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Abstract. This is the second of a pair of papers on extended geometrically finite (EGF)

representations, which were originally posted as a single article under the title “An
extended definition of Anosov representation for relatively hyperbolic groups.” In this

paper, we prove that the holonomy representation of a projectively convex cocompact

manifold with relatively hyperbolic fundamental group is always an EGF representation.
We also prove that EGF representations arise as holonomy representations of convex

projective manifolds with generalized cusps and as compositions of projectively convex
cocompact representations with symmetric representations of SL(d,R). We additionally
show that any small deformation of a representation of the latter form is still EGF.
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1. Introduction

1.1. Format of the paper. This paper constitutes the second part of a preprint originally
posted in April 2022 under the title An extended definition of Anosov representation for
relatively hyperbolic groups [Wei22]. The first part of the original preprint (which introduces
EGF representations and proves a relative stability result) can still be found with its original
title at the original arXiv posting.

The division was made largely for the sake of decreasing the total length of the paper, so
the contents of this article are essentially unchanged from the way they appeared in earlier
versions of [Wei22].

1.2. Overview. In the last two decades, Anosov representations have emerged as important
objects in the study of discrete subgroups of semisimple Lie groups. Originally defined for
surface groups by Labourie in [Lab06], and extended to arbitrary word-hyperbolic groups by
Guichard-Wienhard [GW12], Anosov representations generalize geometric and dynamical
properties of convex cocompact representations in rank one: an Anosov representation
is always a quasi-isometric embedding Γ → G for a Gromov hyperbolic group Γ and a
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semisimple Lie group G, and comes equipped with an equivariant boundary embedding
∂Γ → G/P , where P ⊂ G is a parabolic subgroup.

Anosov representations have come to be accepted as a suitable higher-rank generalization
of convex cocompactness, which raises the question of whether there is also an analogous
generalization of geometrical finiteness. Several authors (see [KL18], [Zhu21], [CZZ21],
[ZZ22]) have previously defined notions of relative Anosov representations, but none of the
proposed definitions capture certain natural families of examples of “geometrically finite”
behavior in higher rank.

In [Wei22], we introduced a new class of representations of relatively hyperbolic groups
into semisimple Lie groups, called extended geometrically finite (EGF) representations. EGF
representations generalize all existing definitions of relative Anosov representations. In
addition, the definition is flexible enough to cover many additional examples of higher-rank
“geometrically finite” behavior, and to allow for EGF representations to deform in ways not
available to relative Anosov representations. Specifically, EGF representations satisfy the
following theorem:

Theorem 1.1 (See [Wei22, Theorem 1.4]). Let (Γ,H) be a relatively hyperbolic pair, and
let ρ : Γ → PGL(d,R) be an extended geometrically finite representation, with boundary
extension ϕ. If W ⊂ Hom(Γ,PGL(d,R)) is a subspace which is peripherally stable with
respect to ρ, ϕ, then an open subset of W containing ρ consists of EGF representations.

We will review the terminology in Theorem 1.1 in Section 2. The main aim of this article
is to explain how various examples fit into the theory of EGF representations, and highlight
applications of Theorem 1.1 for these examples. In some cases, the theorem recovers known
stability results for various classes of discrete groups, and in other cases it yields new results.

1.3. Results. We refer to Section 2 for the definition of an EGF representation. See [Wei22]
for further detail.

1.3.1. Convex cocompact groups in PGL(d,R). In [DGK17], Danciger-Guéritaud-Kassel
introduced a notion of convex cocompactness for projective orbifolds, i.e. orbifolds with a
real projective structure. Roughly, a group Γ ⊂ PGL(d,R) is convex cocompact if it acts
with compact quotient on a certain closed invariant convex subset inside a properly convex
domain Ω ⊂ P(Rd). We refer to Section 4 for the precise definition.

Convex cocompact groups in PGL(d,R) are closely related to Anosov subgroups. Let
{e1, . . . , ed} denote the standard basis for Rd, and let P1,d−1 denote the parabolic subgroup
stabilizing the flag (span{e1}, span{e1, . . . , ed−1}). If Γ is a word-hyperbolic subgroup of
PGL(d,R) which is convex cocompact in the sense of [DGK17], then the inclusion Γ ↪→
PGL(d,R) is a P1,d−1-Anosov representation. Conversely, any P1,d−1-Anosov representation
ρ : Γ → PGL(d,R) which preserves some properly convex domain in P(Rd) is convex
cocompact. Further, for any semisimple Lie group G and any parabolic subgroup P ⊂ G,
one can find a representation ϕ : G → PGL(d,R) so that a representation ρ : Γ → G of a
hyperbolic group Γ is P -Anosov if and only if the composition ϕ ◦ ρ has convex cocompact
image (see [GGKW17], [Zim21]). Thus, convex cocompactness in PGL(d,R) can be used to
give a definition of Anosov representation in terms of convex projective geometry.

Unlike several other definitions of Anosov representations, however, projective convex
cocompactness immediately generalizes beyond the realm of hyperbolic groups. Indeed, there
are a number of different constructions for non-hyperbolic convex cocompact subgroups of
PGL(d,R); see e.g. [Ben06], [BDL15], [CLM20], [DGKLM21], [BV23] (see also [Wei20, Sec.
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2.6] for an overview, or the forthcoming work [DGK]). In each of the examples we have
mentioned here, the convex cocompact group Γ is (abstractly) a relatively hyperbolic group.

These relatively hyperbolic convex cocompact groups do not fit into previously existing
theories of relative Anosov representations (see [Wei20, Remark 1.14]). However, we show in
this paper that they do always give rise to EGF representations:

Theorem 1.2. Let Γ be a convex cocompact subgroup of PGL(d,R), and suppose that Γ is
relatively hyperbolic. Then the inclusion Γ ↪→ PGL(d,R) is extended geometrically finite.

Our proof of Theorem 1.2 builds on our earlier study [Wei20] of “boundary maps” from
the Bowditch boundary of a relatively hyperbolic convex cocompact group Γ to a quotient of
the boundary of a Γ-invariant domain in P(Rd), as well as related work of Islam-Zimmer on
the same topic [IZ22].

Remark 1.3. Not every convex cocompact group in PGL(d,R) is abstractly relatively

hyperbolic. If Γ is a uniform lattice in PSL(n,R), then Γ acts on the space X̃ of n × n
positive-definite symmetric matrices, which embeds into the vector space V of symmetric
n× n matrices. The image of X̃ in the projective space P(V ) is a properly convex open set
X, and the induced action of Γ on X is properly discontinuous and cocompact, meaning
that Γ is convex cocompact in PGL(V ). However, the group Γ is not relatively hyperbolic
whenever n > 2.

On the other hand, there are no examples known of convex cocompact groups in PGL(d,R)
which are not either relatively hyperbolic or isomorphic to a uniform lattice in some semisimple
Lie group G.

1.3.2. Convex projective orbifolds with generalized cusps. In [CLT18], Cooper-Long-Tillmann
studied a different generalization of geometrical finiteness in the context of convex projective
geometry. They considered the case of a strictly convex projective (d− 1)-manifold (possibly
with boundary) which decomposes into a compact piece and finitely many generalized cusps.
In the language of [CLT18], a generalized cusp is a strictly convex projective (d− 1)-manifold
homemorphic to N × [0,∞), where N is a closed (d− 2)-manifold with virtually nilpotent
fundamental group.

Later, Ballas-Cooper-Leitner [BCL20] classified generalized cusps into d different cusp
types, in particular showing that a generalized cusp always has virtually abelian fundamental
group. A “type 0” generalized cusp is projectively equivalent to a hyperbolic cusp (and
has virtually unipotent holonomy), while a “type (d − 1)” generalized cusp has virtually
diagonalizable holonomy. The other cusp types are “interpolations” between type 0 and type
d− 1.

Now fix a strictly convex projective (d− 1)-manifold M , and assume that M is a union of
a compact manifold and finitely many generalized cusps. The holonomy of M is a relative
Anosov representation if and only if all of its cusps have type 0 (see [Zhu21]), and the image
of the holonomy is convex cocompact (in the sense mentioned previously) if and only if all of
its cusps have type d− 1. On the other hand, the framework of EGF representations still
applies in the presence of all types of cusps:

Theorem 1.4. For every d and for every 0 ≤ t < d − 1, there exists a convex projective
(d− 1)-manifold with a type t generalized cusp whose holonomy is EGF.

The fact that for every d and every 0 < t < d− 1 there even exists a convex projective
(d − 1)-manifold containing a type-t cusp is a theorem of Bobb [Bob19]; the content of
Theorem 1.4 is that Bobb’s construction produces examples of EGF representations. Our
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proof relies on the fact that both EGF representations and holonomy representations of
manifolds with generalized cusps are relatively stable. Specifically, for a relatively hyperbolic
pair (Γ,H), we let

HomVF(Γ,PGL(d,R),H)

denote the space of virtual flag representations of Γ into PGL(d,R): the space of represen-
tations ρ : Γ → PGL(d+ 1,R) such that, for each H ∈ H, there is a finite-index subgroup
H ′ ⊂ H so that the restriction ρ|H′ is discrete faithful and ρ(H ′) is conjugate to a group of
upper-triangular matrices.

Cooper-Long-Tillmann show (see [CLT18, Thm. 0.1]) that holonomy representations of con-
vex projective manifolds with generalized cusps form an open subset of HomVF(Γ,PGL(d,R),H).
We prove:

Theorem 1.5. Let M = Ω/Γ be a finite-volume convex projective (d − 1)-manifold, and
suppose that Ω is strictly convex (so that Γ = π1M is hyperbolic relative to the collection H
of cusp groups, and the holonomy ρ : π1M → PGL(d,R) is 1-EGF with a boundary extension
ϕ).

Then HomVF(Γ,PGL(d,R),H) is peripherally stable at (ρ, ϕ). In particular, due to
Theorem 1.1, an open subset of HomVF(Γ,PGL(d,R),H) consists of EGF representations.

Theorem 1.5 implies Theorem 1.4 because known constructions of convex projective
manifolds with generalized cusps (see [Bal21], [BM20], [Bob19]) proceed by starting with a
manifold M = Ω/Γ as above, and then performing an (arbitrarily small) deformation of the
holonomy of M inside of HomVF(π1M,PGL(d,R),H) to produce a new convex projective
structure on M which realizes its ends as generalized cusps.

Remark 1.6. In [CM14], Crampon-Marquis defined several notions of geometrical finiteness
for strictly convex projective manifolds, and claimed that their definitions were all equivalent.
It appears that this was an error, and some of their definitions are actually stronger than
others. None of their definitions allow for the presence of generalized cusps which are not
“type 0” in the Ballas-Cooper-Leitner classification.

On the other hand, work of Cooper-Long-Tillmann [CLT15, Thm 11.6] implies that
any finite-volume strictly convex projective manifold M = Ω/Γ as in Theorem 1.5 only
has cusps of type 0, and is actually geometrically finite in the strongest sense defined by
Crampon-Marquis. Zhu [Zhu21, Prop 8.7] proved that the holonomy representation of
such a geometrically finite manifold is always relative Anosov (relative to the cusp groups),
hence EGF by [Wei22, Thm. 1.10]. This justifies the assertion in the first paragraph of
Theorem 1.5.

1.3.3. Compositions with symmetric representations. The last class of examples we consider
in this paper also derive from the convex cocompact representations discussed in Section 1.3.1.
Suppose that Γ is a relatively hyperbolic group, relative to a collection H of virtually abelian
subgroups. Let V be the vector space Rd, and let ρ̄ : Γ → PGL(V ) be a discrete faithful
representation whose image is a convex cocompact group in the sense of Danciger-Guéritaud-
Kassel. Possibly after replacing Γ with a finite-index subgroup, we may lift ρ̄ to a discrete
faithful representation ρ : Γ → SL(V ). Abusing terminology slightly, we will refer to both ρ̄
and ρ as convex cocompact representations.

If Γ is a hyperbolic group, and ρ is a P -Anosov representation for some parabolic
P ⊂ SL(V ), then the composition of ρ with the symmetric representation

τk : SL(V ) → SL(Symk(V ))
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is a new representation of Γ which is P ′-Anosov, for some parabolic P ′ ⊂ SL(Symk(V ))
depending only on P . Due to the close connection between P1,d−1-Anosov representations
and projectively convex cocompact representations, one might hope that even when Γ is not
hyperbolic, but ρ is convex cocompact, then the composition τk ◦ ρ is still convex cocompact.

It appears that this is not the case: we do not expect the composition τk ◦ ρ to be convex
cocompact unless Γ is a hyperbolic group. However, we can still show:

Theorem 1.7. Let Γ be hyperbolic relative to virtually abelian subgroups, and let ρ : Γ →
SL(V ) be projectively convex cocompact. For any k ≥ 1, the representation τk ◦ ρ is EGF,

with respect to the parabolic P ′ ⊂ SL(Symk(V )) stabilizing a line in a hyperplane.

In [DGK17], Danciger-Guéritaud-Kassel showed that projectively convex cocompact
representations are absolutely stable: if ρ : Γ → SL(V ) is projectively convex cocompact,
then any sufficiently small deformation of ρ in Hom(Γ,SL(V )) is also projectively convex
cocompact (in particular, it is discrete with finite kernel). The proof in [DGK17] does not
apply to the representations in Theorem 1.7. However, we prove the following:

Theorem 1.8. Let ρ,Γ be as in Theorem 1.7, so that τk ◦ ρ is an EGF representation
for every k ≥ 1. Then for some boundary extension ϕ for τk ◦ ρ, the entire subspace
Hom(Γ,SL(Symk(V )) is peripherally stable about τk ◦ ρ, ϕ.

In particular, due to Theorem 1.1, an open subset of Hom(Γ,SL(Symk(V ))) containing
τk ◦ ρ consists of EGF representations.

Thus, taking k > 1, Theorem 1.8 provides new examples of discrete subgroups of higher-
rank Lie groups which are absolutely stable in their representation varieties. (When k = 1, the
stability of these representations follows from the stability theorem of Danciger-Guéritaud-
Kassel.)

