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Abstract. We define a new family of discrete representations of relatively hyperbolic
groups which unifies many existing definitions and examples of geometrically finite

behavior in higher rank. The definition includes the relative Anosov representations
defined by Kapovich-Leeb and Zhu, and Zhu-Zimmer, as well as holonomy representations
of various different types of “geometrically finite” convex projective manifolds. We
prove that these representations are all stable under deformations whose restriction
to the peripheral subgroups satisfies a dynamical condition, in particular allowing for

deformations which do not preserve the conjugacy class of the peripheral subgroups.
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1. Introduction

1.1. Overview. Classically, the best understood discrete subgroups of rank one Lie groups
have been those that are convex cocompact, or equivalently quasi-isometrically embedded.
Only slightly less well-behaved, however, are the geometrically finite subgroups. While
geometrically finite subgroups are not always quasi-isometrically embedded, all of their
distortion is confined to isolated “cuspidal” regions of their orbits. Thus, these subgroups
can still be understood using hyperbolic geometry, by piecing together the behavior of their
peripheral subgroups.

Since the practice of isolating non-hyperbolic behavior has been succesful in rank one, it
is reasonable to try and extend the technique when investigating the still mysterious world of
discrete subgroups of higher-rank Lie groups. The natural generalization of convex cocompact
groups in higher rank is given by Anosov subgroups. Originally defined by Labourie [Lab06]
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and Guichard-Wienhard [GW12], Anosov subgroups are a class of Gromov-hyperbolic discrete
subgroups of semisimple Lie groups, which have many dynamical and geometric properties
in common with convex cocompact groups. They have allowed many tools and ideas from
rank-one geometry to be applied fruitfully in higher rank.

The main goal in this paper is therefore to provide a higher-rank version of geometrical
finiteness by defining a new class of subgroups which have isolated “non-Anosov” behavior.
As in rank one, in this situation we can hope to understand the entire subgroup by stitching
together what happens on the isolated pieces.

Formally, we introduce the theory of extended geometrically finite (or EGF ) representations
as a unifying framework for studying “relativized Anosov” groups. An EGF representation
is always a discrete finite-kernel representation of a relatively hyperbolic group Γ into some
semisimple Lie group G. An important feature of the definition is that it places essentially
no restrictions on the induced representations of the peripheral subgroups of Γ. This strongly
contrasts with previous (less general) notions of relative Anosov representation due to
Kapovich-Leeb [KL23] and Zhu [Zhu21] (see also [ZZ22]). These definitions unavoidably
impose strict requirements on peripherals, and thus cannot capture many interesting examples
of intrinsically higher-rank behavior.

The starting point for our framework is a definition of Anosov representation in terms of
topological dynamics: if Γ is a hyperbolic group, G is a semisimple Lie group, and P ⊂ G
is a symmetric parabolic subgroup, a representation ρ : Γ → G is P -Anosov if there is a
ρ-equivariant embedding ξ : ∂Γ → G/P of the Gromov boundary ∂Γ of Γ satisfying certain
dynamical properties.

Existing notions of relative Anosov representation simply replace ξ with an embedding of
the Bowditch boundary of a relatively hyperbolic group. Our idea is to instead reverse the
direction of the boundary map: we characterize geometrical finiteness via the existence of
an equivariant map from a closed subset of a flag manifold to the Bowditch boundary of a
relatively hyperbolic group, rather than the other way around.

This “backwards” boundary map does not need to be a homeomorphism, which makes our
definition much more flexible. For instance, the relative Anosov subgroups of Kapovich-Leeb
and Zhu can have no subgroup which is isomorphic to a lattice in a higher-rank Lie group—a
limitation which is not shared by EGF representations. The definition also makes EGF
representations better suited for studying the rich world of convex projective structures
on manifolds, which provide a number of examples of discrete subgroups of Lie groups
displaying an intriguing mix of “higher rank” and “rank one” phenomena. In particular,
EGF representations interact well with the theory of convex cocompact projective actions
developed by Danciger-Guéritaud-Kassel [DGK17]; see Section 1.4 below.

Relative stability. Another significant advantage of the flexibility inherent in our definition
is that it allows for a strong stability property (see Theorem 1.4 below), which generalizes
the stability of Anosov representations originally demonstrated by Labourie [Lab06]. It is
not true that an arbitrary (sufficiently small) deformation of an EGF representation is still
EGF; indeed, it is possible to find small deformations of geometrically finite representations
in rank one which are not even discrete. However, we prove that any EGF representation
ρ : Γ → G is relatively stable: any small deformation of ρ in Hom(Γ, G) which satisfies a
condition on the peripheral subgroups is also EGF.

