
GMPT Future Control
Software Requirements

Jerry Yen Sushil Birla

2

Outline

• Manufacturing User Requirements

• Control Software Requirements

• Technical Elements

• Research Agenda

• Summary

3

“Lean” Manufacturing Objectives

• Reduce Costs

• Increase Responsiveness

• Improve Quality

CostResponsiveness + + Quality

Investment Operating

• System Flexibility
• Adoption of new Technologies

• Design & Engineering
• Manufacturing & Production

• Equipment Procurement
• Stability of Technology

• Reliability & Maintainability
• Capability
• Usability

Lean =

4

Cost Areas

• Focus on costs that can
be impacted with
engineering.

• Need a more efficient
engineering &
maintenance process

Commodity HW and shop labor

Engineering-impacted costs

5

Engineering-impacted
lifecycle cost profile

0

5

10

15

20

25

30

35

Preparation Hardware design Software design Test, debug, integrate,
startup training

Operation &
Maintenance

6

Engineering & Maintenance Needs

• Efficient Engineering
– New applications

– Retrofits

• Efficient Start-up
– Easy, safe learning curve at start-up

– Efficient, safe debugging

• Efficient, Safe Operation and Maintenance

7

Assuring Correctness of Programs

• Support to capture process specs (sequence of
operations) correctly

• Validation of process specs, e.g.,
– Check for inconsistencies

– Support for simulation with manufacturing
process in the loop

• Efficient transformation from process specs
to executable programs

• Ability to debug on shop floor at high level
program/spec

8

Reducing Design Time/Cost

• Support for efficient reuse of library
components

• Support for efficient maintenance of reusable
libraries

• Platform independence

• Export/import in vendor-neutral, tool-neutral
form

9

Making Programs Easier to Understand

• Proper modularization, e.g., IEC 61499
function block types

• Reuse of software
– Standard library elements

• Standards for module interconnection &
interaction

• Consistent control structure that is not error-
prone

• Eliminate need for changes in low level code
– Change at high level only

10

Supporting Operation & Maintenance
(1/2)

• Minimize time cost to locate cause of
interruption in production
– Eliminate need to browse “raw” control logic

– Support operator in correcting manufacturing
problems

Reduce avoidable calls to skilled trades

– Isolate condition not fulfilled

– Indicate specific fault point

– Provide online help & documentation
Support adding helpful hints from experience

11

Supporting Operation & Maintenance
(2/2)

• Minimize engineering effort in providing
troubleshooting help
– Integrate diagnostics with control logic

– Reuse & integrate data from multiple sources, e.g.,
IO devices database

• Integrate subsystem status & diagnostics info,
e.g., servos

• Safe recovery procedures when out of
sequence

12

Existing Deficiencies

• The lack of Open Modular Architecture Controls has
been a significant impediment during the debug and
ramp-up phase of a manufacturing system
– Can not support proper reconfiguration of manufacturing

systems

• The lack of portability and reusability application
software imposes significant avoidable costs and
delays in creating new manufacturing system
configurations

• There is a lack of organized, systematized knowledge
to specify, apply, integrate, use, test and evaluate an
OMAC-based system correctly and efficiently

13

General Control Software Requirements

• Control logic software shall be modular,
portable, and composed of reusable library
components

• The definition of all language elements shall
be publicly published, supplier-neutral, and
independent of any graphical presentation
form or language

• Application control logic shall be accessible in
a view-independent form for portability

• Software organization shall be consistent with
the model described in IEC 61499

14

Reuse - Standard Library Elements

Common elements
(ref IEC 61499)

Identifiers, literals, data types, variables
Function block type structure

General Function Block (FB) types
 Examples:

 counter/timer
character-string

Automation domain Function Block types
Examples:

AxisSupervisor, Servo-axis of motion
2PositionMotionDevice, IOdevice

Integral diagnostics

15

Language Elements

• In cases where no IEC standard is sufficiently
defined
– specified through or mappable into XML Schema,

utilizing the most expressive elements

16

Reusable generic interfaces

FSM

GenericTask GenericResource

IODevice

2PositionMotionDevice

AxisSupervisor

ServoAxis

Application-specific Task

17

Process Plan-to-Task Transformation

(Job scheduler)

ResourceBinder

ProgramTranslator

ApplicationSpecific
ProcessPlan

ApplicationSpecific
ResourceSpecific

Program

ApplicationSpecific
Task (FSM)

with bindings
to reusable resources

Reusable resources
& configuration

18

From Application Specific Task to
Reusable Resources

Application Specific
Control Logic Task

2PositionMotionDevice

AxisSupervisor

Locator

Clamp

X-Axis

Y-Axis

Reusable Resources

19

Control Logic Design Structure

General, application-independent system services (ref IEC 61499-1 CD, Sec 3-4, Annexes B.3, F-H)
e.g., task configuration, inter-task communication, resource allocation, scheduling, timing

Common elements (ref IEC 61499-1 CD, Section 1.4,2, & Annexes),
e.g., Identifiers, literals, data types, variables (Annex B.4, E),

abstract data (function block) type structure (Annex B.2).

Application domain oriented library building blocks, e.g., Axis of motion
Generic library building blocks, e.g., counter, character-string

View-independent database of control logic programs and components

HMI signals,
Peer Interlocks, IO

Data access,
Browsing,

Navigation,
Presentation,

&
Conversion

Tools

SFC FlowchartsFBDLDSTIL

❆
❆

❆
❆

 Multiple notations (“languages”) in use to specify, present or view a program

<----------------------Textual---
----------------------Graphic---------------------------------->

Basic operating system services &
hardware abstractions

Design tools

Denotes view-specific data

UML

❆

Modularization of programming software and resources

XML

20

Software Engineering Research (1/2)

• Compare various architectural alternatives
– Reduction in learning time

– Reduction in debug time

– Reduction in integration time

– Reduction in machine control application
development time

• Develop the metrics to compare various
architectural alternatives

21

Software Engineering Research (2/2)

• Test methods & procedures to assure “plug
and play” integration of software components
for the machine control application domain
– including conformance to timing requirements

22

Software engineering research issue (3)

• Which FSM Model? ?
– Controversy in FSM model - action on transition

or in state?

23

Event management research issue (1/2)

• Abnormality events
– An abnormality event can occur in any state, e.g.,

some emergency.

– Should its transition be explicitly specified in
every state?

– Or, can there be a shortcut without affecting
verifiability?

24

Event management research issue (2/2)

External event flow in hierarchical FSM: inside->out, outside->in, …?

Control system
Task Coordinator

Application Specific
Task (Control Program)

2PositionMotionDevice

IOdevice

Fault event

?

?

?

25

Summary

• OMAC User Requirements given in terms of
impact on the overall engineering &
maintenance process lifecycle.

• No new inventions / paradigms needed.

• R&D needed in software engineering to
compare alternatives with respect to
– Ease of learning

– Reduction of debug, integration & startup time

– Ease of maintenance

– Reuse

http://isd.mel.nist.gov/projects/omacapi/ReferenceDocumentation/