1.4. Acknowledgements. The author would like to thank his PhD advisor, Jeff Danciger,
for encouragement and much-needed advice. Additional thanks are owed to Daniel Allcock,
Dick Canary, Fanny Kassel, Max Riestenberg, Feng Zhu, and Andy Zimmer for helpful
feedback. This work was supported in part by NSF grants DMS-1937215 and DMS-2202770.

2. Review of EGF representations

In this section we briefly review some of the definitions, terminology, and basic results
surrounding extended geometrically finite representations. Although EGF representations
can be defined with respect to any (symmetric) parabolic subgroup P of a semisimple Lie
group G, in this paper we will only consider the theory in the case where G = PGL(d,R) or
SL(d,R), and P is the stabilizer of a flag of type (1, d− 1) in Rd. We refer to [Wei22] for a
more thorough introduction to the theory, including some background regarding relatively
hyperbolic groups and semisimple Lie groups.

2.1. Extended convergence group actions. The definition of an EGF representation
is based on a characterization of Anosov representations in terms of topological dynamics—
specifically, in terms of convergence actions. Recall that if Γ is a group acting by home-
omorphisms on a Hausdorff space M , we say that Γ is a convergence group and that the
action is a convergence group action if, for every divergent sequence γn ∈ Γ, after extracting
a subsequence, one can find (not necessarily distinct) points a, b ∈M so that the restrictions
γn|M−{a} converge to the constant map b, uniformly on compacts. The point a can be
thought of as an “repelling point” for the divergent sequence γn, and the point b can be
thought of as an “attracting point;” the complement of the “repelling point” is a “basin of
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attraction” for the sequence γn. When (Γ,H) is a relatively hyperbolic pair, then Γ acts as
a convergence group on the Bowditch boundary ∂(Γ,H).

In rank one, geometrically finite representations can be characterized using convergence
group actions of relatively hyperbolic groups. To define extended geometrically finite actions,
we broaden the definition in two ways simultaneously. Essentially, we no longer require the
“basin of attraction” for a divergent sequence to be the complement of a singleton, and we no
longer require the “attracting point” to be a singleton either.

Definition 2.1. Let (Γ,H) be a relatively hyperbolic pair, acting on a Hausdorff space M
by homeomorphisms. Let Λ ⊂M be a closed Γ-invariant set. We say that a Γ-equivariant
surjective map ϕ : Λ → ∂(Γ,H) extends the convergence group action of Γ on ∂(Γ,H) if, for
each z ∈ ∂(Γ,H), there exists an open set Cz ⊂M satisfying:

(1) For every z ∈ ∂(Γ,H), we have Λ ⊂ Cz ∪ ϕ−1(z).
(2) For every sequence γn ∈ Γ such that γn → z+ and γ−1

n → z− for z± ∈ ∂(Γ,H), every
compact subset K ⊂ Cz− , and every open set U ⊂M containing ϕ−1(z+), we have
γnK ⊂ U for all sufficiently large n.

2.2. Linear actions on flags in Rd. An extended geometrically finite representation into
PGL(d,R) or SL(d,R) is essentially just an extended convergence action of a relatively
hyperbolic group on the space of flags in Rd, with an extra condition taking into account
some of the additional structure on this flag space.

Notation 2.2. When V is a real vector space, we use Gr(k, V ) to denote the Grassmannian
of k-planes in V ; recall that Gr(1, V ) is the same as the projective space P(V ). When
dim(V ) = d, recall that there is also a canonical equivariant identification of Gr(d− 1, V )
with the dual projective space P(V ∗), since the projectivization of a nonzero linear functional
in V ∗ is determined by its kernel.

We let F(V ) denote the space of flags of type (1,dim(V )− 1) in V , i.e. pairs of subspaces
(Vi, Vj) such that Vi ⊂ Vj ⊂ V and dim(Vi) = codim(Vj) = 1. We will write Gr(k, d) and
F(d) as shorthand for Gr(k,Rd) and F(Rd), respectively.

Definition 2.3. We say that a pair of flags F = (V,W ), F ′ = (V ′,W ′) in F(d) are transverse
if V ⊕W ′ = Rd and W ⊕ V ′ = Rd.

For any 1 ≤ k < d, and any subspace Vk ⊂ Gr(k, d), we let Opp(ξ) ⊂ Gr(d− k, d) denote
the space of (d − k)-planes transverse to Vk. Similarly, for a fixed flag ξ ∈ F(d), we let
Opp(ξ) denote the space of flags

{ν ∈ F : ν is transverse to ξ}.
This is always an open dense subset of F(d). For a subset X ⊂ F , we also let Opp(X)
denote the set ⋂

ξ∈X

Opp(ξ).

Definition 2.4. Let gn be a sequence in PGL(d,R) or SL(d,R), and let 1 ≤ k < d.

(1) The sequence gn is called k-contracting if there is a nonempty open subset U ⊂
Gr(k, d) such that gnU converges to a singleton {ξ}. The point ξ ∈ Gr(k, d) is called
the k-limit of the sequence gn.

(2) The sequence gn is called k-divergent if every subsequence of gn has a further
subsequence which is k-contracting.

(3) A subgroup Γ in PGL(d,R) or SL(d,R) is called k-divergent if every sequence of
pairwise distinct elements in Γ is k-divergent.
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Any divergent sequence in PGL(d,R) must be k-divergent for at least one k with 1 ≤ k < d.
When gn is a k-divergent sequence in PGL(d,R), then the sequence of inverses g−1

n is (d−k)-
divergent. More precisely, we have the following fact, which can be verified using the singular
value decomposition of elements in PGL(d,R) (or for a general statement see [KLP17, Lemma
4.19] and [Wei22, Appendix A]):

Fact 2.5. For a sequence gn ∈ PGL(d,R) and points ξ− ∈ Gr(d− k, d) and ξ+ ∈ Gr(k, d),
the following are equivalent:

(1) gn is k-contracting and gn|Opp(ξ−) → ξ+ uniformly on compacts.

(2) gn is k-divergent, gn has unique k-limit point ξ+, and g
−1
n has unique (d− k)-limit

point ξ−.

When a sequence gn in PGL(d,R) or SL(d,R) is both 1-contracting and (d−1)-contracting
(resp. 1-divergent and d-divergent), we will say that it is (1, d − 1)-contracting or (1, d −
1)-divergent. Owing to Fact 2.5, any 1-divergent subgroup of PGL(d,R) or SL(d,R) is
automatically also (d − 1)-divergent, and vice-versa, so we will also call such subgroups
(1, d− 1)-divergent.

Remark 2.6. The more usual definition of (1, d − 1)-divergence (or more generally, P -
divergence for a parabolic subgroup P in a semisimple Lie group G) is stated in terms of the
behavior of the Cartan projection of a sequence gn ∈ G. We refer again to [KLP17, Lemma
4.19] and [Wei22, Appendix A] for the equivalence.

2.3. EGF representations.

Definition 2.7. Let Λ ⊂ F(d) be a subset, and let ϕ : Λ → Z be a surjective map to some
space Z. We say that ϕ is transverse if for every pair of distinct points z1, z2 ∈ Z, every flag
in ϕ−1(z1) is transverse to every flag in ϕ−1(z2).

Definition 2.8. A representation ρ : Γ → PGL(d,R) (or to SL(d,R)) is 1-extended geo-
metrically finite or (1-EGF) if there exists a compact ρ-invariant subset Λ ⊂ F(d) and a
surjective transverse map ϕ : Λ → ∂(Γ,H) extending the convergence action of Γ on ∂(Γ,H).

The map ϕ is called a boundary extension of the representation ρ, and the set Λ is called
a boundary set. Since we are only concerned with 1-EGF representations in this paper, we
will almost always just refer to 1-EGF representations as EGF representations.

Remark 2.9. In general there may be more than one possible choice for the boundary set
and boundary extension associated to a given EGF representation; there might also be more
than one possible choice for the open sets Cz ⊂ F(d) specified in Definition 2.1. It is also
always possible to choose the boundary extension ϕ so that the preimage of any conical limit
point (see Definition 2.10 below) in ∂(Γ,H) is a singleton; see [Wei22, Proposition 4.8].

2.4. An alternative characterization. In order to use Definition 2.8 to directly verify
that a given representation is EGF, we must consider the dynamical behavior of (essentially)
arbitrary divergent sequences in Γ, since any divergent sequence γn in a relatively hyperbolic
group has a subsequence which satisfies γn → z+ and γ−1

n → z− for points z± ∈ ∂(Γ,H).
Often, we will only want to consider sequences in Γ which either limit to the boundary of Γ
along geodesics (i.e. conical limit sequences), or sequences which diverge inside of a fixed
peripheral subgroup of Γ.

In Proposition 2.11 below, we give an alternative characterization of EGF representations
which allows us to restrict our attention to sequences of one of these two forms. We first
recall some terminology:
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Definition 2.10. Let (Γ,H) be a relatively hyperbolic pair. We say that a sequence γn ∈ Γ
limits conically to a point z ∈ ∂(Γ,H) if there exist distinct points a, b ∈ ∂(Γ,H) such that
γ−1
n z → a and γ−1

n y → b for every y ̸= z. If a sequence γn ∈ Γ limits conically to z, then we
say that z is a conical limit point.

Every point in the Bowditch boundary of a relatively hyperbolic pair (Γ,H) is either a
conical limit point or a parabolic point, i.e. the (unique) fixed point of a peripheral subgroup
in H. When p is a parabolic point, we let Γp ∈ H denote the peripheral subgroup stabilizing
p.

We can now state our alternative characterization of EGF representations:

Proposition 2.11 (See [Wei22, Proposition 4.6]). Let ρ : Γ → PGL(d,R) be a representation
of a relatively hyperbolic group, and let Λ ⊂ F(d) be a closed ρ(Γ)-invariant set. Suppose
that ϕ : Λ → ∂(Γ,H) is a continuous surjective ρ-equivariant transverse map.

Then ρ is an EGF representation with EGF boundary extension ϕ if and only if both of
the following conditions hold:

(1) For any sequence γn ∈ Γ limiting conically to some point in ∂(Γ,H), the sequences
ρ(γ±1

n ) are (1, d− 1)-divergent, and every (1, d− 1)-limit point of ρ(γ±1
n ) lies in Λ.

(2) For every parabolic point p ∈ ∂(Γ,H), there exists an open set Cp ⊂ F , with
Λ ⊂ Cp ∪ ϕ−1(p), such that for any compact K ⊂ Cp and any open set U containing
ϕ−1(p), for all but finitely many γ ∈ Γp, we have ρ(γ) ·K ⊂ U .

2.5. Peripheral stability. The central result of [Wei22] is that EGF representations are
relatively stable: any sufficiently small deformation which satisfies a dynamical condition on
peripheral subgroups is still EGF.

For an EGF representation ρ with boundary extension ϕ, if p is a parabolic point in
∂(Γ,H), then the set ϕ−1(p) can be thought of as both an “attracting set” and a “repelling
set” for the action of Γp on F(d). More precisely, if K is any compact set in Cp, and U is
any neighborhood of ϕ−1(p), there is always some finite set F such that ρ(Γp − F )K ⊂ U .

We want to consider deformations of the representation ρ which satisfy the property that
some set close to ϕ−1(p) is still an “attracting set” for Γp with “basin of attraction” Cp.
We also want to ask for the “strength” of the attraction to not decrease too much, which
is quantified by the compact set K ⊂ Cp, the open set U ⊃ ϕ−1(p), and the finite set F
mentioned previously.

Definition 2.12 (Peripheral stability). Let (Γ,H) be a relatively hyperbolic pair, and let
ρ : Γ → PGL(d,R) be an EGF representation with boundary extension ϕ : Λ → ∂(Γ,H).
We say that a subspace W ⊂ Hom(Γ,PGL(d,R)) is peripherally stable (with respect to the
data (ρ, ϕ)) if, for every parabolic point p ∈ ∂(Γ,H), every open subset U ⊂ F(d) containing
ϕ−1(p), every compact set K ⊂ Cp, and every finite subset F ⊂ Γp such that

ρ(Γp − F )K ⊂ U,

there is an open neighborhood W ′ ⊂ W containing ρ, such that every ρ′ ∈ W satisfies

ρ′(Γp − F )K ⊂ U.

Theorem 1.1 asserts that small deformations of EGF representations inside of peripherally
stable subspaces remain EGF. The point of the peripheral stability condition is that it can
be verified by only considering how deformations of some representation ρ : Γ → PGL(d,R)
behave when they are restricted to peripheral subgroups of Γ. If the peripheral subgroups are
not too complicated (for instance, if they are virtually nilpotent, or even virtually abelian),
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then one can hope to get a direct understanding of how their actions on F(d) deform in
certain subspaces of the representation variety Hom(Γ,PGL(d,R)); then Theorem 1.1 makes
it possible to upgrade this understanding to the deformed action of the entire group Γ on
the same subspace.

2.6. EGF representations and relative Anosov representations. As stated in the
introduction, EGF representations generalize previous definitions of relative Anosov repre-
sentations provided by Kapovich-Leeb [KL18], Zhu [Zhu21], and Zhu-Zimmer [ZZ22].

By a “relative Anosov representation,” in this paper we mean the following:

Definition 2.13. Let Γ be a subgroup of PGL(d,R), and suppose that (Γ,H) is a relatively
hyperbolic pair. We say that Γ is relatively 1-Anosov if Γ is 1-divergent, and there is a
Γ-equivariant transverse embedding ∂(Γ,H) → F(d) whose image is the set of (1, d− 1)-limit
points of Γ.

In the work of Kapovich-Leeb [KL18], groups as in Definition 2.13 are called relatively
asymptotically embedded subgroups of PGL(d,R); in [ZZ22], it is shown that the definiton
essentially agrees with Zhu’s notion [Zhu21] of a relatively dominated representation.