This peripheral condition—which we call peripheral stability—is very general, and can
hold even in the absence of a topological conjugacy between the actions of the original
peripheral subgroups and their deformations. As a result, EGF representations provide a
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unifying framework for understanding the transitions between discrete relatively hyperbolic
groups with qualitatively different cuspidal behavior (see e.g. [Wei23b, Sec. 5]). In particular,
the notion of peripheral stability can even describe transitions between “Anosov” and “non-
Anosov” behavior of cusp groups. This means that our framework can be used to understand
situations where non-Anosov subgroups occur as limits of Anosov subgroups.

In fact, even in the rank-one case (where Anosov subgroups are precisely same as convex
cocompact groups), such transitions are still not completely understood, and in upcoming
work [GW24] we plan to explore applications of the theory of EGF representations in this
setting specifically.

We note also that the main stability theorem for EGF representations can be used to
deduce new results about less dramatic transitions between representations. For instance,
since EGF representations generalize the relative Anosov representations of Kapovich-Leeb
and Zhu, one can apply the theorem to obtain a relative stability result for relative Anosov
representations (see Section 1.5 below for a comparison of this result with independent work
of Zhu-Zimmer). In another direction, see [Wei23b, Section 6] for an application of the
theorem towards an absolute (i.e. non-relative) stability property for a family of discrete
non-hyperbolic groups; these results provide new examples of stably quasi-isometrically
embedded subgroups of Lie groups which are neither Anosov nor rigid.

Relative automata. To prove the general stability theorem, we introduce a general tool: a
relative automaton giving a “relative coding” for points in the Bowditch boundary of an
arbitrary relatively hyperbolic group. The construction is loosely based on Sullivan’s symbolic
coding of points in the limit set of a convex cocompact group in rank one (recently adapted
and generalized by Kapovich-Kim-Lee [KKL19]), as well as an “automatic” description of
Anosov representations due to Bochi-Potrie-Sambarino [BPS19]. We expand on the basic
idea in two different ways simultaneously.

First, rather than coding points in the “limit set” of some discrete faithful representation,
we essentially code fibers in the invariant set Λ surjecting onto the Bowditch boundary of
our relatively hyperbolic group. Second, we provide a way to code parabolic points (or more
accurately, “parabolic fibers”) in a way which is compatible with the coding for generic
points in the Bowditch boundary.

We remark again that even though both of these innovations were originally developed
to better understand the behavior of discrete subgroups of higher-rank Lie groups, they
are also directly useful outside of this context. For example, in [MMW22], [MMW24], we
show how to apply the ideas appearing in this paper towards the theory abstract (relatively)
hyperbolic groups, and in future work [GW24] we will explore applications to geometrically
finite subgroups in rank-one. It seems possible that there are additional applications beyond
even these, for instance towards subgroups of mapping class groups.

1.2. Main definition. In the rest of the introduction we give some more detail regarding
the central definition of this paper and the main results surrounding it.

If Γ is a relatively hyperbolic group, relative to a collection H of peripheral subgroups, then
Γ acts as a convergence group on the Bowditch boundary ∂(Γ,H). We recall the definition
here.

Definition 1.1. Let Γ act on a topological space M . The group Γ is said to act as a
convergence group if for every infinite sequence of distinct elements γn ∈ Γ, there exist points
a, b ∈ M and a subsequence γm ∈ Γ such that γm converges uniformly on compacts in
M − {a} to the constant map b.
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When γn is a sequence of distinct elements in a relatively hyperbolic group Γ, then γn
converges to b uniformly on compacts in ∂(Γ,H)− {a} if and only if γn converges to b in
the compactification Γ = Γ ⊔ ∂(Γ,H) and the inverse sequence γ−1

n converges to a.
Recall that if a group Γ acts by homeomorphisms on a Hausdorff space X, the pair (Γ, X)

is called a topological dynamical system. We say that an extension of (Γ, X) is a topological
dynamical system (Γ, Y ) together with a Γ-equivariant surjective map ϕ : Y → X.

In this paper, when (Γ,H) is a relatively hyperbolic pair (i.e. Γ is hyperbolic relative
to a collection H of peripheral subgroups), we will consider embedded extensions of the
topological dynamical system (Γ, ∂(Γ,H)). We want these embedded extensions to respect
the convergence group action of (Γ, ∂(Γ,H)) in some sense, so we introduce the following
definition:

Definition 1.2. Let (Γ,H) be a relatively hyperbolic pair, with Γ acting on a connected
compact metrizable space M by homeomorphisms. Let Λ ⊂M be a closed Γ-invariant set.

