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Abstract

Adhesive joints are frequently used in automotive, maritime and construction applica-

tions, yet joint reliability remains a concern. The purpose of this study is to develop a

fracture mechanics methodology for the failure of an elastic-brittle lap-shear joint compris-

ing a thick adhesive layer (an epoxy, of thickness on the order of 10 mm) sandwiched between

thick steel adherends. This configuration is of practical application to ship-building, such

as the bonding of a superstructure to the underlying hull. A modified thick-adherend shear

test (TAST) is designed, and specimens are fabricated, with a range of interfacial pre-crack

length and a range of adhesive layer thickness. The failure of samples with no pre-crack is

governed by a critical value of corner singularity, whereas the failure of samples with long

pre-cracks is governed by a critical value of interfacial stress intensity factor. Predictions

for the dependence of failure load upon layer thickness and pre-crack length are obtained by

analysing the elastic stress state for both a corner singularity and for an interfacial crack.

Both the experimental results and the theoretical framework are useful in the design and

fabrication of reliable lap-shear joints that comprise a thick elastic adhesive layer.
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1. Introduction

Historically, bolts and rivets are used to fasten assemblies of metallic and composite

components. However, adhesively bonded joints offer benefits such as reduced weight and

reduced through-life maintenance. Moreover, bonded joints obviate the need for holes asso-

ciated with bolted joints, and hence reduce the number of stress raisers. Adhesive joints are

under scrutiny for use in an increasing number of parts in aerospace and in marine structures,

such as the joining of a steel-hulled ship to a composite superstructure (Maloney and Fleck,

2018; Saleh et al., 2020; Saeedifar et al., 2019). A major limitation in the use of adhesives

for such applications is the lack of confidence in the reliability of adhesives by the Qualify-

ing Agencies. An appropriate fracture mechanics methodology is also required. There has

been some success in the use of the interfacial stress intensity factor for a bimaterial wedge

(Gradin, 1982; Hattori et al., 1988) and a bimaterial butt joint (Reedy, 1993; Reedy and

Guess, 1993, 1995, 1996) comprising a steel/epoxy interface. It remains a challenge to predict

crack initiation from small pre-existing defects in the adhesive bondline such as porosity.

Commonly, the tensile peel strength of an adhesive layer is significantly below the shear

strength, and consequently, the lap-shear joint is a preferred configuration in design (Possart

and Brede, 2019; Bikerman, 2013). There is a need to develop predictive tools and test

geometries for the failure of joints under macroscopic shear. Two classes of test exist for

adhesives in shear: torsional shear and combined tension-shear. Torsional shear tests include

the napkin ring test (ASTM E 229), and these have the advantage that they involve uniform

shear loading, commonly that of simple shear. In contrast, tensile-shear geometries, such

as single-lap shear test, double-lap shear test, Thick Adherend Shear Test (TAST) and the
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butterfly test, exhibit non-uniform stress states, but are easier to perform and are usually

more representative of practical joint geometries. The single-lap joint geometry inherently

causes an eccentricity in the applied load path, leading to out-of-plane bending moments

and to elevated peel stresses. This is particularly important in joints containing composite

adherends due to their low strength in the through-thickness direction: peel stresses can lead

to premature failure of the joint. The problem of eccentricity in loading is reduced in double-

lap shear tests and in thick-adherend shear tests (TAST). There are many different types of

TAST specimen based upon the work of Krieger (Krieger, 1975). Kassapoglou and Adelmann

(Kassapoglou and Adelmann, 1992) investigated the effect of adhesive/substrate modulus

mismatch on the adhesive shear distribution along the bond length in a TAST specimen,

and concluded that decreasing modulus mismatch significantly increases the nonuniformity

of shear stress distribution. Chiu and Jones (Chiu and Jones, 1992) investigated the effect

of adhesive thickness on the shear stress and normal stress distributions within the TAST

specimen, and highlighted the feature of a high tensile peel stress at the interface corners.