The relation to EGF representations is given by the following:

Theorem 2.14 (See [Wei22, Theorem 1.10]). Let Γ be a subgroup of PGL(d,R), and suppose
that (Γ,H) is a relatively hyperbolic pair. Then the following are equivalent:

(1) The group Γ is relatively 1-Anosov.
(2) The inclusion Γ ↪→ PGL(d,R) is a 1-EGF representation, and there is an associated

boundary extension ϕ : Λ → ∂(Γ,H) which is injective.

Moreover, in this case the associated boundary set Λ ⊂ F(d) is precisely the set of (1, d− 1)-
limit points of Γ.

3. Convex projective geometry: notation and background

In this section we briefly discuss some background material related to convex projective
geometry, as all of the examples of EGF representations in this paper derive from convex
projective structures on manifolds. We also establish a few routine results that we will need
in later sections.

Notation 3.1. We fix the rest of the following conventions for the rest of the paper.

• If V is a real vector space, then P(V ) denotes the projective space over V , i.e. the
space Gr(1, V ) of lines in V .

• For any x ∈ V − {0}, we let [x] denote the image of x under the quotient map
V − {0} → P(V ).

• If W is a subset of V , then we let [W ] denote the image of W − {0} in P(V ). If
W ⊆ V is a vector subspace, we will identify P(W ) with [W ] ⊂ P(V ).

• When B ⊂ P(V ), then the span of B, denoted span(B), is the subspace of V spanned
by any lift of B in V . The projective span of B is the subset [span(B)] ⊂ P(V ).

• If w is any element of the dual projective space P(V ∗), we let [kerw] denote the
subset of P(V ) given by the image of ker w̃, where w̃ is any lift of w in V ∗.

• If w ∈ P(V ∗) and v ∈ P(V ) satisfy v /∈ [kerw], then we say w and v are transverse
and write w ⊥ v.
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3.1. Convex projective structures. Let V be a real d-dimensional vector space. Recall
that a subset Ω ⊂ P(V ) is properly convex if Ω is a convex subset of an affine chart in
P(V ). A manifold M (possibly with boundary) has a convex projective structure if M can
be realized as a quotient Ω/Γ for a discrete subgroup Γ ⊆ Aut(Ω), where

Aut(Ω) = {γ ∈ PGL(V ) : γ · Ω = Ω}.
There are several different possible meanings for the “boundary” of a properly convex set

in P(V ), so below we make things explicit:

Definition 3.2. Let Ω ⊂ P(V ) be a properly convex set with nonempty interior. In general,
Ω might not be either open or closed.

• The frontier of Ω is Fr(Ω) = Ω− int(Ω).
• The nonideal boundary of Ω is ∂nΩ = Fr(Ω) ∩ Ω.
• The ideal boundary of Ω is ∂iΩ = Fr(Ω)− ∂nΩ.

When Ω is a properly convex open set, we will use the notation ∂Ω to mean the ideal
boundary ∂i(Ω), which coincides with the frontier Fr(Ω) in this case. Note that this conflicts
with the convention in e.g. [CLT18; BCL20].

When Ω is open, we say it is a properly convex domain. Then any manifold M = Ω/Γ
has empty boundary. If M = Ω/Γ is a convex projective manifold with boundary, then
its boundary ∂M is identified with ∂nΩ/Γ. When ∂nΩ contains no nontrivial projective
segments, then we say that the manifold M has strictly convex boundary.

3.1.1. Faces in convex domains. If Ω ⊂ P(V ) is a properly convex domain, a face of Ω is an
equivalence class in ∂Ω under the relation which identifies distinct points x, y ∈ ∂Ω if there
is an open projective line segment in ∂Ω containing both x and y.

If x ∈ ∂Ω, we let FΩ(x) denote the unique face of Ω containing x. The support of a face
F , denoted supp(F ), is the projective span [span(F )] ⊂ P(V ). The boundary of a face ∂F is
the boundary of F when F is viewed as a convex open subset of supp(F ).

3.1.2. The Hilbert metric. Whenever Ω is a properly convex domain, one can define the
Hilbert metric on Ω as follows:

Definition 3.3. For a pair of distinct points x, y ∈ Ω, we let

dΩ(x, y) =
1

2
log[u, v;x, y],

where u, v are the two points in ∂Ω such that u, x, y, v lie on a projective line in that order,
and [a, b; c, d] is the cross-ratio

[a, b; c, d] =
(d− a)(c− b)

(c− a)(d− b)
.

Here the differences can be measured under any affine identification of the projective line
spanned by x, y with R ∪ {∞}.

It turns out that (Ω, dΩ) is a proper geodesic metric space, on which Aut(Ω) acts by
isometries. This means that Aut(Ω) acts properly on Ω—in particular, discrete subgroups of
Aut(Ω) act properly discontinuously.

The Hilbert metric gives us another perspective on the faces of Ω. Each face F of Ω is a
properly convex subset of P(V ), open in its own projective span. This allows us to define a
restricted Hilbert metric dF on F .

The proposition below is a standard result in the theory of convex projective structures,
and is a direct consequence of the definition of the Hilbert metric.
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Proposition 3.4. Let Ω be a properly convex domain, let F be a face of Ω, and let xn be a
sequence in Ω converging to some x∞ ∈ F .

For any D > 0, if yn ∈ Ω is a sequence satisfying

dΩ(xn, yn) ≤ D,

then any accumulation point y∞ of yn lies in F , and

dF (x∞, y∞) ≤ D.

3.1.3. Dynamics of Aut(Ω). Fix a divergent sequence gn ∈ PGL(d,R). This sequence is
k-divergent for some k with 1 ≤ k < d, so fix such a k, and choose a subsequence of gn
which is k-contracting and whose sequence of inverses is (d − k)-contracting. There are
then uniquely determined projective subspaces E+, E− ⊂ Rd with complementary dimension
such that for any x ∈ P(Rd) − E−, the sequence gnx accumulates on E+, uniformly on
compact subsets of P(Rd)−E−. We refer to the subspaces E+, E− as attracting and repelling
subspaces, respectively. We emphasize that E+ and E− are not necessarily transverse.

The faces of Ω are related to attracting and repelling subspaces of divergent sequences in
Aut(Ω):

Proposition 3.5. Let γn be a divergent sequence in Aut(Ω) for a properly convex domain
Ω, and suppose that for some x ∈ Ω, the sequence γnx accumulates on a face F+ of Ω.
Then, after extracting a subsequence, there is an attracting subspace E+ of γn such that
[E+] ⊆ supp(F+).

Proof. Let B be the ball of radius 1 about x with respect to the Hilbert metric on Ω,
and let x∞ ∈ F+ be an accumulation point of the point of the sequence γnx. Using a
diagonal argument, we can replace γn with a subsequence so that for every y in a countable
dense subset of B, the sequence γn · y has a well-defined limit in the compact space P(V ).
Proposition 3.4 then implies that for every point y ∈ B, the sequence γny converges to a
unique point in F+.

Let B∞ be the set of accumulation points of γn · B, and let W∞ be the subspace
span(B∞) ⊂ V .

Proposition 3.4 implies that B is a subset of the face F = FΩ(x∞), so [W∞] is a projective
subspace of supp(F ). Let k = dim(W∞). We claim that there is an open subset U of the
Grassmannian Gr(k, V ) so that

γnU → {W∞}.

This implies the desired result by e.g. [Wei22, Prop. 3.6].
To see the claim, fix k points z1, . . . , zk ∈ BΩ(x, 1) so that the limits of the sequences

γnz1, . . . γnzk span the projective subspace [W∞]. Proposition 3.4 implies that for some fixed
ε > 0, if z′i lies in the ball of radius ε about zi, then the limits of the sequences

γnz
′
1, . . . , γnz

′
k

are in general position, and therefore also span [W∞].
For each 1 ≤ i ≤ k, let Bi denote the ball of radius ε about zi. Then, if U is the open set

{W ∈ Gr(k, V ) :W = u1 ⊕ . . .⊕ uk, [ui] ∈ Bi},

we have that γnU → {W∞}, as required. □
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4. Convex cocompactness in projective space

Fix a real vector space V of dimension d. Our goal in this section is to prove Theorem 1.2,
which says that convex cocompact representations of relatively hyperbolic groups in PGL(V )
give examples of EGF representations. We begin by recalling the precise definition of a
(projectively) convex cocompact group in P(V ).

Definition 4.1 ([DGK17], Definitions 1.10 and 1.11). Let Ω be a properly convex domain
in P(V ), and let Γ ⊆ Aut(Ω) be discrete.

(1) The full orbital limit set ΛΩ(Γ) of Γ is the union (over all x ∈ Ω) of the set of
accumulation points in ∂Ω of Γ · x.

(2) The group Γ acts convex cocompactly on Ω if the convex hull of ΛΩ(Γ) is nonempty,
and Γ acts cocompactly on the convex hull of ΛΩ(Γ) in Ω.

(3) Γ is convex cocompact in P(V ) if it acts convex cocompactly on some properly convex
domain Ω ⊂ P(V ).

Danciger-Guéritaud-Kassel show that if Γ is a hyperbolic group acting convex cocompactly
in P(V ), then the inclusion Γ ↪→ PGL(V ) is a 1-Anosov representation.

In [Wei20], we showed that any group acting convex cocompactly on some domain
Ω ⊂ P(V ) acts with “Anosov-like” expansion dynamics on the faces of ∂Ω. We further
showed that, when (Γ,H) is a relatively hyperbolic pair, Γ acts convex cocompactly on Ω,
and each H ∈ H also acts convex cocompactly on Ω, then there is an equivariant embedding
of the Bowditch boundary ∂(Γ,H) into a quotient of ∂Ω.

In subsequent work [IZ22], Islam-Zimmer showed that one does not need to assume that
each H ∈ H acts convex cocompactly on Ω: it turns out that this follows automatically
from the fact that Γ acts convex cocompactly. Together with our earlier work, this gives the
following:

Theorem 4.2 (See [Wei20], Theorem 1.16 and [IZ22], Theorem 1.6). Let (Γ,H) be a relatively
hyperbolic pair, and suppose ρ(Γ) acts convex cocompactly on a properly convex domain Ω.
Then there is an equivariant homeomorphism

ψ : ∂(Γ,H) → ΛΩ(Γ)/ ∼,

where x ∼ y if x, y ∈ ΛΩ(H) for some H ∈ H.

Remark 4.3. Islam-Zimmer also proved a version of Theorem 4.2 in the more general
context of naive convex cocompact group actions, which we do not discuss here.

Before we can proceed with the proof of Theorem 1.2, we will need a slightly different
perspective on the full orbital limit set of a discrete group Γ ⊆ Aut(Ω).

Definition 4.4. Let Ω be a convex projective domain. The dual domain Ω∗ ⊂ P(V ∗) is the
set

Ω∗ = {w ∈ P(V ∗) : [kerw] ∩ Ω = ∅}.

If Γ ⊂ PGL(V ) is a subgroup of Aut(Ω), then its dual Γ∗ ⊂ PGL(V ∗) is a subgroup of
Aut(Ω∗). If Γ is convex cocompact in P(V ), then [DGK17], Proposition 5.6 implies that
there is some Γ-invariant domain Ω so that Γ acts convex cocompactly on Ω, and Γ∗ acts
convex cocompactly on Ω∗.

Definition 4.5. Let Γ ⊆ Aut(Ω).

(1) The dual full orbital limit set Λ∗
Ω(Γ) is the full orbital limit set of Γ∗ in ∂Ω∗.
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(2) The flag-valued full orbital limit set Λ̂Ω(Γ) is the set

Λ̂Ω(Γ) := {(x,w) ∈ F(V ) : x ∈ ΛΩ(Γ), w ∈ Λ∗
Ω(Γ)}.

(3) The maximal domain Ωmax(Γ) is the unique connected component of

P(V )−
⋃

w∈Λ∗
Ω(Γ)

[kerw]

containing Ω. Equivalently, Ωmax(Γ) is the dual of the convex hull of Λ∗
Ω(Γ) in Ω∗.

We emphasize that Ωmax(Γ) is not necessarily a properly convex set, which means that
we cannot always define a Hilbert metric on it (so we do not have a guarantee that Γ acts
properly discontinuously in general). However, when Γ acts convex cocompactly on Ω, we
do get a properly discontinuous action, thanks to the following argument suggested by Jeff
Danciger and Fanny Kassel:

Proposition 4.6. Let Γ act convex cocompactly on a properly convex comain Ω. For any
sequence γn ∈ Γ and any x ∈ Ωmax(Γ), the sequence γn · x accumulates in ΛΩ(Γ), uniformly
on compacts. In particular, Γ acts properly discontinuously on Ωmax(Γ).

Proof. When Ωmax(Γ) is a properly convex domain, this follows immediately from Proposition
4.18 in [DGK17], which says that whenever Γ acts convex cocompactly on some domain
Ω, and Ω′ is any Γ-invariant properly convex domain containing Ω, then Γ acts convex
cocompactly on Ω′ and ΛΩ(Γ) = ΛΩ′(Γ).

So, we consider the case where Ωmax(Γ) is not properly convex. We may assume our
domain Ω is chosen so that Γ acts convex cocompactly on both Ω and Ω∗ ⊂ P(V ∗). Since
Ωmax(Γ) is not properly convex, its dual Ωmax(Γ)

∗ (given by the convex hull of Λ∗
Ω(Γ) in Ω∗)

has empty interior (i.e. it spans a proper projective subspace of P(V ∗)).
Given any ε > 0, we let Ω∗

ε be the uniform ε-neighborhood of Ωmax(Γ)
∗, with respect

to the Hilbert metric on Ω∗. We let Ωε ⊂ P(V ) denote the dual of Ω∗
ε. Note that Ωε is a

Γ-invariant properly convex subset of Ωmax(Γ), containing Ω.
Since duality reverses inclusions, and the intersection⋂

ε→0

Ω∗
ε

is exactly the set Ωmax(Γ)
∗, the union ⋃

ε→0

Ωε

is the set Ωmax(Γ). So, if we fix a compact set K ⊂ Ωmax(Γ), for some ε > 0 we have K ⊂ Ωε.
Then we apply Proposition 4.18 in [DGK17] to the properly convex domain Ωε to see that
for any sequence γn ∈ Γ, γn ·K accumulates in ΛΩ(Γ). □

We need a few more results before we can prove Theorem 1.2. We quote the following
observation from [Wei20]:

Proposition 4.7 ([Wei20], Proposition 8.1). Let Γ ⊂ PGL(V ) act convex cocompactly
on a properly convex domain Ω. If Γ is hyperbolic relative to a collection of subgroups H
also acting convex cocompactly on Ω, then every nontrivial projective segment in ΛΩ(Γ) is
contained in ΛΩ(H) for some H ∈ H.