We say that a continuous equivariant surjective map ϕ : Λ → ∂(Γ,H) extends the
convergence action of Γ if for each z ∈ ∂(Γ,H), there exists an open set Cz ⊂M containing
Λ− ϕ−1(z), satisfying the following:

If γn is a sequence in Γ with γ±1
n → z± for z± ∈ ∂(Γ,H), then for any compact set

K ⊂ Cz− and any open set U containing ϕ−1(z+), for sufficiently large n, γn ·K lies in U .

Now let G denote a semisimple Lie group with no compact factor. The central definition
of the paper is the following:

Definition 1.3. Let Γ be a relatively hyperbolic group, let ρ : Γ → G be a representation,
and let P ⊂ G be a symmetric parabolic subgroup. We say that ρ is extended geometrically
finite (EGF) with respect to P if there exists a closed ρ(Γ)-invariant set Λ ⊂ G/P and a
continuous ρ-equivariant surjective antipodal map ϕ : Λ → ∂(Γ,H) extending the convergence
action of Γ.

The map ϕ is called a boundary extension of the representation ρ, and the closed invariant
set Λ is called the boundary set.

We refer to Section 4 for the definition of “antipodal map” in this context.

1.3. Main results. Like (relative) Anosov representations, extended geometrically finite
representations are always discrete with finite kernel (see 4.1). The central result of this
paper says that EGF representations have a relative stability property: if ρ is an EGF
representation, then certain small relative deformations of ρ must also be EGF.

To state the theorem, we define a notion of a peripherally stable subspace of Hom(Γ, G).
The precise definition is given in Section 9, but roughly speaking, a subspace W ⊆ Hom(Γ, G)
is peripherally stable if the large-scale dynamical behavior of the peripheral subgroups of Γ
is in some sense preserved by small deformations inside of W. We emphasize again that the
action of a deformed peripheral subgroup does not need to be even topologically conjugate
to the action of the original peripheral subgroup.

We prove the following:

Theorem 1.4. Let ρ : Γ → G be EGF with respect to P , let ϕ : Λ → ∂(Γ,H) be a boundary
extension, and let W ⊆ Hom(Γ, G) be peripherally stable at (ρ, ϕ). For any compact subset Z
of ∂(Γ,H) and any open set V ⊂ G/P containing ϕ−1(Z), there is an open subset W ′ ⊂ W
containing ρ such that each ρ′ ∈ W ′ is EGF with respect to P , and has an EGF boundary
extension ϕ′ satisfying ϕ′−1(Z) ⊂ V .
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Remark 1.5. When ρ : Γ → G is a P -Anosov representation of a hyperbolic group Γ,
then the associated boundary embedding ∂Γ → G/P also varies continuously with ρ in
the compact-open topology on maps ∂Γ → G/P . Since EGF representations come with
boundary extensions (rather than embeddings), Theorem 1.4 only gives us a semicontinuity
result.

We expect that it is possible to extend the methods of this paper to prove stronger
continuity results when the original EGF representation ρ : Γ → G satisfies additional
assumptions; see the discussion following Corollary 1.12.

While the peripheral stability condition in Theorem 1.4 is mildly technical, we can also
apply it to yield more concrete results.

Definition 1.6. Let (Γ,H) be a relatively hyperbolic pair, and let ρ : Γ → G be a
representation. The space of cusp-preserving representations Homcp(Γ, G,H, ρ) is the set
of representations ρ′ : Γ → G such that for each peripheral subgroup H ∈ H, we have
ρ′|H = g · ρ|H · g−1 for some g ∈ G (which may depend on H).

Corollary 1.7. Let ρ : Γ → G be an EGF representation. Then there is a neighborhood of ρ
in Homcp(Γ, G,H, ρ) consisting of EGF representations.

Corollary 1.7 gives a very restrictive example of a peripherally stable subspace of Hom(Γ, G).
But, in general the peripheral stability condition is flexible enough to allow peripheral
subgroups to deform in nontrivial ways.

In particular, it is possible to find peripherally stable deformations of an EGF representa-
tion ρ : Γ → PGL(d,R) which change the Jordan block decomposition of elements in the
peripheral subgroups. For instance, one can deform an EGF representation in PGL(d,R) with
unipotent peripheral subgroups into an EGF representation with diagonalizable peripheral
subgroups—see Example 9.3.

1.4. Examples. The related paper [Wei23b] is focused on examples of EGF representations.
For illustrative purposes, however, we briefly describe some examples here.

1.4.1. Convex projective structures. A host of examples of Anosov representations arise from
the theory of convex projective structures; see e.g. [Ben04], [Ben06b], [Kap07], [DGK18],
[DGK+21]. In fact, work of Danciger-Guéritaud-Kassel [DGK17] and Zimmer [Zim21] implies
that Anosov representations can be essentially characterized as holonomy representations of
convex cocompact projective orbifolds with hyperbolic fundamental group. However, convex
projective structures also yield a number of interesting examples of discrete non-Anosov
subgroups of PGL(d,R). In many cases, the groups in question are relatively hyperbolic,
and appear to have “geometrically finite” properties.