In the present study, a TAST specimen is used with pin loading, as shown in Fig. 1. The

imposition of pin-loading, aligned with the mid-plane of the joint, prevents the development

of an unknown bending moment and shear force at the ends of the specimen. One aim of

the present study is to perform a detailed elastic singularity analysis of the TAST geometry

of Fig. 1(a), with a pre-crack of length a present along the interface between adhesive and

adherend. Note that a sharp corner exists at the end of the adhesive layer, and in the absence

of a pre-crack, this 90◦ re-entrant corner leads to a local stress singularity from which cracks

can initiate and grow. The addition of corner fillets diminishes this stress concentration, and

may lead to an increased load carrying capacity of the joint (Lang and Mallick, 1998). A
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literature has emerged on the role of corner singularities in dictating crack initiation. For

example, Williams (Williams, 1952) investigated the effect of the boundary conditions on a

quarter plane wedge upon the order of stress singularity. Bogy (Bogy, 1968, 1970) extended

this study to the case of bonded quarter-planes. Subsequent studies have focused on corner

singularities that arise in the butt joint geometry (Koguchi et al., 1996; Pageau and Biggers,

1995; Pageau et al., 1995).

A corner singularity, in the absence of macro defects such as a pre-crack, is characterised

by the order of stress singularity (of value 1
2

for the inverse square-root singularity at a

conventional crack tip) and by the scalar magnitude of the singular stress field (analogous to

the stress intensity factor for a conventional crack). Both the order of singularity λ and the

magnitude H of singular stress field have been obtained for a number of joint geometries and

loadings of practical importance, see for example (Munz and Yang, 1992; Ding et al., 1994;

Akisanya and Fleck, 1997). It appears reasonable to assume that failure occurs when the

imposed magnitude of singular stress field H attains a critical value Hc. This approach is

analogous to linear elastic fracture mechanics, wherein failure occurs when the magnitude K

of stress field attains the fracture toughness Kc. Recall that small scale yielding conditions

prevail in linear elastic fracture mechanics when the size of plastic zone at the crack tip is

much less than the domain of dominance of the elastic K−field. For the case of a corner

singularity, the magnitude H of the corner singularity is a valid loading parameter provided

the size of the plastic zone (and any fracture process zone) at the corner is much smaller

than the domain of dominance of the singular stress field.

The aim of the present study is to measure, and to predict, the effect of adhesive layer

thickness and pre-crack length upon the failure strength of a thick adherend shear test
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(TAST) specimen comprising an elastic-brittle epoxy layer and steel adherends. A fracture

mechanics methodology is developed in order to predict the failure load based on a minimum

number of toughness parameters, with the corner singularity and the crack tip singularity

for an interfacial crack both taken into account. First, a corner singularity analysis is used

to account for the dependence of failure load upon layer thickness in samples absent a pre-

crack. And second, the dependence of interfacial stress intensity factor and mode-mix upon

pre-crack length and adhesive layer thickness are determined. By making use of both sets

of analysis, we contrast crack initiation from the corner singularity with crack growth from

a pre-existing crack.

2. Materials characterisation of the epoxy adhesive

A two-part, room-temperature curing epoxy adhesive was employed1 due to its ability

to form thick adhesive layers. The uniaxial tension response of the adhesive was measured

by casting dogbone specimens from the adhesive; the dogbones are of gauge length 33 mm,

width 6 mm, and thickness 3 mm. Wedge grips were used to grip the ends of the dogbone

specimens in the screw-driven test machine; the axial strain over the gauge length was

measured by a laser gauge and reflecting tabs on the specimen. Additionally, cube-shaped

specimens, of side dimension 6 mm, were compressed between two smooth plates of the test

machine in order to measure the uniaxial compressive response.

The nominal stress versus nominal strain response of the as-cured epoxy adhesive in

uniaxial tension is given in Fig. 2(a) for three values of nominal strain rate ε̇ = 1× 10−2s−1,

1PRO-SET ADV-176/276 adhesive produced by Wessex Resins and Adhesives Limited, Romsey, UK
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2× 10−3s−1 and 4× 10−4s−1. Note that the ultimate tensile strength increases slightly from

32 MPa to 40 MPa and the nominal failure strain decreases slightly from 0.14 to 0.08, with

increasing strain rate ε̇. A similar sensitivity of nominal compressive strength to strain rate is

evident in Fig. 2(b). True stress versus true strain responses under tension and compression,

at a nominal strain rate of ε̇ = 4× 10−4s−1, are compared in Fig. 2(c). The small elevation

in compressive strength over tensile strength is consistent with the well-established pressure-

dependence of yield of polymers.