Using a theorem of Danciger-Guéritaud-Kassel ([DGK17], Theorem 1.18), one can
strengthen this result:
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Corollary 4.8. In the context of Proposition 4.7, it is possible to choose the convex domain
Ω so that every nontrivial projective segment in ∂Ω is contained in ΛΩ(H) for some H ∈ H.

We also observe:

Proposition 4.9. Let (Γ,H) be a relatively hyperbolic pair, let ρ : Γ → PGL(V ) be
representation such that ρ(Γ) acts convex cocompactly on a domain Ω, and let ψ : ∂(Γ,H) →
ΛΩ(Γ)/ ∼ be the map coming from Theorem 4.2.

If z ∈ ∂(Γ,H) is a conical limit point, and γn is a sequence limiting to z in Γ = Γ⊔∂(Γ,H),
then ψ(z) ∈ P(V ) is the unique one-dimensional attracting subspace for ρ(γn) in P(V ).

Proof. It suffices to show that any subsequence of γn has a further subsequence which has
ψ(z) as a one-dimensional attracting subspace. So, using the convergence group property,
we can take a subsequence and assume that there is some point y ∈ ∂(Γ,H) so that γn
converges to z on every point in the set ∂(Γ,H)− {y}. We can further assume that the pair
(Γ,H) is not elementary, so ∂(Γ,H) contains infinitely many points.

So, by Corollary 4.8, we can find distinct points u, v ∈ ΛΩ(Γ) so that the projective line
segment (u, v) lies in Ω, and ρ(γn)u, ρ(γn)v both converge to ψ(z). Corollary 4.10 in [DGK17]
implies that FΩ(ψ(z)) ⊂ ΛΩ(Γ), and then Corollary 4.8 implies that FΩ(ψ(z)) = {ψ(z)}.

Then for any x ∈ (u, v), ρ(γn)x converges to ψ(z), and we are done by Proposition 3.5. □

Proof of Theorem 1.2. Fix a d-dimensional real vector space V , let (Γ,H) be a relatively
hyperbolic pair, and let ρ : Γ → PGL(V ) be a representation such that ρ(Γ) acts convex
cocompactly on a properly convex domain Ω ⊂ P(V ). This implies (see [IZ22]) that each
H ∈ H also acts convex cocompactly on Ω.

The first step in the proof is to define a ρ(Γ)-invariant subset Λ̂ ⊂ F(V ) and a boundary

extension ϕ̂ : Λ̂ → ∂(Γ,H). We use the map ψ coming from Theorem 4.2 to define an
equivariant surjection ϕ : Λ → ∂(Γ,H), where the preimage of each parabolic point p in
∂(Γ,H) is exactly ΛΩ(H) for H = StabΓ(p).

If we let Λ∗ be the full orbital limit set of the Γ-action on Ω∗, we can similarly find an
equivariant surjection ϕ∗ : Λ∗ → ∂(Γ,H), where ϕ∗−1(z) is a single hyperplane if z is a
conical limit point, and the dual full orbital limit set of StabΓ(z) if z is a parabolic point.

We consider the set

Λ̂ = {(x,w) ∈ F : x ∈ Λ, w ∈ Λ∗}.
Each element of Λ∗ is a supporting hyperplane of the domain Ω. Corollary 4.8 implies

that for every point (x,w) in Λ̂, either:

(1) x = ϕ−1(z) and w = ϕ∗−1(z) for a conical limit point z ∈ ∂(Γ,H), or
(2) x ∈ ΛH and w ∈ Λ∗

H for a peripheral subgroup H ∈ H.

This allows us to combine ϕ and ϕ∗ to get a well-defined equivariant surjection ϕ̂ : Λ̂ →
∂(Γ,H).

The next step is to define the open subsets Cz ⊂ F for each z ∈ ∂(Γ,H). If z ∈ ∂(Γ,H)
is a conical limit point, we define the set Cz by

Cz = {ν ∈ F : ν is opposite to ϕ−1(z)}.
Otherwise, if z is a parabolic point, we consider the maximal domain Ωmax(H) ⊂ P(V )

for H = StabΓ(z). Dually, we can define Ω∗
max(H) ⊂ P(V ∗), viewing ΛΩ(H) as the dual full

orbital limit set of H∗ acting on Ω∗.
Then, we define

Cz = {(x,w) ∈ F(V ) : x ∈ Ωmax(H), w ∈ Ω∗
max(H)}.
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For every z ∈ ∂(Γ,H), Cz is open, and Corollary 4.8 implies that Cz contains ϕ̂−1(z′) for
every z′ ̸= z in ∂Γ.

The last step is to check that the map ϕ̂ actually extends the convergence group action of
Γ on ∂(Γ,H), using the sets Cz. To do so, we appeal to Proposition 2.11.

First, let γn be a sequence in Γ limiting conically to z ∈ ∂(Γ,H). Proposition 4.9 implies
that ϕ−1(z) is the unique one-dimensional attracting subspace for ρ(γn) in P(V ). Dually,
(ϕ∗)−1(z) is the unique one-dimensional attracting subspace for ρ(γn) in P(V ∗). So the
sequence ρ(γn) is (1, d− 1)-divergent, and so is the sequence ρ(γ−1

n ).
Further, observe that if γn is any sequence in Γ such that ρ(γn) is 1-divergent, then any

1-limit point of ρ(γn) must lie ΛΩ(Γ). The same holds for (d− 1)-divergent sequences and
Λ∗
Ω(Γ). Together this implies that the first condition of Proposition 2.11 is satisfied.
On the other hand, if z is a parabolic point and γn is an infinite sequence in StabΓ(z),

Proposition 4.6 implies that for any compact K ⊂ Cz, the set ρ(γn) ·K eventually lies in any
given neighborhood of ϕ−1(z), which fulfills the second condition of Proposition 2.11. □

5. Generalized cusps

In this section, we wish to consider deformations of the holonomy of a finite-volume convex
projective manifold M = Ω/Γ, where Ω is a strictly convex subset of projective space with
nonempty interior. (Note that, in contrast to the previous section, in this section we assume
that Ω is strictly convex, but we do not assume that it is an open subset of projective space).

As mentioned in the introduction to this paper, whenever M is such a manifold, work of
Cooper-Long-Tillman [CLT15], Crampon-Marquis [CM14], and Zhu [Zhu21] implies that
the holonomy representation ρ : π1M → PGL(d,R) is relatively 1-Anosov in the sense of
Definition 2.13, and therefore an EGF representation by Theorem 2.14.

Our goal in this section is to prove Theorem 1.5, which says that certain deformations of
ρ are peripherally stable, and hence give rise to EGF representations. These peripherally
stable deformation spaces can contain representations ρ′ preserving a properly convex domain
Ω′ which is not strictly convex. The quotient Ω′/ρ′(π1M) is in general an infinite-volume
convex projective manifold homeomorphic to M : it is the union of a compact piece and
finitely many generalized cusps. We provide the definition below:

Definition 5.1 (See [CLT18], [BCL20]). Let Ω ⊂ P(Rd) be a properly convex set with
nonempty interior, and let Γ ⊆ Aut(Ω) be discrete. A manifold C = Ω/Γ is a generalized
cusp if C has compact and strictly convex boundary, Γ ≃ π1C is virtually abelian, and C is
homeomorphic to ∂C × [0,∞).

5.1. Flag stability for generalized cusps. In [CLT18], Cooper-Long-Tillmann prove
that if one deforms the holonomy representation of a generalized cusp in certain controlled
way, then (for a small enough deformation), the resulting representation is still the holo-
nomy of a generalized cusp. To state their result, for any virtually abelian group H, let
HomVF(H,PGL(d,R) denote the space of virtual flag representations ρ : Γ → PGL(d,R),
consisting of representations whose image is virtually conjugate to a group of upper-triangular
matrices.

Theorem 5.2 ([CLT18], Theorem 6.25). Let C be a generalized cusp, and let U be the set
of holonomies of convex projective structures on C with strictly convex boundary. Then U is
an open subset of HomVF(π1C).

Using a gluing procedure, Cooper-Long-Tillmann can then show that whenever M is a
finite-volume convex projective manifold, certain restricted deformations of its holonomy give
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rise to new convex projective structures onM . (In fact, their result holds in greater generality,
but in this paper we consider only the finite-volume case.) For this result, recall from the
introduction that when (Γ,H) is a relatively hyperbolic pair, HomVF(Γ,PGL(d,R),H)
denotes the space of representations ρ : Γ → PGL(d,R) such that the restriction of ρ to each
H ∈ H lies in HomVF(H,PGL(d,R)).

Theorem 5.3 (See [CLT18], Theorem 0.1). Let M = Ω/Γ be a finite-volume convex
projective manifold with holonomy ρ : Γ → PGL(d,R). Let H be the collection of conjugates
of cusp groups of M . Then an open neighborhood of ρ in HomVF(Γ,PGL(d,R),H) consists
of holonomy representations of convex projective manifolds homeomorphic to M , each of
which is the union of a compact piece and finitely many generalized cusps.

We can think of the relative stability theorem for EGF representations as a kind of
dynamical analog of this “geometric gluing” result, since Theorem 1.1 gives us a way to
understand the topological dynamics of the deformation of some representation, provided we
have control over the topological dynamics of the restrictions of the representation to its
cusp groups. Theorem 1.5 says that small deformations inside of HomVF(Γ,PGL(d,R),H)
are controlled in precisely the sense we need for this to apply.

Proving Theorem 1.5 therefore boils down to analyzing the dynamics implicit in Theo-
rem 5.2: using the geometry of generalized cusps, we show that if ρ : π1C → PGL(d,R) is the
holonomy of a hyperbolic cusp, then the large-scale dynamics of any nearby representation
ρ′ : π1C → PGL(d,R) in HomVF(π1C,PGL(d,R)) are “close” to the dynamics of ρ (in the
sense made precise by the definition of peripheral stability).

Remark 5.4. We expect that a version of Theorem 1.5 also holds with weaker assumptions
on M , which are more in line with the original assumptions in the Cooper-Long-Tillmann
stability result. For instance, we conjecture that whenever M is a convex projective manifold
with strictly convex boundary, each end of M is a generalized cusp, and π1M is relatively
hyperbolic (relative to a collection of subgroups H), then the holonomy of M is an EGF
representation, and HomVF(π1M,PGL(d,R),H) is a peripherally stable subspace.

5.2. Generalized horospheres. In [CLT18], Cooper-Long-Tillmann show that if C is a
generalized cusp with holonomy ρ : π1C → PGL(d,R), there is a finite-index subgroup
Γ1 ⊆ π1C (depending only on π1C and d) so that ρ(Γ1) is a lattice in a syndetic hull of
ρ(Γ1): a uniquely determined connected Lie group T (ρ) ⊂ PGL(d,R), conjugate into the
group of upper triangular matrices. This group is called the translation group of the cusp.

We may assume that Γ1 is free abelian, so it is a lattice in Γ1⊗ZR ≃ Rd−2. The restriction

ρ|Γ1
: Γ1 → PGL(d,R)

extends uniquely to an embedding of Lie groups

ιρ : Rd−2 ↪→ PGL(d,R)

with image T (ρ).
We observe the following:

Proposition 5.5. Let C be a generalized cusp. The embedding

ιρ : Rd−2 → PGL(d,R)

varies continuously with ρ ∈ HomVF(π1C,PGL(d,R)) in the compact-open topology on maps
from Rd−2 into PGL(d,R).
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Proof. The Lie algebra of PGL(d,R) is identified with sl(d,R). Fix a finite set S of generators
for Γ1. The subspace sρ ⊂ sl(d,R) spanned by log(ρ(S)) varies smoothly with ρ, and the
induced map

Rd−2 → sl(d,R)
with image sρ varies continuously in the compact-open topology. The embedding ιρ is given
by composition with the exponential map. □

When C = Ω/Γ is projectively equivalent to a cusp in some hyperbolic manifold, we
can assume that Ω is a closed horoball in Hd. The nonideal boundary ∂nΩ is a horosphere
preserved by Γ, which carries a Γ-invariant Euclidean metric. In this case the translation
group is the group of Euclidean translations on ∂nΩ.

When C is a generalized cusp, we can always find some orbit of the translation group
T (ρ) in P(Rd) which is a strictly convex hypersurface (see Proposition 6.22 in [CLT18]).
This hypersurface is called a generalized horosphere. Its convex hull in P(Rd) is a generalized
horoball. We can always choose this horoball so that its quotient by Γ is contained in the
generalized cusp C.

Now consider a convex projective manifold M = Ω/Γ with strictly convex boundary which
can be written as a union of a compact piece and finitely many generalized cusps. It is
always possible to choose the cusps so that each cusp C ⊂ M is a quotient C = ΩC/ΓC ,
where ΩC ⊂ Ω is a convex subset whose nonideal boundary is a generalized horosphere, and
ΓC = π1C is the cusp group. The boundary ∂nΩC is homogeneous, in the sense that the
translation group T (ΓC) acts simply transitively on it.

5.3. The ideal boundary. The Ballas-Cooper-Leitner classification of generalized cusps
allows us to get a more explicit description of the ideal boundary of Ω. Given a generalized
cusp C = Ω/Γ, we let ΩC denote the “standard” Γ-invariant domain with homogeneous
nonideal boundary, alluded to above.

Proposition 5.6 (Lemmas 1.24 and 1.25 in [BCL20]). Let C = ΩC/Γ be a generalized
cusp. The ideal boundary of ΩC is a projective k-simplex ∆C . There is a unique supporting
hyperplane HC of ΩC containing ∆C , and the affine chart

AC = P(Rd)−HC

is the unique affine chart containing ΩC as a closed subset.