The theory of EGF representations is well-suited to these examples. For instance, in
[Wei23b], we apply some of our previous work [Wei23a] together with work of Islam-Zimmer
[IZ22] to see that whenever a subgroup Γ ⊂ PGL(d,R) is relatively hyperbolic and projectively
convex cocompact in the sense of [DGK17], then the inclusion Γ ↪→ PGL(d,R) is EGF with
respect to the parabolic subgroup stabilizing a flag of type (1, d − 1) in Rd. If Γ is not
hyperbolic, then these examples are not covered by other definitions of relative Anosov
representations (see [Wei23a, Remark 1.14]); such non-hyperbolic examples have been
constructed in e.g. [Ben06a], [BDL15], [CLM20], [CLM22], [DGK+21], [BV23].

In [CM14], Crampon-Marquis introduced several definitions of “geometrical finiteness” for
strictly convex projective manifolds. Zhu [Zhu21] proved that the manifolds satisfying one of
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their definitions1 have “relative Anosov” holonomy in the sense of [KL23], [Zhu21], [ZZ22] (see
Section 1.5), which means they also have EGF holonomy by Theorem 1.9 below. Examples
can be found by deforming geometrically finite groups in PO(d, 1) into PGL(d+ 1,R) while
keeping the conjugacy classes of cusp groups fixed (see [Bal14], [BM20], [CLT18]), or via
Coxeter reflection groups [CLM22].

There are, however, more general notions of “geometrically finite” convex projective
structures. In [CLT18], Cooper-Long-Tillmann considered the situation of a convex projective
manifold M (with strictly convex boundary) which is a union of a compact piece and finitely
many ends homeomorphic to N × [0,∞), where N is a compact manifold with virtually
nilpotent fundamental group. The ends of such a manifold are called “generalized cusps,”
and the possible “types” of generalized cusps were later classified by Ballas-Cooper-Leitner
[BCL20]. Examples of projective manifolds with generalized cusps have been produced
by Ballas [Bal21], Ballas-Marquis [BM20], and Bobb [Bob19]. In general the holonomy
representations of these manifolds are not “relative Anosov” in the sense of [ZZ22], but in
[Wei23b] we prove that they do provide additional examples of EGF representations. The
proof is an application of Theorem 1.4: it turns out that peripheral stability is actually flexible
enough to allow for deformation between the different Ballas-Cooper-Leitner generalized
cusp types.

Remark 1.8. We do not (yet) have a general result asserting that all strictly convex compact
projective manifolds with generalized cusps have EGF holonomy, but there are indications
that this should be true; see for example [Cho10], [Wol20] and the general setup in [IZ22],
[BV23].

After a version of this paper originally appeared as a preprint, Blayac-Viaggi [BV23] also
produced still more general examples of convex projective n-manifolds which decompose
into a compact piece and several projective “cusps.” In these examples (which can arise
as limits of convex cocompact representations), each cusp is finitely covered by a product
N × S1 × [0,∞), where N is a closed hyperbolic manifold of dimension n− 2. Consequently,
these manifolds do not have “generalized cusps” in the sense of Cooper-Long-Tillmann, and
their fundamental groups cannot even admit relative Anosov representations. Nevertheless,
Blayac-Viaggi showed that the holonomy representations of their examples are always EGF.

1.4.2. Other examples. In [Wei23b], we construct additional examples of EGF representations
by considering compositions of projectively convex cocompact representations ρ : Γ →
PGL(V ) with the symmetric representation τk : PGL(V ) → PGL(Symk V ). We show that,
assuming the peripheral subgroups in Γ are all virtually abelian, then the composition τk ◦ρ is
still EGF; this holds even though the compositions are not believed to be convex cocompact.

We are also able to prove that the entire space Hom(Γ,PGL(Symk V )) is peripherally
stable about τk ◦ ρ. Via Theorem 1.4, this gives a new source of examples of stable discrete
subgroups of higher-rank Lie groups.

1.5. Comparison with relative Anosov representations. Previously, Kapovich-Leeb
[KL23] and Zhu [Zhu21] independently introduced several notions of a relative Anosov
representation. Later work of Zhu-Zimmer [ZZ22] showed that Zhu’s definition (that of a
relatively dominated representation) is equivalent to one of the Kapovich-Leeb definitions
(specifically, the definition of a relatively asymptotically embedded representation). In the
special case where the domain group is isomorphic to a Fuchsian group, these definitions

1Crampon-Marquis originally claimed that all of their definitions of “geometrically finite” were equivalent;

this appears to have been an error.
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also agree with a notion of relative Anosov representation for Fuchsian groups introduced by
Canary-Zhang-Zimmer [CZZ21].