3. Fracture tests on TAST specimens

A series of fracture tests were performed on pre-cracked, modified Thick-Adherend Shear

Test (TAST) specimens, recall Fig. 1(a). The thickness h of epoxy layer was varied from

3 mm to 13 mm, and the pre-crack length a was varied from 0 mm to 20 mm. In order to

manufacture the modified TAST specimens, low carbon steel substrates were grit blasted

and then degreased with acetone. The adhesive was applied (in accordance with the man-

ufacturer’s recommendations) using a manual applicator gun with a static-mixing nozzle.

The adhesive layer thickness h was adjusted by shims. All specimens were cured at room

temperature in ambient air for two weeks. Sharp pre-cracks were generated by razor tapping.

The tests on TAST specimens were conducted at a cross-head speed such that the average

shear strain rate in the adhesive layer was 6×10−4s−1. A high resolution video was recorded

at a rate of 0.2 frames per second to monitor the deformation of the adhesive. Digital

Image Correlation (DIC) was employed to determine the shear strain distribution within the

adhesive layer at all the stages of deformation. At least three specimens were tested for each

crack length and layer thickness.
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3.1. Mechanical response of TAST specimens

The average shear stress versus shear strain in the adhesive layer is shown in Fig. 3

for a = 0, a = 10 mm, and a = 20 mm. An elastic-brittle response is evident in each

case, with the average shear strength decreasing with increasing h and with increasing a. In

all cases, the failure mode was interfacial in nature, with no adhesive left on the substrate

(not shown). The power law dependence of shear strength on adhesive layer thickness is

different in specimens for which a = 0 (Fig. 4(a)) from that for specimens of pre-crack

length a = 10 mm and a = 20 mm (Fig. 4(b)). Specifically, the failure strength scales as

h−0.35 in specimens with a = 0, and scales as h−0.50 in specimens with a = 10 mm and a = 20

mm. An explanation for this behaviour is provided in the following sections.

4. Corner singularity analysis

Consider a TAST specimen with a = 0, and assume that a sharp 90◦ re-entrant corner

exists at the junctions between the end face of the epoxy layer and the steel adherend. The

presence of the 90◦ corner induces a singular stress field of the form discussed by Bogy (Bogy,

1970). Introduce a polar coordinate system (r, θ) centred on the corner such that θ = 0 is

along the layer/substrate interface, see Fig. 5(a). The asymptotic analysis of the stress field

at the corner is detailed in Appendix A; it is found that a separation-of-variables solution

exists for the stress such that the stress field σij and displacement field ui are of the form

(Knésl et al., 2007)

σij = H rλ−1 fij(λ, θ) (1)
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and

ui = H rλ gi(λ, θ) (2)

respectively, where λ is an eigenvalue, the parameter H is the intensity of loading, and fij

and gi are eigen-functions that capture the θ-dependence of the stress and displacement

fields, respectively. Without loss of generality, we shall take f22 = 1. The details of the

asymptotic analysis closely follow that of Khaderi et al. (Khaderi et al., 2015). The value

of the eigenvalue λ and the eigenfield depend upon the degree of elastic mismatch between

layer and substrate. Thus, upon specialising (1) to θ = 0, the traction on the layer/substrate

interface reads

σ12 = H rλ−1 f12(λ, θ = 0) (3)

and

σ22 = H rλ−1 f22(λ, θ = 0) (4)

Linearity and dimensional analysis dictate that the intensity of singularity H is related to

the remote shear stress τ∞ and layer thickness h according to

H = τ∞ h1−λ b(α, β) (5)

The value of b(α, β) is dependent upon specimen geometry and in the present study it is

determined from a best fit of (4) to the traction distribution along the interface as r → 0.

The details are given below. The values of α and β quantify the mismatch in plane tensile
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modulus across the interface, and the mismatch in the in-plane bulk modulus, respectively

(Dundurs, 1969). In order to define them, label the layer above the interface (that is, the

adhesive layer) as material i = 1 and the lower substrate (made from steel in the present

experimental study) as material i = 2. Write µi as the shear modulus and νi as the Poisson

ratio for material i. Then, for plane strain conditions, we have

α =
µ1 (1− ν2)− µ2 (1− ν1)
µ1 (1− ν2) + µ2 (1− ν1)

(6)

and

β =
1

2

µ1 (1− 2ν2)− µ2 (1− 2ν1)

µ1 (1− ν2) + µ2 (1− ν1)
(7)

We obtain α = −0.97 and β = −0.16 upon taking (E2 = 200 GPa, ν2 = 0.30) for the steel

substrate, and (E1 = 2.20 GPa, ν1 = 0.40) for the epoxy layer from references (Pandini

and Pegoretti, 2008) and (Reedy and Guess, 1997), respectively. A strain-gauge rosette

was placed within the gauge section of the tensile, dogbone specimen and confirmed that

ν1 = 0.40 for the epoxy.