The vertices of ∆C must be preserved by Γ, and in fact they are all eigenvectors for the
translation group T (Γ).

Each generalized horosphere SC for C is a strictly convex hypersurface contained in the
affine chart AC . The closure of this hypersurface in P(Rd) is either SC ∪ ∂∆C (if C is a
“type d− 1” cusp) or SC ∪∆C (if C is any other type of cusp).

5.4. Deformations of convex hypersurfaces. The main ingredient in the proof of
Theorem 1.5 is the following:

Lemma 5.7. Let C be a hyperbolic cusp with holonomy ρ. Let pC be the cusp point, and let
HC be the unique supporting hyperplane of ΩC at pC .

Let K be a compact subset in AC = P(Rd) − HC , let U ⊂ P(Rd) be an open subset
containing pC , and let F ⊂ π1C be a cofinite subset such that ρ(F )K ⊂ U .

Then there exists a neighborhood W of ρ in HomVF(π1C,PGL(d,R)) so that for any
ρ′ ∈ W, we have

ρ′(F )K ⊂ U.
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Proof. [CLT18], Theorem 6.25 implies that we can choose a neighborhood W of ρ in
HomVF(π1C,PGL(d,R)) consisting of holonomies of generalized cusps. For any ρ′ ∈ W,
we let Ω′ denote a “standard” properly convex set preserved by ρ′(π1C), whose non-ideal
boundary is a generalized horosphere.

Since pC and HC are respectively the unique eigenvector and fixed hyperplane of ρ(π1C),
we can choose our neighborhood W so that for any ρ′ ∈ W, any eigenvectors and fixed
hyperplanes of ρ′(π1C) are close to pC , HC .

In particular, we can choose W so that the ideal boundary of Ω′ is a k-simplex ∆′ contained
in U . And, by applying a small conjugation in PGL(d+ 1,R), we can assume that HC is
the unique supporting hyperplane of Ω′ containing ∆′.

Let T (ρ) be the translation group of ρ. For any x ∈ K, the orbit T (ρ) · x is a paraboloid
in AC , and as x varies in K we obtain a family of paraboloids foliating a region of AC . We
can write AC = Rd−1 × R, and then view each paraboloid as the graph of a function

fρ : Rd−2 → R.

The function fρ is determined by the condition

(u, fρ(u)) = ιρ(u) · x.

Here ιρ : Rd−2 → PGL(d,R) restricts to ρ on a finite-index subgroup Γ1 ⊂ π1C, with Γ1

identified with Zd−2 ⊂ Rd−2.
If T (ρ′) is the translation group of ρ′, then Lemma 6.24 in [CLT18] implies that for each

x ∈ K, the orbit T (ρ′) · x is a strictly convex hypersurface S′ ⊂ AC . The hypersurface S′ is
the graph of a map fρ′ : Rd−2 → R, satisfying

(u, fρ′(u)) = ιρ′(u) · x.

Proposition 5.5 implies that fρ′ varies continuously (in the compact-open topology on
continuous maps Rd−2 → R) as ρ′ varies in W and as x varies in K.

We fix a norm || · || on Rd−2. There is a constant D so that for any (u, v) ∈ AC , if ||u|| > 1
and |v|/||u|| > D, then (u, v) is contained in the neighborhood U of pC .

The function fρ′ is strictly convex, and we can assume that it is nonnegative and uniquely
minimized at the origin. So, if fρ′(u)/||u|| > D on {u ∈ Rd−2 : ||u|| =M} for some constant
M , then fρ′(u)/||u|| > D for all u with ||u|| ≥M .

So, as long as W is sufficiently small, there is a fixed ball B ⊂ Rd−1 so that if u ∈ Rd−1−B,
then

(u, fρ′(u)) ∈ U

for any ρ′ ∈ W. As both the constants D,M above vary continuously as x varies in the
compact subset K, we can choose W so that the above holds for any fρ′ determined by any
x ∈ K.

The ball B contains at most finitely many elements of Γ1 − F . So we can in fact choose
W small enough so that for any ρ′ ∈ W, the set ρ′(Γ1 − F )K lies in U . Then since Γ1 has
finite index in π1C, we can shrink W even further to guarantee that for any ρ′ ∈ W,

ρ′(π1C − F )K

lies in U as well. □

5.5. Peripheral stability.

Proof of Theorem 1.5. Let ρ : π1M → PGL(d,R) be the holonomy of a finite-volume convex
projective manifold M , and let Ω be a ρ-invariant strictly convex domain such that M =
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Ω/ρ(π1M). Write Γ = π1M , and let H be the collection of cusp groups, so (Γ,H) is a
relatively hyperbolic pair, and for each H ∈ H, ρ|H is the holonomy of a hyperbolic cusp.

Since Ω is strictly convex, [CLT15, Theorem 11.6] also implies that Ω has C1 boundary.
So there is a ρ-equivariant homeomorphism ∂Ω → ∂Ω∗ assigning the point z ∈ ∂Ω to the
unique supporting hyperplane of Ω at z. We let ∂Ω̂ denote the space

{(x,w) ∈ F(d) : x ∈ ∂Ω, w ∈ ∂Ω∗}.

There is an equivariant homeomorphism ψ : ∂(Γ,H) → ∂Ω̂, with the parabolic points in

∂(Γ,H) corresponding to the fixed flags of the cusp groups. The inverse map ϕ : ∂Ω̂ → ∂(Γ,H)
extends the convergence action of Γ on ∂(Γ,H). For each parabolic point p ∈ ∂(Γ,H), the
open set Cp is

Opp(ψ(p)) = {ξ ∈ F : ξ is opposite to ψ(p)}.
Let π : F(d) → P(Rd) be the canonical projection map. It suffices to show that for any

compact set K ⊂ π(Cp), any open neighborhood U of π(ψ(p)) in P(Rd), and any cofinite
subset F ⊂ Γp = StabΓ(p) such that

ρ(F ) ·K ⊂ U,

we can find a neighborhood W ⊂ HomVF(Γp,PGL(d,R),H) containing ρ such that

ρ′(F ) ·K ⊂ U

for any ρ′ ∈ W. However, this is exactly the content of Lemma 5.7. The same argument
applied dually then shows that we can upgrade K to a compact subset of Cp ⊂ F and U to
an open subset in F(d), giving the required peripheral stability. □

6. Symmetric representations

In this section, we construct new examples of extended geometrically finite representations
by taking symmetric powers of convex cocompact representations of groups which are
hyperbolic relative to virtually abelian subgroups. We also prove Theorem 1.8, which states
that these EGF representations are absolutely stable in the representation variety.

6.1. Symmetric powers. Let V be a finite-dimensional real vector space. We let τm denote
the symmetric representation

SL(V ) → SL(Symm(V )).

Throughout this section, we will view Symm(V ) as a quotient of the space of homogeneous
degree-m polynomials in elements of V . We will always leave this quotient implicit. That
is, if v1, . . . , vk ∈ V , and r1, . . . , rk ∈ N ∪ {0} with

∑
ri = m, we will view the monomial

vr11 · · · vrkk as an element of Symm(V ).
There is a τm-equivariant embedding

ι : P(V ) → P(Symm(V ))

given by [v] 7→ [vm]. There is also a corresponding dual embedding

ι∗ : P(V ∗) → P(Symm(V )∗),

using the canonical identification Symm(V ∗) ≃ Symm(V )∗. We observe that v ∈ P(V ) and
w ∈ P(V ∗) are transverse if and only if their respective images under ι and ι∗ are also
transverse. This means that the maps ι and ι∗ also give rise to a τm-equivariant map

ι̂ : F(V ) → F(Symm(V ))

given by ι̂(v, w) = (ι(v), ι∗(w)).
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6.1.1. Dynamics in symmetric powers. The dynamics of 1-divergent sequences in SL(V ) on
P(V ) and P(V ∗) are respected in P(Symm V ), in sense given by the following (easily verified)
proposition:

Proposition 6.1. Let {gn} be an infinite sequence in SL(V ) such that for some w ∈ P(V ∗),
x ∈ P(V ), we have gn|Opp(w) → x uniformly on compacts.

Then

τm(gn)|Opp(ι∗(w)) → ι(x)

uniformly on compacts.

6.2. Symmetric powers of relatively hyperbolic convex cocompact groups. Suppose
that Γ is a convex cocompact subgroup of PGL(V ), so that there is a properly convex domain
Ω ⊂ P(V ) with Γ acting convex cocompactly on Ω. We may replace Γ with a finite index-
subgroup and lift Γ to a representation ρ : Γ → SL(V ). In this situation we say that the
representation ρ : Γ → SL(V ) is convex cocompact in P(V ).

Let (Γ,H) be a relatively hyperbolic pair such that each group in H is virtually abelian,
and let ρ : Γ → SL(V ) be a convex cocompact representation. Representations of this form
have been studied extensively by Islam-Zimmer [IZ19b], [IZ19a], who proved a number of
strong structural results. In particular, Islam-Zimmer showed that in this situation, for each
H ∈ H, the image ρ(H) acts cocompactly on a properly embedded k-simplex ∆H ⊂ Ω, with
k = rank(H). (A simplex ∆ ⊂ Ω is properly embedded if ∂∆ ⊂ ∂Ω.) In fact, the action of
ρ(H) on Ω is convex cocompact, and the full orbital limit set of ρ(H) in Ω is ∂∆H .

Conversely, every properly embedded maximal k-simplex in the convex hull of ΛΩ(Γ)
always has a cocompact action by some H ∈ H with rank k.

We let

ρm : Γ → SL(Symm V )

denote the composition τm ◦ ρ. We have two main goals in this section. The first is to prove
that the representation ρm is always EGF. This result does not follow directly from the
fact that convex cocompact representations in P(V ) are EGF (Theorem 1.2), because we
do not know that the representations ρm are convex cocompact in P(Symm V ). In fact, Jeff
Danciger and Fanny Kassel have indicated in personal communication to the author that ρm

should never be convex cocompact in P(Symm V ) unless the collection H is empty: while
ρm(Γ) does preserve a properly convex domain in P(Symm V ), the convex hull of the full
orbital limit set in any such domain seems “too big” for ρm(Γ) to act cocompactly.

Our second goal is to show that the entire space Hom(Γ,SL(Symm V )) is peripherally
stable about ρm, meaning (by Theorem 1.1) an open neighborhood of ρm consists of EGF
representations. In particular this shows that small perturbations of ρm still have finite
kernel and discrete image, giving new examples of discrete subgroups of higher-rank Lie
groups which are stable (as discrete groups).

6.2.1. Proof strategy. To show that ρm is EGF, we will give an explicit description of the
boundary set Λ̂m ⊂ F(Symm V ). The naive choice is to just take Λ̂m to be ι̂(Λ̂Ω(Γ)), where

Λ̂Ω(Γ) is the flag-valued full orbital limit set giving the EGF boundary set for ρ : Γ → SL(V )
(see Section 4). While there is a equivariant surjective map from this set to ∂(Γ,H), it turns
out that we will have to enlarge it in order to ensure that the relevant dynamics hold.

The idea is the following: for each parabolic point p ∈ ∂(Γ,H), with stabilizer H, we take

the fiber over p in Λ̂m to be the space of flags in the boundary of a simplex SH ⊂ P(Symm V ),
constructed using the simplex ∆H ⊂ Ω on which H = StabΓ(p) acts cocompactly. The
simplex SH is chosen so that if γn is a sequence in Γ converging to p, then a face of SH spans
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a minimal attracting subspace of ρm(γn). (Here, and throughout this section, attracting and
repelling subspaces are understood in the sense defined in Section 3.1.3).

We also want to ensure that the simplex SH is stable, i.e. if ρmt is a small deformation
of ρm in Hom(Γ,SL(Symm V )), then ρmt (H) preserves a simplex St

H close to SH . We verify
that SH has these properties by analyzing the relationship between the weights of ρ and ρm

on the virtually abelian group H.
The other main steps in the proof involve checking that the boundary set Λ̂m we construct

is actually a compact space surjecting continuously onto ∂(Γ,H), and constructing the open

sets Ĉp also required by the definition of an EGF representation. For the latter, we make
heavy use of the fact that the dual action of ρ(Γ) on P(V ∗) is also projectively convex
cocompact, which allows us to construct a stable dual simplex S∗

H for each H ∈ H. The
vertices of S∗

H are thought of as hyperplanes in P(Symm(V )), cutting out a region Cp of
P(Symm(V )) on which ρm(H) attracts points towards SH .

6.2.2. Example: symmetric squares of convex projective 3-manifold groups. We illustrate
the general idea of our approach with a specific example. Let Ω ⊂ P(R4) be a properly
convex domain, and let Γ ⊆ Aut(Ω) be a discrete group acting cocompactly on Ω. In [Ben06],
Benoist produced examples of such groups which are hyperbolic relative to a nonempty
collection H of virtually abelian subgroups of rank 2. Further examples were constructed
by Ballas-Danciger-Lee in [BDL15]. Up to finite index, each H ∈ H acts diagonalizably
on P(R4), preserving a projective tetrahedron TH ⊂ P(R4) and acting cocompactly on a
properly embedded triangle ∆H ⊂ Ω. Each edge of ∆H is contained in a unique supporting
hyperplane of Ω. The common intersection of these hyperplanes is the fourth vertex of TH .

More explicitly, up to finite index, each H acts diagonally on R4 in the basis {v1, v2, v3, v4},
where the vi are the vertices of TH , and v1, v2, v3 are the vertices of ∆H . We can consider
the situation where (in this basis) H is the discrete group{(

2a

2b

2c

1

)
: a, b, c ∈ Z, a+ b+ c = 0

}
.

The dual of H preserves the corresponding dual basis {v∗1 , v∗2 , v∗3 , v∗4}, and acts cocompactly
on a projective triangle ∆∗

H ⊂ P((R4)∗) with vertices v∗1 , v
∗
2 , v

∗
3 . The kernels [ker v∗i ] for

i = 1, 2, 3 give three supporting hyperplanes of Ω which cut out a region RH of projective
space containing Ω. In fact, RH also contains ∂Ω− ∂∆H .