For the rest of this paper we refer to representations satisfying any of these equivalent
definitions as relative Anosov representations. Note that we will never simply say “Anosov
representation” when we mean to refer to a relative Anosov representation (this differs from
the convention in [CZZ21]).

The theorem below says that extended geometrically finite representations are a strict
generalization of relative Anosov representations. Additionally, it provides a precise charac-
terization of when an EGF representation is also relative Anosov.

Theorem 1.9. Let (Γ,H) be a relatively hyperbolic pair, and let P ⊂ G be a symmetric
parabolic subgroup. A representation ρ : Γ → G is relatively P -Anosov if and only if ρ is
EGF with respect to P , and has an injective boundary extension ϕ : Λ → ∂(Γ,H).

We emphasize again that almost all of the EGF examples mentioned in Section 1.4 are
not relative Anosov, so the theorem tells us that in many cases it is actually not possible to
construct an injective boundary extension for a given EGF representation.

Remark 1.10. By Proposition 4.8, any EGF representation has a boundary extension
which is injective on preimages of conical limit points. So, in the case where the peripheral
structure H is trivial (meaning that Γ is a hyperbolic group and ∂(Γ,H) is identified with
the Gromov boundary ∂Γ of Γ), Theorem 1.9 implies that EGF representations are precisely
the same as (non-relative) Anosov representations.

This actually gives a new characterization of Anosov representations, since a priori the
EGF boundary extension ϕ surjecting onto the Gromov boundary of a hyperbolic group does
not need to be a homeomorphism; the theorem tells us that if such a boundary extension
exists, then it is possible to replace ϕ with an injective boundary extension, whose inverse is
the Anosov boundary map.

1.5.1. Stability for relative Anosov representations. In [KL23], Kapovich-Leeb suggested that
a relative stability result should hold for relative Anosov representations, but not did not
give a precise statement. By applying Theorem 1.4, Proposition 4.8, and Theorem 1.9, we
obtain the following stability theorem:

Theorem 1.11. Let (Γ,H) be a relatively hyperbolic pair, let ρ : Γ → G be a relative
P -Anosov representation, and let W ⊂ Hom(Γ, G) be a peripherally stable subspace, such
that for each H ∈ H and each ρ′ ∈ W, the restriction ρ′|H is P -divergent with P -limit set a
singleton. Then an open neighborhood of ρ in W consists of relative P -Anosov representations
of Γ.

If we restrict the allowable peripheral deformations to conjugacies, this result reduces to:

Corollary 1.12. Let (Γ,H) be a relatively hyperbolic pair, and let ρ : Γ → G be a relative
P -Anosov representation. There is an open neighborhood of ρ in Homcp(Γ, G,H, ρ) consisting
of relative P -Anosov representations.

Remark 1.13. In the special case where Γ is isomorphic to a Fuchsian group, Corollary 1.12
follows from previous work of Canary-Zhang-Zimmer [CZZ21]. Corollary 1.12 itself was
also proved independently by Zhu-Zimmer [ZZ22], who showed further that the associated
relative boundary maps vary continuously (in fact, analytically). The methods used in
[CZZ21] and [ZZ22] are considerably different from those in this paper, and they do not
imply Theorem 1.4 or Theorem 1.11 (and they do not apply to most of the examples of
deformations considered in the companion paper [Wei23b]).
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As Zhu-Zimmer observe, it seems unlikely that their techniques can be easily adapted for
the general study of EGF representations, or for the general class of relative deformations
considered in this article. On the other hand, while we expect that the methods in this paper
could be used to generalize the Zhu-Zimmer result regarding continuously varying boundary
embeddings for relative Anosov representations, it does not seem simple to use our approach
to study analytic variation of the boundary maps.

Remark 1.14. After this paper was originally posted, Wang [Wan23b] showed that the
situation of an EGF representation ρ with P -divergent image can be interpreted in terms of
restricted Anosov representations, i.e. representations which are Anosov “along a subflow”
of a certain flow space associated to the representation (see [Wan23a]). Using these ideas,
Wang proves a version of Corollary 1.7 for this special class of EGF representations.

1.6. Further applications, and potential future applications.

1.6.1. Anosov relativization. When Γ is a relatively hyperbolic group, the Bowditch boundary
of Γ (and thus, the definition of an EGF representation) depends on the choice of peripheral
structure H for Γ. In general, there might be more than one possible choice: for instance, if
a group Γ is hyperbolic relative to a collection H of hyperbolic subgroups, then Γ is itself
hyperbolic, relative to an empty collection of peripheral subgroups (see [DS05, Corollary
1.14]).