It is well-established (see for example, (Hutchinson and Suo, 1991)) that a non-vanishing

value of β is associated with an oscillation in the stress and displacement fields near the

tip of an interfacial crack. This leads to complications in the interpretation of mode-mix

at an interfacial crack tip, as detailed later in this study. It is instructive to assume, as an

alternative choice, that α = −0.97 and β = 0, for example by taking E1 = 2.20 GPa and

ν1 = 0.499 for the epoxy layer. In this way, we can assess whether it is necessary to make use

of the added complexity associated with a finite value of β in order to interpret the results.
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The value of λ is determined by the eigenvalue analysis of Appendix A and is plotted in

Fig. 6 as a function of α for the two choices β = 0 and β = −0.16. For the epoxy adhesive

and steel combination (α = −0.97) we find that λ = 0.60 for β = 0, and λ = 0.65 for

β = −0.16. For comparison, recall that the singular stress field at the tip of a crack in an

elastic solid scales as r−
1
2 , implying λ = 0.50.

4.1. Finite element analysis

A series of finite element simulations using ABAQUS 2 were performed in order to verify

the order of corner singularity for the modified TAST geometry and to obtain the calibration

factor b in (5) for the relevant choice of geometry, h/W = 0.10. The two-dimensional finite

element model consisted of the full TAST geometry, see Figs. 1 and 5(a). However, instead

of pin loading, it was simpler and of acceptable accuracy to apply a uniform normal traction

on the end faces of the steel substrates in order to generate the axial force F . A refined mesh

was used in the vicinity of the interface corner such that the ratio of smallest element length

to the adhesive layer thickness is 0.0002. Four-noded, bi-linear plane strain quadrilateral

elements of reduced integration were employed. In addition, quadratic triangular elements

(with 1/4 point nodes to capture the crack tip singularity) were placed at the crack tip when

an interfacial crack was present.

The constant b(α, β) is determined by best-fitting (4) to the numerical results for σ22(r)

as r → 0 upon making use of the fact that f22 = 1. With this value of b, the asymptotic

prediction (3) follows immediately. Take α = −0.97, and let β = 0 and β = −0.16; the

best fits of the asymptotic solution to the finite element solutions are given by b = 1.47

2Abaqus/Standard 2017. Dassault Systemes SIMULIA, Providence, Rhode Island.
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and b = 1.78, respectively, for small values of r/h. Furthermore, the results for the shear

stresses confirm that f12 = 0.51 and 0.42 for β = 0 and β = −0.16, respectively, as found in

(Akisanya and Fleck, 1997; Khaderi et al., 2015). The FE predictions of Fig. 5 show that the

slopes of the log-log plots of σ22 versus r, and σ12 versus r, agree with the value (λ− 1) from

the asymptotic solution. The asymptotic solution is dominant for r/h < 0.1; higher order

terms in the asymptotic expression are needed to obtain agreement for r/h > 0.1. The size

of the singular domain is consistent with that observed in other corner singularity studies

(Reedy, 1993; Akisanya and Fleck, 1997).

We emphasize that one can interpret the parameter H as a loading parameter that quan-

tifies the magnitude of the singular stress field at the interface-corner. When the value of

H attains a critical value Hc fracture initiates, regardless of the details of non-linear defor-

mation, damage and fracture within an embedded fracture process zone that is contained

within the H-field. Thus, H plays a similar role for the initiation of fracture to the stress

intensity factor K for the growth of a pre-existing crack. Upon adopting this interpretation

for H the relation (5) suggests that the critical shear stress τ∞ for crack initiation from the

interface-corner scales as h(λ−1). If we assume that λ = 0.65 for the choice β = −0.16 then

we predict that τ∞c scales as h−0.35 which is in excellent agreement with the observed scaling

law of τ∞c ∝ h−0.35 in Fig. 4(a) for the case of a TAST specimen with no pre-crack present.