Now let ρ2 : Γ → SL(Sym2(R4)) ≃ SL(10,R) be the composition of the inclusion
Γ ↪→ SL(4,R) with the symmetric square τ2 : SL(4,R) → SL(Sym2(R4)). In this case, the
induced map ι : P(R4) → P(R10) is the Veronese embedding.

For each H ∈ H, ρ2(H) preserves a 9-simplex in P(R10), with vertices

{v21 , v22 , v23 , v24 , v1v2, v1v3, v1v4, v2v3, v2v4, v3v4}.

In particular ρ2(H) also preserves the 5-simplex SH with vertices

{v21 , v22 , v23 , v1v2, v2v3, v1v3}.

Any divergent sequence in ρ2(H) always has an attracting subspace spanned by a face of
SH , since the eigenvalues of elements of H on v4 are always dominated by some eigenvalue
of that element on either v1, v2, or v3. For instance, if we consider the sequence

an =

(
22n

2−n

2−n

1

)
,
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then ρ2(an) attracts towards the subspace spanned by {v21}. On the other hand, if an is the
sequence (

2n

2n

2−2n

1

)
,

then ρ2(an) attracts towards the subspace spanned by {v21 , v22 , v1v2}.
Moreover, the subspaces spanned by faces of SH are transverse to ι(∂Ω− ∂∆H), so large

elements of H attract points in ι(∂Ω) that are “far from” ∂SH towards ∂SH . In fact, this
dynamical behavior extends to an entire open subset of P(R10): namely, a region cut out by
the hyperplanes corresponding to the vertices of the dual 5-simplex S∗

H ⊂ P((R10)∗) with
vertices

{(v∗1)2, (v∗2)2, (v∗3)2, v∗1v∗2 , v∗2v∗3 , v∗1v∗3}.
So, the simplex SH serves as the “parabolic point” for the action of the peripheral subgroup
H on P (R10)—and moreover, this behavior is stable under perturbations of ρ2(H) in
Hom(Γ,SL(Sym2 V )). This means that we can construct our candidate boundary set for the
representation ρm by taking

ι̂(Λ̂Ω(Γ)) ∪
⋃

H∈H
∂ŜH ,

where ∂ŜH ⊂ F(Sym2 R4) is a closed subset of the space of flags projecting to the boundary
of the simplex SH .

6.3. Generalized weight spaces. To carry out the general construction of the simplex
SH identified in the previous example, we need some description of attracting subspaces
for the groups ρm(H) ⊂ SL(Symm V ). We obtain this description by recalling some of the
properties of weights of representations of free abelian groups.

Definition 6.2. Let ρ : H → GL(V ) be a representation of a free abelian group H, and let
ρC : H → GL(V ⊗R C) be the complexification of ρ.

A complex weight of ρ is a homomorphism µC : H → C such that the weight space

VµC = ker(ρC(h)− exp(µC(h))I)

is nontrivial for evey h ∈ H. A generalized complex weight is similarly a homomorphism
µC : H → C such that the generalized weight space

VµC =

dimV⋃
n=1

ker(ρC(h)− exp(µC(h))I)
n

is nontrivial.
For any generalized weight µC, the nilpotence degree of µC is the minimal ℓ ∈ N such that

VµC = ker(ρC(h)− exp(µC(h))I)
ℓ.

Given a representation ρ : H → GL(V ), the generalized complex weight spaces of ρC give
a ρC-invariant decomposition of V ⊗R C. This in turn gives a ρ-invariant decomposition of
V , since when µC is a weight which takes on complex values, the direct sum VµC ⊕ VµC is
a ρ-invariant real subspace of V . By a slight abuse of terminology we refer to this as the
generalized weight space decomposition for the representation ρ. The associated real weights
of the representation are homomorphisms µ : H → R of the form log | expµC|, where µC
is a (generalized) complex weight. For the rest of the section, unless otherwise indicated,
when we refer to (generalized) weights of a representation into SL(V ), we will mean the
(generalized) real weights, and similarly for weight spaces.
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Generalized weight spaces of ρ are stable under deformations of ρ. To be precise, we
observe the following:

Proposition 6.3. Let ρ : Γ → GL(V ) be a representation of a free abelian group, and let

V 0
µ1

⊕ . . .⊕ V 0
µs

be the generalized weight space decomposition of V for ρ. Let ρt be a continuous family of
representations in Hom(Γ,GL(V )), with ρ = ρ0.

For all sufficiently small t, there is a ρt-invariant decomposition

V t
1 ⊕ . . .⊕ V t

s

such that V t
i is a sum of generalized weight spaces for ρt, with V

t
i varying continuously with

t, and each of the weights associated to V t
i also varying continuously with t.

Proof. The weights vary continously as a set with multiplicity, because the roots of the
characteristic polynomial of ρ(γ) vary continuously in ρ for fixed γ ∈ Γ. And, if µ is a complex
weight with multiplicity k, then for small t there are complex weights µt

1, . . . , µ
t
k of ρt (possibly

with repeats) close to µ such that the sum of the kernels ker(ρC(γ)− exp(µt
i(γ))I)

dimV is
close to ker(ρC(γ)− exp(µ(γ))I)dimV . □

Definition 6.4. Let ρ : H → SL(V ) be a representation of a free abelian group H, and let
Φ be the set of generalized weights of ρ. For any subset θ ⊆ Φ, we let Vθ ⊆ V denote the
span of the generalized weight spaces Vµ for µ ∈ θ, and we let V opp

θ ⊆ V denote the span of
the generalized weight spaces Vµ′ for µ′ ∈ Φ− θ.

6.3.1. Faces in the convex hull of the weights. Whenever ρ : H → SL(V ) is a representation
of a free abelian group with rank k, we can extend any real (generalized) weight µ : H → R
to a homomorphism µ : H ⊗Z R → R, and view it as an element of (Rk)∗ ≃ Rk.

Definition 6.5. Let ρ : H → SL(V ) be a representation of a free abelian group, and
let Φ be the set of generalized weights of ρ. We denote the closed convex hull of Φ in
(H ⊗Z R)∗ ≃ (Rk)∗ by C(ρ); since Φ is a finite subset of (Rk)∗, C(ρ) is a convex polytope in
(Rk)∗.

The convex polytope C(ρ) is important for our purposes because it tells us how to find
attracting subspaces for ρ(H). In particular, there is a correspondence between the faces of
C(ρ) and attracting subspaces of ρ(H).

Definition 6.6. Let ρ : H → SL(V ) be a represention of a free abelian group with generalized
weight set Φ. Let F be a closed face of C(ρ). We let Φ(F ) denote the set of generalized
weights of ρ lying in F .

For a face F of C(ρ), we write VF and V opp
F for VΦ(F ) and V

opp
Φ(F ), respectively.

Below, we will prove the following:

Proposition 6.7. Let ρ : H → SL(V ) be a representation of a free abelian group. For any
divergent sequence hn ∈ H, there is a face F of C(ρ) such that VF and V opp

F are respectively
attracting and repelling subspaces for ρ(hn).

Conversely, for any face F of C(ρ), VF is an attracting subspace for some sequence ρ(hn)
with hn ∈ H divergent.

To prove Proposition 6.7, we first establish some estimates which will later help us show
that the convergence to the spaces VF is both uniform and stable. To help make our estimates
explicit, we choose a norm | · | on H⊗ZR ≃ Rk. We also fix a norm || · || on Cd, which induces
an operator norm || · || on SL(d,C). We use m(·) to denote the conorm m(g) = ||g−1||−1.
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Lemma 6.8. Let U(d,C) be the group of upper-triangular matrices in SL(d,C), and let
H be a free abelian group. For any ρ ∈ Hom(H,U(d,C)), there exists D(ρ) > 0 (varying
continuously with ρ) so that for any h ∈ H, we have

1

D
|h|1−d · r−ρ (h) ≤ m(ρ(h)) ≤ ||ρ(h)|| ≤ D|h|d−1 · r+ρ (h),

where r+ρ (h) and r
−
ρ (h) are respectively the maximum and minimum modulus of any eigenvalue

of ρ(h).

Proof. We can extend each ρ ∈ Hom(H,U(d,C)) to a representation ρ : H ⊗Z R → U(d,C).
For each h ∈ H, we write

ρ(h) = Sρ(h) +Nρ(h),

where Sρ(h) is diagonal and Nρ(h) is strictly upper-triangular. The entries of Sρ(h) are the
eigenvalues of ρ(h), which means ||Sρ(h)|| = r+ρ (h) and ||Sρ(−h)||−1 = r−ρ (h).

For any fixed h ∈ H ⊗Z R and k ∈ N, if we binomially expand the expression

ρ(h)k = (Sρ(h) +Nρ(h))k,

then all monomials containing at least d terms equal to Nρ(h) must vanish. This gives us an
inequality of the form

(1) ||ρ(h)k|| ≤ ||Sρ(h)||k · p(k, ||Nρ(h)||),
where p(x, y) is a polynomial with nonnegative coefficients depending continuously on ρ and
h, with degree at most d− 1. Using the identity m(ρ(h)k) = ||ρ(−h)k||−1, we also see that

(2) m(ρ(h)k) ≥ ||Sρ(−h)||−k/p(k, ||Nρ(−h)||).
Now, since the unit sphere in H ⊗Z R is compact, and Nρ(h) varies continuously with ρ and
h, we can find D0 varying continuously with ρ so that ||Nρ(s)|| ≤ D0 for all s with |s| = 1.
Now suppose that h = ks for k ∈ N and s ∈ H ⊗Z R with |s| = 1. Then k = |h| and from (1)
we see

||ρ(h)|| = ||ρ(s)k|| ≤ r+ρ (s)
k · p(|h|, ||Nρ(s)||) = r+ρ (h) · p(|h|, ||Nρ(s)||).

Since 0 ≤ ||Nρ(s)|| < D0, we can bound the polynomial term beneath D|h|d−1 for a constant
D depending continuously on ρ, giving us the desired upper bound. For the lower bound,
we can argue similarly using (2). A priori, these bounds only holds for h ∈ H ⊗Z R which
are positive integer multiples of elements on the unit sphere, but every h ∈ H is bounded
distance from such an element, so we get the desired bounds everywhere. □

For the next estimate, we choose an inner product on our real vector space V , which
induces a norm || · || on V and a smooth metric dP on P(V ). Specifically, for any transverse
subspaces W,W ′ ⊂ V , we define

∠(W,W ′) = inf
w∈W−{0},
w′∈W ′−{0}

∠(w,w′),

and then take dP([u], [v]) = sin(∠([u], [v])). As before, the norm || · || induces an operator
norm and conorm m(·) on SL(V ).

Lemma 6.9. Let W,W⊥ be transverse subspaces of V with W ⊕W⊥ = V . If g ∈ SL(V )
preserves both W and W⊥, then for any x ∈ P(V )− P(W⊥), we have

dP(g · x,P(W ))

dP(g · x,P(W⊥))
≤ 1

sin2 ∠(W,W⊥)

||g|W⊥ ||
m(g|W )

· d(x,P(W⊥))−1.



EXAMPLES OF EXTENDED GEOMETRICALLY FINITE REPRESENTATIONS 25

Proof. Let x = [v] for v ∈ V , and uniquely write v = w + w⊥ for w ∈ W , w⊥ ∈ W⊥, with
w⊥ ̸= 0. Then we have

||w⊥||
||w||

sin∠(W,W⊥) ≤ dP(x,P(W )) ≤ ||w⊥||
||w||

,

and similarly
||w||
||w⊥||

sin∠(W,W⊥) ≤ dP(x,P(W⊥)) ≤ ||w||
||w⊥||

.

So in particular we have

(3) sin∠(W,W⊥)
||w⊥||
||w||

≤ dP(x,P(W ))

dP(x,P(W⊥))
≤ 1

sin∠(W,W⊥)

||w⊥||
||w||

.

Since g preserves the decomposition V =W ⊕W⊥, we see that

dP(g · x,P(W ))

dP(g · x,P(W⊥))
≤ 1

sin∠(W,W⊥)

||g · w⊥||
||g · w||

.

We know that ||g · w⊥|| ≤ ||g|W⊥ || · ||w⊥|| and ||g · w|| ≥ m(g|W ) · ||w||, so we get the
inequality

dP(g · x,P(W ))

dP(g · x,P(W⊥))
≤ 1

sin∠(W,W⊥)

||g|W⊥ ||
m(g|W )

· ||w
⊥||

||w||
.

Then we apply the left-hand inequality of (3) and use the fact that dP(x,P(W )) ≤ 1 to finish
the proof. □

Proof of Proposition 6.7. Let ρ : H → SL(V ) be a representation of a free abelian group,
let Φ be the set of generalized weights, and let hn be a divergent sequence in H. Up to
subsequence, the sequence hn/|hn| converges to some h∞ ∈ H ⊗Z R with |h∞| = 1.

We can view h∞ as a linear functional on the space (H ⊗Z R)∗. Since C(ρ) ⊂ (H ⊗Z R)∗
is a convex polytope, this means there is a face F of C so that for any µ ∈ Φ(F ) and any
µopp ∈ Φ − Φ(F ), we have µ(h∞) > µopp(h∞). Then for sufficiently large n we also have
µ(hn/|hn|) > µopp(hn/|hn|). In fact, since Φ is finite, there is a constant M > 0 such that
µ(hn)− µopp(hn) > M |hn| for every µ ∈ Φ(F ) and every µopp ∈ Φ− Φ(F ). In particular, if
r(hn) is the eigenvalue of ρ(hn) on VF with smallest modulus, and ropp(hn) is the eigenvalue
of ρ(hn) on V

opp
F with largest modulus, we have |r(hn)|/|ropp(hn)| > exp(M |hn|).