In this paper, we prove the following Anosov relativization theorem:

Theorem 1.15. Let (Γ,H) be a relatively hyperbolic pair, and suppose that each H ∈ H
is hyperbolic. If ρ : Γ → G is an EGF representation with respect to P for the peripheral
structure H, and ρ restricts to a P -Anosov representation on each H ∈ H, then ρ is a
P -Anosov representation of Γ.

A potential application of Theorem 1.15 is the construction of new examples of Anosov
representations: one could start with an EGF representation ρ : Γ → G which is not
Anosov, and then attempt to find a peripherally stable deformation of ρ which restricts to an
Anosov representation on peripheral subgroups. Theorem 1.4 and Theorem 1.15 would then
imply that the original representation ρ can be realized as a non-Anosov limit of Anosov
representations in the peripherally stable deformation space.

1.6.2. Limits of Anosov representations. In [LLS21], Lee-Lee-Stecker considered the defor-
mation space of Anosov representations ρ : Γp,q,r → SL(3,R), where Γp,q,r is a triangle
reflection group, and showed that certain components of this space have representations in
their boundary which are not Anosov. Interestingly, these limiting representations still have
equivariant injective boundary maps from ∂Γp,q,r into the space of full flags in R3, but they
fail to be Anosov because the boundary maps fail to be transverse.

The limiting representations constructed by Lee-Lee-Stecker cannot be relatively Anosov,
but they do appear to be EGF. Together with the Anosov relativization theorem mentioned
above, this provides evidence that EGF representations could serve as a useful tool in the
study of boundaries of spaces of Anosov representations. In addition, it gives a potential
source of examples of EGF representations which do not directly derive from convex projective
structures.

1.6.3. Deformations in rank one. Even in rank one, the deformation theory of geometri-
cally finite representations is not completely understood. In [Bow98], Bowditch described
circumstances which guarantee that a small deformation of a geometrically finite group
Γ ⊂ PO(d, 1) is still geometrically finite, but his criteria do not have an obvious analog
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in other rank one Lie groups. Moreover, the conditions Bowditch gives are too strict to
allow for deformations which change the homeomorphism type of the limit set Λ(Γ). Such
deformations exist and are often peripherally stable, meaning that the EGF framework could
be used to understand them further. It even seems possible that a version of the theory
could be applied in circumstances where the isomorphism type of Γ is allowed to change.

1.7. Outline of the paper. We begin by providing some background in Sections 2 and 3,
and then give the full formal definition of EGF representations in Section 4. In that section
we also prove Theorem 1.9 (giving the connection between EGF representations and relative
Anosov representations) and Theorem 1.15 (the Anosov relativization theorem). Some of
these proofs assume the results of later sections, but they are not relied upon anywhere else
in the paper.

The rest of the paper is devoted to the proof of our main stablity theorem for EGF
representations (Theorem 1.4). In Section 5 and Section 6, we develop the main technical
tool needed for the proof, which involves using the notion of an extended convergence group
action to construct the relative quasigeodesic automaton alluded to previously. Then, in
Section 7, we prove a key result (Proposition 7.11) regarding a metric on certain open subsets
of flag manifolds G/P , which we use to relate the results of the previous sections to relatively
hyperbolic group actions on G/P . Then, we use all of these tools to develop an alternative
characterization of EGF representations in Section 8, and finally prove our main theorem in
Section 9.

1.8. Acknowledgements. The author thanks his PhD advisor, Jeff Danciger, for encour-
agement and many helpful conversations—without which this paper could not have been
written. The author also thanks Katie Mann and Jason Manning for assistance simplifying
some of the arguments in Sections 5 and 6. Further thanks are owed to Daniel Allcock, Dick
Canary, Fanny Kassel, Max Riestenberg, Anna Wienhard, Feng Zhu, and Andy Zimmer for
providing feedback on various versions of this project.

This work was supported in part by NSF grants DMS-1937215 and DMS-2202770.

2. Relative hyperbolicity

In this section we discuss some of the basic theory of relatively hyperbolic groups, mostly
to establish the notation and conventions we will use throughout the paper. We refer to
[BH99], [Bow12], [DS05] for background on hyperbolic groups and relatively hyperbolic
groups. See also section 3 of [KL23] for an overview (which we follow in part here).

Notation 2.1. Throughout this paper, if X is a metric space, A is a subset of X, and r ≥ 0,
we let NX(A, r) denote the open r-neighborhood in X about A. For a point x ∈ X, we let
BX(x, r) denote the open r-ball about x.

When the metric space X is implied from context, we will often just write N(A, r) or
B(x, r).

2.1. Geometrically finite actions. Recall that a finitely generated group Γ is hyperbolic
(or word-hyperbolic or δ-hyperbolic or Gromov-hyperbolic) if and only if it acts properly
discontinuously and cocompactly on a δ-hyperbolic proper geodesic metric space Y .