Alternatively, if we assume that ν1 for the adhesive equals 0.495 instead of 0.40, then we

obtain (α = −0.97, β = 0); consequently, λ equals 0.60 and the fracture strength τ∞c scales

as τ∞c ∝ h−0.40 which deviates from the observed dependence of Fig. 4(a).
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4.2. Analysis of interfacial crack

We proceed to analyse the case of an interfacial crack, of length a, on the lower interface

of the adhesive layer. First, recall the definitions of the complex stress intensity factor K,

the mode mix ψ and energy release rate G for an interfacial crack. The case of an interfacial

crack embedded within the domain of dominance of the corner singularity is first considered,

and then the general case of an interfacial crack that extends beyond the field of the corner

singularity.

Recall that an oscillatory stress singularity exists at the tip of an interfacial crack when

the Dundur’s parameter β is non-vanishing. This is made clear from the traction distribution

along the interface directly ahead of the crack (along x2 = 0); it is of the form

σ22 + iσ12 =
K√
2πx1

xiε1 =
K√
2πx1

eiεlnx1 (8)

where K = K1 + iK2 is the complex intensity factor, with real part K1 and imaginary part

K2. The oscillatory index ε is a function only of β such that

ε =
1

2π
ln(

1− β
1 + β

) (9)

Note that ε and the associated oscillations in the stress vanish when β vanishes. The ratio

of shear traction σ12 to normal traction σ22 depends upon the distance x1 ahead of the crack

tip due to the presence of the eiεlnx1 term in (8). Consequently, the mode mix ψ∗ of an

interfacial crack at an arbitrary distance l ahead of the crack tip, is given by

tan ψ∗ =
σ12(x1 = l)

σ22(x1 = l)
=

Im(Kliε)

Re(Kliε)
(10)
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We note in passing that (10), can be re-written in the form

Kliε =| Kliε | eiψ∗ (11)

with the immediate interpretation that ψ∗ is the phase angle of the complex quantity Kliε;

note too that Kliε has the same units MPa
√

m as that of the conventional stress intensity

factor in the bulk solid, as seen by inspection of (8).

If, instead of l, the crack length a is now taken as the length scale for definition of the

mode mix, then the associated phase angle ψ is defined by

tan ψ =
σ12(x1 = a)

σ22(x1 = a)
=

Im(Kaiε)

Re(Kaiε)
(12)

such that

Kaiε =| Kaiε | eiψ (13)

The phase angles ψ∗ and ψ are directly related by noting that

Kaiε = Kliεeiεln(a/l) (14)

and consequently

ψ = ψ∗ + εln(
a

l
) (15)

via (11) and (13). Typically, the difference between ψ∗ and ψ is negligible since ε is small and

there is a logarithmic dependence upon a/l. In the present study we assume that the length

scale l for which the mode mix is important is on the order of the plastic zone size, rp at the
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tip of a mode I interfacial crack at fracture. Assume that rp = EΓI/(3πσ
2
y) where E = 2.20

GPa, σy = 32 MPa and the interfacial mode I toughness Γ = 8.7 Jm−2 (as measured later in

this study from tests on a modified compact tension specimen). Consequently, we find that

l = rp =2.0 µm.

The energy release rate G is related to the interfacial stress intensity factor K according

to (Hutchinson and Suo, 1991)

E∗G = (1− β2)(K2
1 +K2

2) (16)

where the combined modulus E∗ is related to the shear moduli µi, and κi = 3− 4νi, via

16

E∗
=

1 + κ1
µ1

+
1 + κ2
µ2

(17)

4.2.1. Interfacial crack embedded in the corner singular field

First consider the case where the interfacial crack is embedded within the corner singular

field of intensity H. Kaiε must scale linearly with H, and dimensional analysis dictates that

the connection formula between Kaiε and H is of the form

Kaiε = dHaλ−0.5 (18)

where the complex calibration factor d = dR + idI is a function only of (α, β). The value of

d has been obtained previously by Khaderi et al. (Khaderi et al., 2015) for the full range of

(α, β), and we include in Table 1 the values of d for (α = −0.97, β = 0) and for (α = −0.97,

β = −0.16) as taken from Khaderi et al. (Khaderi et al., 2015). Now make use of relations
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(5) and (18) to write