We can choose an identification of V ⊗R C with CdimV so that the complexification
ρC : H⊗ZR → SL(V ⊗RC) lies in the group of upper-triangular matrices, and the eigenvectors
of ρC are standard basis vectors. The norm || · || we have chosen on V induces a norm on
V ⊗R C which agrees with the standard norm on CdimV up to bounded multiplicative error.
So, we can apply Lemma 6.8 to see that the quantity

m(ρ(hn)|VF
)

||ρ(hn)|V opp
F

||

tends to infinity as n→ ∞. Then Lemma 6.9 implies that for any x ∈ P(V )− P(V opp
F ), the

distance

dP(ρ(hn)x,P(VF )) ≤
dP(ρ(hn)x,P(VF ))
dP(ρ(hn)x,P(V opp

F ))

tends to 0 as n→ ∞, so VF and V opp
F must respectively be attracting and repelling subspaces

for ρ(hn).
Conversely, if F is any face of C(ρ), we can choose h ∈ H ⊗Z R so that µ(h) > 0 and

µ(h) > µopp(h) for any µ ∈ Φ(F ) and µopp ∈ Φ − Φ(F ). Then if hn ∈ H is any divergent
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sequence with hn/|hn| → h in H ⊗Z R, we can similarly apply Lemma 6.8 to see that the
ratio ||ρ(hn)|VF

||/||ρ(hn)|V opp
F

|| tends to infinity, and again use Lemma 6.9 to see that VF is
an attracting subspace for hn. □

6.4. Weights of peripheral subgroups in convex cocompact groups. For the rest
of this section, we fix a relatively hyperbolic pair (Γ,H), where each H ∈ H is virtually
abelian with rank at least 2. We also fix a representation ρ : Γ → SL(V ) which is convex
cocompact in P(V ), and let Ω ⊂ P(V ) be a properly convex domain where ρ(Γ) acts convex
cocompactly.

Our goal now is to describe the convex polytope in (H ⊗ZR)∗ associated to the restriction
of ρ to each H ∈ H, which we can use to understand the dynamics of both ρ(H) and ρm(H).

Definition 6.10. For each H ∈ H, we let VH ⊂ P(V ) denote the set of vertices of ∆H .

Proposition 6.11. Let H ∈ H be a peripheral subgroup of rank k ≥ 2, and let H0 ⊆ H be
a finite-index free abelian subgroup. Consider the restriction ρ0 = ρ|H0

. Then, the convex
polytope C(ρ0) is a k-simplex in (H0 ⊗Z R)∗, and each vertex of C(ρ0) is a weight µ whose
associated weight space is a vertex of ∆H .

Moreover, every weight of ρ0 which is not a vertex of C(ρ0) lies in the interior of C(ρ0).

Proof. Each vertex v ∈ VH lies in a weight space of ρ0, with an associated weight µv. Let Φ
denote the weights of ρ0, and let Φ(VH) ⊆ Φ be the set of weights of the form µv for v ∈ VH .
We claim that for any µ ∈ Φ− Φ(VH) and any h ∈ H0 ⊗Z R, there is a vertex v ∈ VH such
that

µv(h) > µ(h).

Suppose for a contradiction that the claim does not hold, i.e. there exists h ∈ H0 ⊗Z R and
µ ∈ Φ − Φ(VH) such that µ(h) ≥ µv(h) for all v ∈ VH . We choose a subspace V ′

µ of the
weight space Vµ, so that the restriction of ρ0 to V ′

µ is (complex) diagonalizable. Then we
let WH = span(∆H), and let V ′ be the ρ0-invariant subspace V

′
µ ⊕WH . Then ρ0 induces

a representation ρ′0 : H0 → SL(V ′). Since each vertex in VH is an eigenspace for ρ0, this
representation is (complex) diagonalizable.

We may choose our norm on V ′ so that the eigenspaces for ρ′0 are pairwise orthogonal.
Then, for any h ∈ H0, the norm of ρ′0(h) restricted to any weight space is given by the
modulus of the corresponding weight. So we have

||ρ0(h)|WH
|| ≤ m(ρ0(h)|V ′

µ
).

Now, if hn is any divergent sequence in H with hn/|hn| → h, Lemma 6.9 implies that for
any x ∈ P(V ′)− P(WH), the ratio

dP(ρ(hn)x,P(Vµ))
dP(ρ(hn)x,P(WH))

does not tend to infinity as n→ ∞. In particular this is true for some x ∈ Ω, since P(V ′)∩Ω
is relatively open and nonempty. But since ∆H ⊂ P(WH), this contradicts the fact that
∂∆H is the full orbital limit set of ρ(H0) in Ω.

We have now proved our claim, which implies that any extreme point of the convex
polytope C(ρ0) is a weight µv for v ∈ VH . On the other hand, by Corollary 4.8, we may
assume that each vertex v ∈ VH is an extreme point in ∂Ω, and by Proposition 3.5, this
means that for each v ∈ VH , there is a sequence hn ∈ H0 such that v is an attracting subspace
for ρ0(hn). Since ρ0(H0) acts diagonalizably on WH , this implies that µv is an extreme point
of C(ρ0). The last assertion of the proposition follows directly from the claim. □
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Proposition 6.11 tells us that we can combinatorially identify the k-simplex ∆H and the
k-simplex C(ρ0) for ρ0 = ρ|H0 . We write this identification explicitly:

Definition 6.12. Let H ∈ H, and let H0 be a finite-index free abelian subgroup. For each
face F of ∆H with vertices V(F ), we let F̃ denote the face of C(ρ0) whose vertices are the
weights µv for v ∈ V(F ).

6.5. Invariant simplices in the symmetric power. Our next step is to describe the
simplices SH ⊂ P(Symm V ) which give rise to the fibers in Λ̂m over parabolic points, for our

EGF boundary extension Λ̂m → ∂(Γ,H).
Let H ∈ H have rank k, and let H0 ⊆ H be a finite-index free abelian subgroup. We let

ρ0, ρ
m
0 respectively denote the restrictions of ρ, ρm to H0, and let Φ,Φm denote the sets of

weights of ρ0 and ρm0 . We observe the following:

Lemma 6.13. The convex polytope C(ρm0 ) is the k-simplex mC(ρ0). Moreover, for every

face F̃ of C(ρ0), the weights in Φm ∩mF̃ are exactly the vertices of the mth barycentric

subdivision of mF̃ , and each such weight has a one-dimensional generalized weight space.

Proof. The weights of ρm0 are exactly the set of homomorphisms of the form∑
µ∈Φ

aµµ,

where aµ ∈ N ∪ {0} and
∑
aµ = m. In particular, the set of rescaled weights 1

mΦm consists
entirely of convex combinations of weights of ρ0, and contains every weight in Φ. This
(together with Proposition 6.11) implies that C(ρm0 ) is a k-simplex.

Further, every (rescaled) weight in the boundary of the rescaled simplex 1
mC(ρm0 ) must be a

convex combination of weights lying in a single face of the simplex C(ρ0). But Proposition 6.11
says that every weight in Φ ∩ ∂C(ρ0) is a vertex of C(ρ0). So, if F is a face of the simplex

∆H with vertices V(F ), the weights in F̃ ∩ 1
mΦm are exactly the convex combinations of the

form

(4)
1

m

∑
v∈V(F )

avµv,

where av ∈ N ∪ {0} and
∑
av = m. These are exactly the vertices in the mth barycentric

subdivision of F̃ , and in fact each such vertex has unique expression of the form (4). Since
each weight µv for v ∈ V(F ) has a one-dimensional generalized weight space, it follows that
the weights in Φm ∩mF do as well. □

6.5.1. The simplices SH ⊂ P(Symm V ). Using Lemma 6.13, we can define the vertices of the
simplex SH : they are exactly the weight spaces for the weights µ lying in Φm ∩ ∂C(ρm0 ).

To define SH as a subset of P(Symm V ), we choose lifts in Symm V of each vertex of
SH , and then take convex combinations. Our lifts are chosen as follows: we first pick a lift
ṽ ∈ V of each vertex v ∈ VH , so that ∆H is the projectivization of the convex hull in V of
{ṽ : v ∈ VH}. The weight space of µ for each µ ∈ ∂C(ρm0 ) is spanned by a unique vector in
Symm V of the form

ṽµ =
∏

v∈VH

ṽav ,

where av ∈ N ∪ {0} and
∑
av = m. Then we can define SH to be the projectivization of the

convex hull in Symm V of the ṽµ’s.
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6.5.2. Dynamics on the simplices SH . By definition, the vertices of SH are exactly the
weight spaces for the weights in the boundary of the simplex C(ρm0 ) ⊂ (H0 ⊗Z R)∗. So,
Proposition 6.7 immediately implies the following:

Corollary 6.14. Let H ∈ H. For every divergent sequence hn ∈ H, there is a face F of SH

which spans an attracting subspace for the sequence ρm(hn).

6.6. Dual simplices in symmetric powers. As discussed in Section 4, [DGK17, Proposi-
tion 5.6] says that since ρ : Γ → SL(V ) is convex cocompact in P(V ), the dual representation
Γ → SL(V ∗) is convex cocompact in P(V ∗), and in fact there is a domain Ω ⊂ P(V ) so
that Γ acts convex cocompactly on both Ω and the dual domain Ω∗. By the work of
Islam-Zimmer [IZ19b], each virtually abelian subgroup H ∈ H must act cocompactly on a
properly embedded dual simplex ∆∗

H ⊂ Ω∗. And, for each vertex w of ∆∗
H , the projective

hyperplane [kerw] is a supporting hyperplane of Ω at ∂∆H .

6.6.1. The simplices S∗
H ⊂ P(Symm V ∗). For each H ∈ H, we can define an H-invariant

dual simplex S∗
H ⊂ P(Symm V ∗), by carrying out the construction we used to find SH (but

this time for the dual representation ρ∗ : Γ → SL(V ∗)). We can describe the relationship
between the simplices SH and S∗

H a little more explicitly. For a finite-index free abelian
subgroup H0 ⊆ H, we let ρ∗0 : H0 → SL(V ∗) be the dual of the restriction of ρ to H0, and
similarly define (ρm0 )∗ : H0 → SL(V ∗). Then the weights of ρ∗0 are the negative weights of
ρ0, and the weights of (ρm0 )∗ are the negative weights of ρm0 .

Suppose µm is a weight of ρm0 with a one-dimensional generalized weight space vm.
Then, the negative weight −µm also has a one-dimensional generalized weight space wm ∈
P(Symm V ∗), and [kerwm] is the hyperplane spanned by the weight spaces of the weights
in Φm − {µm}. In particular, we can consider the case where µm is a weight lying in the
boundary of C(ρm0 ). In this case, vm is a vertex of SH , wm is a vertex of S∗

H , and [kerwm] is
a hyperplane intersecting SH in a codimension-1 face of SH .

This allows us to define a simultaneous lift of the boundaries of the simplices SH , S
∗
H in

the space of flags F(Symm V ).

Definition 6.15. For a peripheral subgroup H ∈ H, we let ∂ŜH denote the set

∂ŜH = {(v, w) ∈ F(Symm(V )) : v ∈ ∂SH , w ∈ ∂S∗
H}.

The discussion above shows that ∂ŜH is a nonempty closed invariant subset of F(Symm V ),
projecting to ∂SH and ∂S∗

H under the canonical maps F(Symm V ) → P(Symm V ) and
F(Symm V ∗) → P(V ∗).

6.7. Defining the boundary set. Using the sets ∂ŜH , we can define our candidate for the

EGF boundary set Λ̂m ⊂ F(Symm V ) as follows. We let ϕ̂ : Λ̂Ω(Γ) → ∂(Γ,H) denote the
boundary extension for the EGF representation ρ coming from the proof of Theorem 1.2.

For each z ∈ ∂(Γ,H), we define the set ψ̂m(z) ⊂ F(Symm(V )) by:

ψ̂m(z) =

{
ι̂(ϕ̂−1(z)), z ∈ ∂con(Γ,H)

∂ŜH , z ∈ ∂par(Γ,H).

We define

Λ̂m =
⋃

z∈∂(Γ,H)

ψ̂m(z),

and observe that ι̂(Λ̂Ω(Γ)) ⊂ Λ̂m.
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The set Λ̂m is ρm(Γ)-invariant, since ι̂ is τm-equivariant and the construction of the

set ∂ŜH is invariant. Ultimately we want to see that Λ̂m is compact, and that there is a

well-defined transverse map ϕ̂m : Λ̂m → ∂(Γ,H) giving us our EGF boundary extension.

6.8. Defining the boundary extension. Our next immediate goal is to show:

Proposition 6.16. For distinct z1, z2 ∈ ∂(Γ,H), the sets

ψ̂m(z1), ψ̂m(z2)

are transverse (in particular, disjoint). Consequently, the map ϕ̂m : Λ̂m → ∂(Γ,H) given by

ϕ̂m(ξ) = z ⇐⇒ ξ ∈ ψ̂m(z)

is well-defined, equivariant, surjective, and transverse.

Lemma 6.17. Let X be a closed subset of ΛΩ(Γ), and let HX ⊂ H be the set {H ∈ H :
∂∆H ∩X ̸= ∅}.

Then the set
XH = X ∪

⋃
H∈HX

∆H

is closed.

Proof. Let xn be a sequence in XH. By compactness of ΛΩ(Γ), we can choose a subsequence
so that xn → x ∈ ΛΩ(Γ). We wish to show that x ∈ XH. Since X is closed and X ⊂ XH,
we may assume that for each n, we have xn ∈ ∂∆Hn

for some Hn ∈ HX .
Up to subsequence, the sets ∂∆Hn converge to a closed set ∂∆∞ which is a connected

finite union of (possibly degenerate) projective simplices. We must have x ∈ ∂∆∞ ⊂ ΛΩ(Γ).
By definition, ∂∆Hn

intersects X nontrivially, and since X is closed we must also have
∂∆∞ ∩X ̸= ∅.