A relatively hyperbolic group is also a group with an action by isometries on a δ-hyperbolic
proper geodesic metric space Y , but instead of asking for the action to cocompact, we ask
for the action to be in some sense “geometrically finite.”



10 THEODORE WEISMAN

To be precise, this means that Y has a Γ-invariant decomposition into a thick part Yth
and a countable collection B of horoballs. For a horoball B, we let ctr(B) denote the center
of B in ∂Y , and we let Γp denote the stabilizer of any p ∈ ∂Y .

Definition 2.2. Let Γ be a finitely generated group acting on a hyperbolic metric space Y ,
and let B be a countable collection of horoballs in Y , invariant under the action of Γ on Y .
If:

(1) The action of Γ on the closure of Yth = Y −
⋃

B∈B B is cocompact, and
(2) for each B ∈ B, the stabilizer of ctr(B) in Γ is infinite,

then we say that Γ is a relatively hyperbolic group, relative to the collection H = {StabΓ(p) :
p = ctr(B) for B ∈ B}.

Definition 2.3. Let Γ be a relatively hyperbolic group, relative to a collection of subgroups
H.

• The centers of the horoballs in B are called parabolic points for the Γ-action on ∂Y .
The set of parabolic points in ∂Y is denoted ∂parY .

• The parabolic point stablizers H = {StabΓ(p) : p ∈ ∂parY } are called peripheral
subgroups. We often write Γp for StabΓ(p).

A group Γ might be hyperbolic relative to different collections H, H′ of peripheral
subgroups. The collection H of peripheral subgroups is sometimes called a peripheral
structure for Γ.

Definition 2.4. Let Γ be a finitely generated group, and let H be a collection of subgroups.
We say that (Γ,H) is a relatively hyperbolic pair if Γ is hyperbolic relative to H.

2.2. The Bowditch boundary.

Definition 2.5. Let (Γ,H) be a relatively hyperbolic pair, so that H is the set of stabilizers
of parabolic points for an action of Γ on a metric space Y as in Definition 2.2. We say that
Y is a Gromov model for the pair (Γ,H).

In general there is not a unique choice of Gromov model for a given relatively hyperbolic
pair (Γ,H), even up to quasi-isometry. There are various “canonical” constructions for a
preferred quasi-isometry class of Gromov model, with certain desirable metric properties
(see e.g. [Bow12], [GM08]).

Given any two Gromov models Y , Y ′ for (Γ,H), there is always a Γ-equivariant home-
omorphism ∂Y → ∂Y ′ [Bow12]. The Γ-space ∂Y is the Bowditch boundary of (Γ,H). We
will denote it by ∂(Γ,H), or sometimes just ∂Γ when the collection of peripheral subgroups
is understood from context. Since a Gromov model Y is a proper hyperbolic metric space,
∂(Γ,H) is always compact and metrizable.

Definition 2.6. We say a relatively hyperbolic pair (Γ,H) is elementary if Γ is finite or
virtually cyclic, or if H = {Γ}.

Whenever (Γ,H) is nonelementary, its Bowditch boundary contains at least three points.
The convergence properties of the action of Γ on ∂(Γ,H) (see below) imply that in this case,
∂(Γ,H) is perfect (i.e. contains no isolated points).

2.2.1. Cocompactness on pairs. Let Y be a Gromov model for a relatively hyperbolic pair
(Γ,H). Since Y is hyperbolic, proper, and geodesic, for any compact subset K ⊂ Y , the
space of bi-infinite geodesics passing through K is compact.
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Given any distinct pair of points u, v ∈ ∂Y , there is a bi-infinite geodesic c in Y joining u
to v. Since a horoball in a hyperbolic metric space has just one point in its ideal boundary,
this geodesic must pass through the thick part Yth of Y , so up to the action of Γ it passes
through a fixed compact subset K ⊂ Yth.

This implies:

Proposition 2.7. The action of Γ on the space of distinct pairs in ∂(Γ,H) is cocompact.

2.3. Convergence group actions. If a group Γ acts on a proper geodesic hyperbolic metric
space Y , we can characterize the geometrical finiteness of the action entirely in terms of the
topological dynamics of the action on ∂Y . In particular, we can understand geometrical
finiteness by studying properties of convergence group actions. See [Tuk94], [Tuk98], [Bow99]
for further detail on such actions, and justifications for the results stated in this section.

Definition 2.8. Let Γ act as a convergence group (see Definition 1.1) on a topological space
Z.

(1) A point z ∈ Z is a conical limit point if there exists a sequence γn ∈ Γ and distinct
points a, b ∈ Z such that γnz → a and γny → b for any y ̸= z.

