Fault or Automation Fault obstacles.

But note further, adding a second agent had an alarming effect on the

perfect single-agent record for No Fault obstacles, as between 0.5% and 2.5%

of No Fault obstacles were hit in the Control Sharing Conditions. Like a

back-seat driver may be blamed for distracting and inducing errors rather

than helping, adding automation can be blamed for inducing errors. For

that matter, adding a human to automatic driving might also be blamed for
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inducing automation errors.

In contrast, adding a second agent seemed to enhance the Approach Dis-

tance. This is supported by Table 5 where it can be observed that, for

the No Fault Condition, all Control Sharing conditions had higher values of

Approach Distance than the baseline conditions. Moreover, the Manual con-

dition had a larger Approach Distance than the Automatic condition. This

indicates that when faced with an obstacle, human drivers preferred to de-

viate earlier from the center-line than the automation system. Recall that

the automation was designed to have a lower approach distance to minimize

the deviation from the center-line. For the Control Sharing conditions, this

might mean that while sharing control, our participants most likely reacted

before the automation to avoid an obstacle. Likewise, as shown in Table

4, adding a second agent with the Haptic Shared Control and the Autopi-

lot conditions also reduced or maintained the RMS Lateral Deviation, and

therefore improved or maintained the maneuvering efficiency over the base-

line conditions. In addition, since the Automatic Control condition had lower

RMS Lateral Deviation than the Manual condition it is likely that our par-

ticipants let the automation be more active in Haptic Shared Control and

Autopilot while maneuvering around the obstacle. On the other hand, since

RMS Lateral Deviation for the Active Safety condition was higher than the

baseline conditions it might indicate that the human was still more involved

during the obstacle avoidance maneuver than the automation system, which

resulted in reduced maneuvering efficiency. Note, however, that our base-

line conditions could not be statistically compared with our control sharing

conditions because they had different levels of Fault Conditions. Therefore
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these results merit further exploration in future studies.

Looking at Obstacle Hits across Control Sharing and Fault conditions, we

found that significantly more Human Fault obstacles were hit in the Active

Safety condition than in the Haptic Shared Control or Autopilot conditions.

It was observed that during the Human Fault condition in Active Safety,

when the automation intervened to avoid the obstacle, our participants were

oftentimes unwilling to let go of the steering wheel and give away the driving

authority to automation. As a result, they either inadvertently crashed into

an obstacle that they could not see or reacted very late and barely avoided the

obstacle with an inefficient and potentially unsafe maneuver around the ob-

stacle (see Fig. 6). Consequently, in the condition of Human Faults, Active

Safety produced significantly more obstacle hits, lower Approach distance

and larger RMS Lateral Deviation than the other two control sharing con-

ditions. On the other hand, during the Human Fault condition in Autopilot,

since the automation was already performing the driving task, our partici-

pants did not intervene and simply let the automation avoid the obstacle.

In contrast, in the case of Automation Faults, the Autopilot condition

resulted in significantly larger RMS Lateral Deviation than the Active Safety

condition and the Haptic Shared Control condition, and significantly lower

Approach Distance than the Active Safety condition. For Automation Faults

in Autopilot, we found our participants unprepared to take over the driving

authority; they took additional time to acknowledge that the automation

had failed and to press the button to take over the driving authority. This

delay also resulted in more inefficient and uncontrolled obstacle avoidance

maneuvers as shown in Fig. 6. Such a delay was absent in Active Safety

35



where our participants were already performing the driving task and were

not required to take over control from automation to avoid the obstacle

(similar to Manual driving).

Contemporary research on transitions in control indicate that externally-

paced (automation initiated) transitions lead to reduced performance rela-

tive to human-paced transitions in human takeovers from automation. Re-

duced performance is associated with lower “levels of control”, in particular

so-called “scrambled control”, characterized by urgent selection of control

actions seemingly at random [43, 34]. Note that in this study we investi-

gated urgent human-paced takeovers from automation (Autopilot) and ur-

gent externally-paced takeovers from human drivers (Active Safety). These

takeovers were all necessary because of fault conditions induced artificially

at constant high rates but at random times. Faults were not accompanied by

alarms or announcements. Extensions to the current study could be under-

taken to determine the effects of factors such as the time required to press

a button or the potential delays associated with committing to transition

when that transition takes the form of a lumped or total transfer of control

authority.

Between Active Safety and Autopilot, we therefore see that there is a

reduction in overall driving performance (higher hits, higher RMS Lateral

Deviation, lower Approach Distance) when the primary agent responsible

for lane keeping cannot see the obstacle: Active Safety does not perform well

when the primary driver, human, cannot see the obstacle and Autopilot does

not perform well when the primary driver, automation, cannot see the obsta-

cle. In other words, it can be said that Active Safety behaves similar to the
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Manual condition whereas Autopilot behaves similar to the Automatic condi-

tion. This observation is further reinforced by Table 4 where the mean RMS

Lateral Deviation for Active Safety is closer to Manual condition and for

Autopilot is closer to Automatic condition. This indicates that even though

Active Safety and Autopilot conditions are designed to support control shar-

ing between human and automation, they apparently still perform similar to

single agent driving schemes.