Suppose for a contradiction that x /∈ XH. Then in particular x /∈ X. Since ∂∆∞ intersects
X, it must contain at least two points, which means that every point in ∂∆∞ lies in a
nontrivial closed projective segment (since ∂∆∞ is a connected finite union of projective
simplices). But then by Corollary 4.8, ∂∆∞ ⊂ ∂∆H for some H ∈ H, and since ∂∆∞∩X ≠ ∅
we have H ∈ HX and therefore x ∈ XH, contradiction. □

Proposition 6.18. For each H ∈ H, there is a connected subset CH in

Opp(∂S∗
H) = {x ∈ P(Symm V ) : x ⊥ w for every w ∈ ∂S∗

H}
such that for every closed subset X ⊂ ΛΩ(Γ)−∆H , CH contains the closure of

ι(X) ∪
⋃

H′∈HX

SH′ ,

where HX = {H ∈ H : ∂∆H ∩X ̸= ∅}.

Proof. Let VH , V∗
H denote the vertex sets of ∆H and ∆∗

H , respectively. Using the convexity

of Ω, we can find lifts w̃ ∈ V ∗ for each vertex w ∈ V∗
H , a continuous lift Λ̃ ⊂ V of ΛΩ(Γ),

and a continuous lift ∆̃H ⊂ V of ∆H so that

(5) w̃(Λ̃− ∆̃H) > 0

for every w ∈ V∗
H .

The lifts w̃ induce lifts w̃m ∈ (Symm V )∗ of each vertex wm of S∗
H . We take the set CH

to be the projectivization of

{v ∈ Symm V : w̃m(v) > 0 for all vertices wm of S∗
H}.
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Every point in ∂S∗
H is the projectivization of a convex combination of the lifts w̃m. This

tells us that CH is a connected subset of P(Symm V )−
⋃

w∈∂(S∗
H)[kerw].

Now let X ⊂ ΛΩ(Γ)−∆H be closed and let Y be the set

ι(X) ∪
⋃

H′∈HX

SH′ .

We wish to show that Y ⊂ CH . Let XH be the set

XH = X ∪
⋃

H′∈HX

∆H′ .

By Lemma 6.17, we can find a compact lift X̃H of XH in V so that w̃(x̃) > 0 for every

x̃ ∈ X̃H and every w ∈ V∗
H . We consider the set

Symm X̃H = {x̃m ∈ Symm V : x̃m =

m∏
i=1

x̃i for x̃i ∈ X̃H}.

This set is the image of the m-fold Cartesian product (X̃H)m under the continuous map
V m → Symm V given by (v1, . . . , vm) 7→ v1 · · · vm, so it is compact. Moreover, since

Symm X̃H contains a lift of every vertex of every SH′ for H ′ ∈ HX , the projectivization of
the convex hull of Symm X̃H contains Y , hence Y .

But from (5), we know that w̃m(x̃m) > 0 for every vertex wm of S∗
H and every x̃m ∈ X̃H,

so we see that CH contains the projectivization of the convex hull of Symm X̃H. □

Proof of Proposition 6.16. Let z1, z2 ∈ ∂(Γ,H) be distinct. If both z1 and z2 are conical
limit points, the proposition follows from the transversality of the EGF boundary extension

ϕ̂ : Λ̂Ω(Γ) → ∂(Γ,H) and the fact that ι̂ preserves transversality. On the other hand, if z1 is
a parabolic point, this follows from Proposition 6.18 (and the equivalent dual statement). □

6.9. Dynamics on SH . We have now defined an equivariant transverse surjective map

ϕ̂m : Λ̂m → ∂(Γ,H), but we do not yet know that the set Λ̂m is compact, or even that ϕ̂m is
continuous. However, it turns out that it is easier to verify these two facts after proving that

ϕ̂m has certain dynamical properties.

Lemma 6.19. For each H ∈ H, there exists an open set ĈH ⊂ F(Symm V ) containing

Λ̂m − ∂ŜH , such that for any infinite sequence hn ∈ H and ξ ∈ ĈH , we have

ρm(hn)ξ → ∂ŜH .

Proof. For each H ∈ H, we let CH ⊂ P(Symm V ) be the set coming from Proposition 6.18.
Let hn be a divergent sequence in some H ∈ H, and let H0 be a finite-index free abelian
subgroup. Corollary 6.14 says that some face F of SH spans an attracting subspace for
ρm(hn). The corresponding repelling subspace is a direct sum of weight spaces for the
restriction ρm|H0 , so it is contained in [kerwm] for a vertex wm of the dual simplex S∗

H .
So, for any x ∈ CH , any subsequence of ρm(hn)x subconverges to a point in [span(F )].
In fact, ρm(hn)x subconverges to a point in F ⊂ ∂SH , since CH is ρm(H)-invariant and
CH ∩ supp(F ) = F .

Then, we can dually define a set C∗
H ⊂ P(Symm V ∗), and take

ĈH = {(x,w) ∈ F(Symm V ) : x ∈ CH , w ∈ C∗
H}.

□
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6.10. Continuity and compactness.

Lemma 6.20. The set Λ̂m is closed.

Proof. Let (xn, wn) be a sequence in Λ̂m, and let zn = ϕ̂m(xn, wn). Up to subsequence, zn
converges to z ∈ ∂(Γ,H).

If z is a conical limit point, let γn be a sequence limiting conically to z, chosen so that for
any z′ ̸= z, we have γ−1

n z′ → b and lim γ−1
n zn = a ̸= b.

Then ϕ̂−1(γ−1
n zn) converges to ϕ̂

−1(a), and thus ϕ̂−1(γ−1
n zn) lies in a fixed compact subset

X of Opp(ϕ̂−1(b)) ∩ Λ̂Ω(Γ). By definition, this means that for every n, ϕ̂−1
m (γ−1

n zn) lies in
the set

ι(X) ∪
⋃

H′∈HX

SH′ ,

Arguing as in Proposition 6.18, we see that this set is compact. So by antipodality of ϕ̂m,

the sets of flags ϕ̂−1
m (γ−1

n zn) lie in a fixed compact subset of Opp(ϕ̂−1
m (b)) = Opp(ι̂(ϕ̂−1(b)))

and by Proposition 6.1,

(xn, wn) ∈ ρm(γn)ϕ̂
−1
m (γ−1

n zn)

converges to ι̂(ϕ̂−1(z)).
If z is a parabolic point, we let H = StabΓ(z), and choose hn ∈ H so that h−1

n zn ∈ K for

a fixed compact K − {z}. By Proposition 6.18, we know that for all n, ϕ̂−1
m (h−1

n zn) lies in a

fixed compact subset of ĈH . Then, Lemma 6.19 implies that

(xn, wn) ∈ ρm(hn)ϕ̂
−1
m (h−1

n zn)

subconverges to a point in ∂ŜH . □

Proposition 6.21. The map ϕ̂m is continuous.

Proof. Let (xn, wn) be a sequence in Λ̂m, converging to (x,w) (which we know lies in Λ̂m by

the previous proposition). Let zn = ϕ̂m(xn, wn), and suppose for a contradiction that up to

subsequence zn → z for z ̸= ϕ̂m(x,w).
Proposition 6.18 then implies that zn lies in a compact subset K ⊂ ∂(Γ,H) so that the

closure of ϕ̂−1
m (K) is opposite to (x,w). This contradicts the fact that (xn, wn) converges to

(x,w). □

At this point, we have shown that ϕ̂m : Λ̂m → ∂(Γ,H) is a continuous equivariant

surjective transverse map, and that Λ̂m is a compact subset of F(Symm V ). So, we can
finish the proof of Theorem 1.7 by showing:

Proposition 6.22. The map ϕ̂m : Λ̂m → ∂(Γ,H) extends the convergence action of Γ on
∂(Γ,H).

Proof. We apply Proposition 2.11. If γn is a sequence limiting conically to z, then the results
of Section 4 imply that the sequences ρ(γ±n ) have unique limit points in F(V ), all lying in

Λ̂Ω(Γ). Since ι̂(Λ̂Ω(Γ)) is a subset of Λ̂m, Proposition 6.1 ensures that the first condition of
Proposition 2.11 holds.

On the other hand, for each parabolic point p, we take Ĉp to be the open set ĈH considered

in Lemma 6.19, for H = StabΓ(p). Lemma 6.19 implies that Ĉp contains Λ̂m − ϕ̂−1
m (p) and

that for any (x,w) ∈ Ĉp and any infinite sequence hn ∈ H, ρm(hn)ξ subconverges to a point

in ∂ŜH . □
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6.11. Stability. We have now shown that the representations ρm are all extended geomet-
rically finite. Our last goal for the section is the following (which implies Theorem 1.8):

Proposition 6.23. The space Hom(Γ,SL(Symm V )) is peripherally stable with respect to

(ρm, ϕ̂m).

The main step in the proof is the following:

Lemma 6.24. Let H0 be a finite-index free abelian subgroup of some H ∈ H, with H =
StabΓ(p). For any open set U ⊂ P(Symm V ) containing SH and any compact K ⊂ Cp, there
exists a cofinite subset T ⊂ H0 and an open set W ⊂ Hom(Γ,SL(Symm V )) containing ρm

such that for any σ ∈ W, we have σ(h)K ⊂ U for any h ∈ T .

Proof. We fix U and K as in the proposition, and proceed by contradiction. So, suppose that
there exists a sequence of distinct group elements hn ∈ H0, a sequence of representations σn :
Γ → SL(Symm V ), and a sequence of points xn ∈ K such that σn → ρm and σn(hn)xn /∈ U .
Up to subsequence we can assume that xn converges to some x ∈ K ⊂ Cp. We let Φm denote
the set of generalized weights of ρm|H0 , and we let Φm

n denote the generalized weights of
σn|H0

.
We choose a norm | · | on H0 ⊗Z R. Then up to subsequence hn/|hn| converges to

h∞ ∈ H0 ⊗Z R with |h∞| = 1.

Since Φm is finite, there is a face F̃ of the k-simplex C(ρm|H0
) and a constant M > 0,

such that for every weight µ ∈ Φm(F ) = Φm ∩ F̃ , and every weight µopp ∈ Φm − Φ(F ), we
have

µ(h∞)− µopp(h∞) > M.

We let V m
F ⊂ Symm V denote the span of the weight spaces of the weights in Φm(F ); by

definition P(V m
F ) is the projective span of a face of SH .

Proposition 6.3 implies that as a set with multiplicity, the weights Φm
n converge to the

weights Φm. So, for each n, there is a subset θn ⊂ Φm
n such that θn converges to Φm ∩

∂C(ρm|H0
), and a subset θn(F ) ⊂ θn such that θn(F ) converges to Φm(F ). Proposition 6.3

also implies that for sufficiently large n, all of the weights in θn must have one-dimensional
generalized weight spaces, converging to the vertices of SH .

This means that for each n, there are simplices Sn
H and (Sn

H)∗, invariant under the action
of σn(H), such that Sn

H → SH and (Sn
H)∗ → S∗

H . So, we can find a sequence of group
elements gn ∈ SL(V ), with gn converging to the identity, so that σ′

n = gnσng
−1
n preserves

the simplices SH and S∗
H . Moreover, the vertices of SH are the weight spaces Vµ of σ′

n for
µ ∈ θn, and the space V m

F is spanned by weight spaces Vµ(F ) of σ
′
n for µ(F ) ∈ θn(F ). We

can also assume that σ′
n preserves the complementary weight space (V m

F )opp for VF .
Now, since θn(F ) converges to Φm(F ), for sufficiently large n we must have

µn(h∞)− µopp
n (h∞) > M

for every µn ∈ θn(F ) and every µopp
n ∈ Φm

n − θn(F ). This also means that for sufficiently
large n we have

µn(hn)− µopp
n (hn) > M |hn|.

Then, letting r+(g) and r−(g) respectively denote the largest and smallest modulus of any
eigenvalue of g, we see that for sufficiently large n,

r−(σ′
n(hn)|V m

F
)

r+(σ′
n(hn)|(V m

F )opp)
> exp(M |hn|).
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We may choose an inner product on Symm V so that V m
F and (V m

F )opp are orthogonal. And,
up to change-of-basis lying in compact subset of SL(V m

F ⊕ (V m
F )opp), the restriction of (the

complexifications of) σ′
n(H0) to V

m
F and (V m

F )opp are both upper-triangular. Then we can
apply Lemma 6.8 to see that the ratio

m(σ′
n(hn)|V m

F
)

||σ′
n(hn)|(V m

F )opp||

tends to infinity as n → ∞. Then by Lemma 6.9, for sufficiently large n, σ′
n(hn)xn lies

in a small neighborhood of P(VF ). Moreover, we know that the set Cp is σ′
n(H)-invariant,

since the simplex S∗
H is σ′

n(H)-invariant. Since x lies in Cp, σ
′
n(hn)x lies in an arbitrarily

small neighborhood of P(VF ) ∩ Cp. By definition this intersection is a face of SH , so for
large enough n, σn(hn)x must lie in an arbitrarily small neighborhood of this face, giving a
contradiction. □

Proof of Proposition 6.23. We want to show that if H = StabΓ(p) for a parabolic point p,

K is a compact subset of Ĉp, U is a neighborhood of ŜH , and T ⊂ H is a cofinite subset
such that

(6) ρm(T ) ·K ⊂ U,

then we can find a neighborhood W of ρm|H in Hom(H,SL(Symm V )) so that for any σ ∈ W ,

(7) σ(T ) ·K ⊂ U.

For simplicity, we will not work in the space of flags F(Symm V ). Instead we will just
show that that if (6) holds for a compact K ⊂ Cp ⊂ P(Symm V ) and an open neighborhood
U of SH in P(Symm V ), then (7) holds also.

Fix a finite-index free abelian subgroup H0 ⊆ H. It suffices to show that we can choose
an open W ⊂ Hom(Γ,SL(Symm V )) so that

σ(T ∩H0) ·K ⊂ U

for all σ ∈ W. It follows immediately from Lemma 6.24 that we can find a cofinite set
T ′ ⊂ H0 and an open set W ⊂ Hom(Γ,SL(Symm V )) so that for all σ ∈ W ′, we have

σ(T ′) ·K ⊂ U.

But then since (T ∩H0)− T ′ is finite, we can just shrink W to get the desired result. □
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