K

τ∞
√
h

= (3.89 + i1.19)(a/h)0.10 (19)

for the choice (α = −0.97, β = 0) and

Kaiε

τ∞
√
h

= (4.54 + i1.37)(a/h)0.15 and ε = 0.0517 (20)

for (α = −0.97, β = −0.16). We note from (19) and (20) that the dependence of | Kaiε | upon

crack length a is rather mild due to the small value of the exponent a/h. The expressions

(19) and (20) are plotted in Fig. 7(a). By making use of (16), the energy release rate G

versus crack length a is obtained and is shown in Fig. 7(b). Additionally, the phase angle

ψ, based on the length scale a, is shown in Fig. 7(c): ψ equals 17.0◦ and 16.8◦ for β = 0

and β = −0.16, respectively. We conclude that a short crack at the interface-corner of the

TAST specimen is predominantly loaded in mode I.

4.2.2. General case of an interfacial crack

Second, consider the more general case of an interfacial crack of arbitrary length a along

the lower interface. A finite element analysis is performed on the entire specimen geometry

of Fig. 5(a), and the value of K is determined by a domain integral method as an in-built

subroutine within the ABAQUS program. The sensitivity of K and of phase angle ψ to a

is plotted in Fig. 7(a) for α = −0.97 , with β = 0 or β = −0.16. At short crack lengths,

a/h < 0.1, there is good agreement with the asymptotic solution of a short crack embedded

within the corner singular field. When the crack extends beyond the corner singularity,

the phase angle ψ increases with increasing a/h from ψ = 17.0◦ (mode I dominated) to
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ψ = 90.0◦ (mode II limit). Consequently, at large values of a/h the crack tips approach each

other from opposite ends of the specimen, and K becomes sensitive to a/h within the regime

3 < a/h < 6; this behaviour is also evident in Fig. 5.

Recall that the observed fracture strength of the epoxy layer scales as h−0.5 in Fig. 4,

for a/W = 0.2 and 0.4 (W = 50 mm). This dependence is consistent with the prediction

by a straightforward calculation of the energy release rate G for a semi-infinite crack along

the lower interface of an infinite layer of adhesive, of height h, sandwiched between two rigid

substrates (Mart́ınez-Pañeda et al., 2020; Rice and Rosengren, 1968). The layer is of shear

modulus µ1 and Poisson ratio ν1, and the upper substrate is displaced in a sliding direction

with respect to the lower substrate by an amount hγ where γ is the shear strain in the intact

layer, upstream of the crack tip. Write τ∞ = µ1γ as the shear stress on the layer upstream

of the crack tip. Then the upstream strain energy density of the sandwich layer, per unit

area, reads

W u =
1

2

τ∞2h

µ1

(21)

while the downstream strain energy density WD vanishes downstream of the crack tip. Con-

sequently, the energy release rate is G = W u. Upon equating G to the interfacial toughness

Γ we find that the shear strength τ∞c (upstream of the crack tip) is

τ∞c =

(
2µ1Γ

h

) 1
2

(22)

Consequently, τ∞c scales as h−
1
2 , as observed in Fig. 4.

It remains to deduce the locus of interfacial toughness Γ as a function of phase angle ψ
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(based on a) and ψ∗ (based on l = 2.0 µm) from the TAST results of Figs. 3(b, c). An

additional test is needed in order to obtain values for Γ(ψ∗) for ψ∗ small, that is close to

mode I. To achieve this, fracture tests were performed on a modified version of compact

tension test, as shown in Fig. 8. The same material combination was used on this sandwich

specimen of thickness 25 mm; the adhesive layer thickness h was 5 mm and the initial crack

length was 10 mm. All other relevant dimensions, and the load versus displacement response

for 3 repeat tests, are given in the sketch of Fig. 8. A subsidiary ABAQUS calculation

of the K-calibration revealed that the test is almost mode I in nature, with ψ = 8.7◦ and

ψ∗ = −16.1◦. Consequently, relation (16) provides Γ(ψ∗ = −16.1◦) = 8.7 Jm−2.

The fracture locii of Γ(ψ) and Γ(ψ∗) for the TAST specimens, and for the modified

compact tension test, are shown in Fig. 9. Additional insight into the TAST specimens

is obtained by reporting in Table 2 the interfacial K-calibration for the practical range of

values of h/W , with a/w = 0.20 and 0.40, and for the choice α = −0.97 and β = −0.16.