Theoretically, therefore, driving performance could still be enhanced by

increasing the involvement of the secondary agent in the primary driving

task. This was facilitated in the Haptic Shared Control condition by having

the driver actively hold the steering wheel while the automation performed

the lane keeping task. Our results showed that overall, averaging over all

fault conditions, Haptic Shared Control had significantly lower RMS Lateral

Deviation than both Active Safety and Autopilot conditions and had signifi-

cantly higher Approach Distance than the Autopilot condition and higher (if

not “significantly” higher) Approach Distance than the Active Safety condi-

tion. Moreover, for each individual Fault Condition, with respect to the three

metrics, the driving performance with Haptic Shared Control was never sig-

nificantly lower than the Active Safety and the Autopilot conditions. This in-

dicated that regardless of the Fault Condition we could expect Haptic Shared

Control to perform at least as well as the other control sharing conditions.

The improvement in driving performance with Haptic Shared Control can

be attributed to the more gradual nature of collaboration in Haptic Shared

Control as compared to the other Control Conditions. In the Haptic Shared

Control condition, the automation continuously communicated its control
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efforts to the driver through torque feedback on the steering wheel. The

driver used this feedback to adopt a driving responsibility or assign a driving

responsibility to the automation by activating or relaxing his/her muscles

[17, 21, 44, 45]. For example, as seen in Table 4 and Table 5, since the

Approach Distance of Haptic Shared Control was closer to the Manual con-

dition than the Automatic condition, we can say that when faced with an

obstacle, the human activated his/her muscles and overpowered the automa-

tion to deviate earlier from the centerline. Whereas, since the RMS Lateral

Deviation of Haptic Shared Control was closer to the Automatic condition

than the Manual condition, we can say that while maneuvering around the

obstacle, the human relaxed and let the automation take control to perform

the maneuever efficiently.

Based on the analysis of our performance metrics, our results indicate

that sharing control under Haptic Shared Control promotes safer driving,

enhances driver preparedness to take over or give away the driving author-

ity, and promotes more efficient driving maneuvers around obstacles than

sharing control between two agents with fixed and predefined primary and

secondary driving roles. These results support the benefits of control shar-

ing with haptic shared control that have been previously published in the

literature [17, 21, 25, 24, 46, 47, 48]. Complementing previous research, this

study demonstrates how shared driving with continuous transitions involving

haptic feedback can help improve driving performance in the event of human

errors or automation dropouts over control sharing techniques with discrete

transitions that are currently available in production vehicles.

Finally, looking at the differences between the Fault Conditions based
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on the Control Conditions, we found that for Autopilot and Haptic Shared

Control, the Automation Fault condition produced significantly larger RMS

lateral deviation and lower Approach Distance than both the Human Fault

and No Fault conditions. In other words, when only the driver could see the

obstacle, in Autopilot and Haptic Shared Control, the automation’s inaction

was more detrimental to the driver’s maneuvering efficiency and the driver’s

preparedness to take over or give up the driving authority than the automa-

tion’s action when the driver could not see the obstacle or when both agents

could see the obstacle. Since in both Autopilot and Haptic Shared Control,

the automation was active most/all of the time, we think that the reduction

in driving performance was probably because our participants mistook the

Automation Fault obstacle for a No Fault obstacle and relied excessively on

the automation system to avoid it. Such an over-reliance on automation or

misuse of automation system has been referred to as automation-induced

“complacency” in the shared control literature in the past [49, 10, 15].

Lower driving performance during Automation Fault, especially for the

Haptic Shared Control condition, might also be a function of the high value of

control gains that we used to implement the automation’s authority (impedance)

in our Haptic Shared Control design. As mentioned in the literature previ-

ously, high automation impedance is detrimental to the shared task perfor-

mance in the case of Automation Faults [17]. We suspect that our design

gave automation more control over driving than the driver. In future studies

it would be interesting to examine if our results hold true for other levels of

automation impedance (for instance a lower automation impedance) or for

an Adaptive Haptic Shared Control design [17] where impedance values vary
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based on the driver’s neuromuscular involvement.

5. Conclusion

This study investigated the ability of human-automation teams to avoid

obstacles missed by an automation system (Automation Faults) and obsta-

cles missed by human drivers (Human Faults) under three control sharing

schemes. We hypothesized that Haptic Shared Control, designed to support

graded and gradual transitions of control authority and enable the human

driver to monitor automation actions through torque feedback on the steer-

ing wheel, would outperform the Autopilot and Active Safety schemes that

feature lumped and instantaneous transitions of control authority.

We found the lowest team performance under Autopilot for automation

faults and under Active Safety for human faults. Haptic Shared Control

supported the best overall team performance. Relative to individual human

or automatic driver performance, we found that control sharing improved

obstacle hit rates, maneuvering efficiency, and driver’s preparedness to take

over or give up the driving authority during obstacle encounters. While both

human drivers and the automation system were able to avoid most (but still

not all) of the obstacles missed by the other when teamed together, forming

a team with control transitions also introduced errors in conditions without

faults. Obstacle collisions under No-Fault conditions were not observed when

human drivers or the automation system drove alone.

While the timing of faults was unpredictable in the current study, the fault

rates were constant and rather high. Handling of a seldom occurring fault

likely differs significantly from a fault that occurs at an expected high rate
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of 20%. Also, in the present study, there was barely time to recover from the

previous obstacle or fault before another obstacle or fault appeared. Future

research could investigate the compounding effects of deteriorating vigilance

when faults cannot be anticipated. Future research could also investigate

whether announcing a fault through visual, audio, or haptic feedback could

improve performance.

Certainly the results in the present study depend on the particular im-

plementation of each control sharing scheme. Additional research will be

required to determine the dependence of performance to parameters within

a particular scheme. For example, the limited ability of Active Safety to

wrest control from the human driver while his or her hands remained on

the steering wheel would be very different in a steer-by-wire implementation,

where automation actions can be executed without backdriving the human.

On the other hand, handing back control to the driver after executing such

automation actions could require increased time.
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