Note that the phase angle ψ, based on a, ranges from 50◦ at h/W = 0.26 (and a/W = 0.20)

to 87◦ at h/W = 0.06 (and a/W = 0.40) and the phase angle ψ∗ (based on l = 2.0 µm)

ranges from 25◦ to 60◦ with decreasing h/W . The phase angle ψ∗ is shifted from that of ψ

by approximately 27◦ upon making use of (15) with ε = 0.0517 and l = 2.0 µm.

It is clear from Fig. 9(a) that, for a given value of a/W , the phase angle ψ∗ (and likewise

phase angle ψ in Fig. 9(b)) increases by approximately 20◦ with decreasing h/W , from

h/W = 0.26 to h/W = 0.06. Over this range Γ has a minor sensitivity to ψ∗ and to ψ.

Thus, it is expected from (22), and from the more detailed evaluations in Table 2, that the

shear strength scales as h−
1
2 in line with the measurement reported in Fig. 4(b).
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5. Concluding Remarks

The current study provides a fracture mechanics for crack initiation from a sharp corner

and for crack growth from a pre-existing flaw along the interface of a lap-joint in the form

of a TAST specimen. The low value of interfacial toughness implies that a elastic analysis

is adequate for our purposes. The low values of interfacial toughness, large elastic mismatch

between adhesive layer and substrate, and the finite value of mismatch parameter β together

lead to a large shift of approximately 27◦ in phase angle for an interfacial crack when the

relevant length scale is shifted from crack length a to plastic zone size l. More commonly,

the shift in phase angle is only a few degrees for an interfacial crack in a sandwich layer, for

example for a ceramic layer or a tough polymeric layer. The present study reveals that the

phase angle ψ∗ in the TAST specimens is on the order of 25◦ to 60◦ (depending upon the

value of a/W and h/W ). This implies that the test is mixed mode in nature, and is not a

pure mode II fracture test.

Acknowledgment

This project has received funding from the Interreg 2 Seas programme 2014-2020 co-

funded by the European Regional Development Fund under subsidy contract No 03-051.

Additional support of Prof. Norman Fleck was provided by, the ERC project “Multi-phase

Lattice Materials” (MULTILAT) under Grant No. 669764.

18



Appendix

Asymptotic analysis of stress distribution near a corner

The asymptotic solution for the stress and displacement fields near a bi-material corner

is derived below. Consider the geometry shown in Fig. 5(a), and introduce both a Cartesian

co-ordinate system (x, y) and a polar co-ordinate system (r, θ) centred on the corner. The

location of any material point in the vicinity of the corner can also be stated in complex

variable form as z = x + iy = reiθ. Introduce m as the index that identifies the material

above (m = 1) or below (m = 2) the interface, with κm = 3 − 4νm. Now write ()′ as the

derivative and (̄) as the complex conjugate of any complex function, in the usual manner.

Then, upon following Muskhelishvili (Muskhelishvili, 1955), the stress and displacements in

materials 1 and 2 can be expressed in terms of complex potentials Φ(m)(z) and Ω(m)(z) as

σ
(m)
θθ − iσ

(m)
rθ = Φ̄′(m)(z̄) + Φ′(m)(z) + z̄Φ̄′′(m)(z̄) + z−1z̄Ω̄′(m)(z̄) (23)

σ(m)
rr + iσ

(m)
rθ = Φ̄′(m)(z̄) + Φ′(m)(z)− z̄Φ̄′′(m)(z̄)− z−1z̄Ω̄′(m)(z̄) (24)

u(m)
r + iu

(m)
θ = (2µm)−1e−iθ

(
κmΦ(m)(z)− zΦ̄′(m)(z̄)− Ω̄(m)(z̄)

)
(25)

The complex potentials Φ(m)(z) and Ω(m)(z) have the following asymptotic form as z → 0,

(see for example, (England, 1971; Stern et al., 1976; Carpenter and Byers, 1987)),
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Φ1 = Azλ, Ω1 = Bzλ (26)

Φ2 = Czλ, Ω1 = Dzλ (27)

where (A,B,C,D) are complex coefficients to be determined by satisfaction of the appropriate

boundary conditions:

For the corner singularity problem, the following boundary conditions need to be satisfied

σ
(1)
θθ − iσ

(1)
rθ = σ

(2)
θθ − iσ

(2)
rθ along θ = 0 (28)

u(1)r + iu
(1)
θ = u(2)r + iu

(2)
θ along θ = 0 (29)

σ
(1)
θθ − iσ

(1)
rθ = 0 along θ =

π

2
(30)

σ
(2)
θθ − iσ

(2)
rθ = 0 along θ = −π (31)

Hence,

A+ λĀ+ B̄ − C − λC̄ − D̄ = 0 (32)

κ1A− λĀ− B̄ − µ(κ2C − λC̄ − D̄) = 0 (33)

Aeiπλ − λĀ+ B̄ = 0 (34)

Cei2πλ + λC̄ + D̄ = 0 (35)

where µ = µ1/µ2, A = AR + iAI , and likewise for B, C, and D. Upon rewriting (32) and (33)

as a function of AR and AI only, and equating the determinant of the coefficient matrix for

AR and AI to zero, the charactristic equation is obtained as F (λ) = 0, where
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F (λ) = {
[
4
(
κ21 − 4λ2 + 1

)
+ 8κ1cos(πλ)

]
sin2(πλ)

− 2µ2
[(

cos(πλ) + 2λ2 − 1
)
(4κ2cos2(πλ) + (κ2 − 1)2

)]
−4µ

[
(κ2−1)

(
4λ2sin2(πλ)−(κ1−1)cos2(πλ)

)
+(κ1κ2+1)

(
1−sin(2πλ)sin(πλ)

)
−κ1−κ2

]
}/{4sin2(πλ)}

(36)
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Knésl, Z., Klusák, J., Náhĺık, L., 2007. Crack initiation criteria for singular stress con-

centrations, part i: a universal assessment of singular stress concentrations. Engineering

Mechanics 14, 399–408.

Koguchi, H., Inoue, T., Yada, T., 1996. Stress singularity in three-phase bonded structure .

Krieger, R.B., 1975. Stiffness characteristics of structural adhesives for stress analysis in

hostile environment, in: Society for the Advancement of Material and Process Engineering,

National Technical Conference, 7 th, Albuquerque, N. Mex, p. 1975.

Lang, T.P., Mallick, P., 1998. Effect of spew geometry on stresses in single lap adhesive

joints. International Journal of Adhesion and adhesives 18, 167–177.

Maloney, K., Fleck, N., 2018. Damage tolerance of an architected adhesive joint. Interna-

tional Journal of Solids and Structures 132, 9–19.

23
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Table 1: Corner singularity parameters for the choice α = −0.97, and β = 0, −0.16.

β = 0 β = −0.16

λ b f12 dR dI λ b f12 dR dI

0.60 1.47 0.51 2.65 0.81 0.65 1.78 0.42 2.55 0.77

Table 2: K-Calibration for TAST specimen.

Re(Kaiε)

τ∞
√
h

Im(Kaiε)

τ∞
√
h

ψ (◦) Re(Kliε)

τ∞
√
h

Im(Kliε)

τ∞
√
h

ψ∗ (◦)

h/W a/W = 0.20

0.06 0.91 3.16 73.9 2.15 2.50 49.3

0.10 0.89 2.73 71.9 1.96 2.11 47.1

0.16 1.05 2.30 65.4 1.92 1.64 40.6

0.20 1.21 2.06 59.6 1.97 1.37 34.9

0.26 1.50 1.80 50.3 2.12 1.01 25.5

a/W = 0.40

0.06 0.24 3.57 86.1 1.81 3.08 59.5

0.10 0.22 3.20 86.1 1.61 2.76 59.5

0.16 0.37 2.88 82.7 1.62 2.41 56.1

0.20 0.51 2.72 79.4 1.68 2.20 52.7

0.26 0.76 2.52 73.2 1.81 1.91 46.6
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mm; d = 5; b = 6.35.
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Figure 2: Uniaxial response of the epoxy in bulk form. (a) Nominal tensile response; (b) Nominal compression

response; (c) True stress σt versus true strain εt curves in tension and compression, at ε̇ = 4× 10−4 s−1.
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The corner singularity asymptotic solution is dominant for r/h < 0.1.
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from crack length a to the plastic zone size l, the phase angle shifts by 27◦.
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