(2) An infinite subgroup H is a parabolic subgroup if it fixes a point p ∈ Z, and every
infinite-order element of H fixes exactly one point in Z.

(3) A point p ∈ Z is a parabolic point if it is the fixed point of a parabolic subgroup.
(4) A parabolic point p is bounded if its stabilizer Γp acts cocompactly on Z − {p}.

The name “conical limit point” makes more sense in the context of convergence group
actions on boundaries of hyperbolic metric spaces.

Definition 2.9. Let Y be a hyperbolic metric space, and let z ∈ ∂Y . We say that a sequence
yn ∈ Y limits conically to z if there is a geodesic ray c : R+ → Y limiting to z and a constant
D > 0 such that

dY (yn, c(tn)) < D

for some sequence tn → ∞.

A bounded neighborhood of a geodesic in a hyperbolic metric space looks like a “cone,”
hence “conical limit.”

Proposition 2.10 ([Tuk94], [Tuk98]). Let Γ be a group acting properly discontinuously by
isometries on a proper geodesic hyperbolic metric space Y , and fix a basepoint y0 ∈ Y .

Then Γ acts on ∂Y as a convergence group. Moreover, a point z ∈ ∂Y is a conical limit
point (in the dynamical sense of Definition 2.8) if and only if there is a sequence γn · y0
limiting conically to z (in the geometric sense of Definition 2.9). In this case, there are
distinct points a, b ∈ ∂Y such that γ−1

n · z → a and γ−1
n z′ → b for any z′ ̸= z in ∂Y .

If γn · y0 limits conically to a point z ∈ ∂Y for some (hence any) basepoint y0 ∈ Y , we
just say that γn limits conically to z.

Theorem 2.11 ([Bow12]). Let Γ be a finitely generated group acting by isometries on
a hyperbolic metric space Y . Then Γ is a relatively hyperbolic group, acting on Y as in
Definition 2.2, if and only if:

(1) The induced action of Γ on ∂Y is a convergence group action.
(2) Every point z ∈ ∂Y is either a conical limit point or a bounded parabolic point.

Whenever a group Γ acts as a convergence group on a perfect compact metrizable space Z,
every point in Z is either a conical limit point or a bounded parabolic point, and the stabilizer
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of each parabolic point is finitely generated, we say the Γ-action on Z is geometrically finite.
This is justified by a theorem of Yaman [Yam04], which says that any such group action is
induced by the action of a relatively hyperbolic group on a Gromov model Y whose boundary
is equivariantly homeomorphic to Z. We can then identify the space Z with the Bowditch
boundary ∂(Γ,H). The set of parabolic points in Z coincides exactly with the set of fixed
points of peripheral subgroups.

Definition 2.12. Let (Γ,H) be a relatively hyperbolic pair. We write

∂(Γ,H) = ∂con(Γ,H) ⊔ ∂par(Γ,H),

where ∂con(Γ,H) and ∂par(Γ,H) are respectively the conical limit points and parabolic points
in ∂(Γ,H).

2.3.1. Compactification of Γ and divergent sequences. When (Γ,H) is a relatively hyperbolic
pair, there is a natural topology on the set

Γ = Γ ⊔ ∂(Γ,H)

making it into a compactification of Γ (i.e. Γ is compact, ∂(Γ,H) and Γ are both embedded
in Γ, and Γ is an open dense subset of Γ). Specifically, we view Γ as a subset of (any) Gromov
model Y , via an orbit map γ 7→ γ · y0 for some basepoint y0 ∈ Y . Since Γ acts properly
on Y , this is a proper embedding, so if we compactify Y by adjoining its visual boundary
∂(Γ,H), we compactify Γ as well; this does not depend on the choice of basepoint y0 or even
the choice of space Y .

Definition 2.13. A sequence γn ∈ Γ is divergent if it leaves every bounded subset of Γ
(equivalently, if a subsequence of it consists of pairwise distinct elements).

Up to subsequence, a divergent sequence γn ∈ Γ converges to a point z ∈ ∂(Γ,H). When
(Γ,H) is non-elementary, the point z is determined solely by the action of Γ on ∂(Γ,H): we
have γn → z if and only if γn · x→ z for all but a single x ∈ ∂(Γ,H).

2.4. The coned-off Cayley graph. Whenever (Γ,H) is a relatively hyperbolic pair, there
are only finitely many conjugacy classes of groups in H. We can fix a finite set P of conjugacy
representatives for the groups in H. The set P corresponds to a finite set Π ⊂ ∂parΓ of
parabolic points, such that

P = {Γp : p ∈ Π}.

Then Π contains exactly one point in each Γ-orbit in ∂parΓ.

Definition 2.14. Let (Γ,H) be a relatively hyperbolic pair, and fix a finite generating set
S for Γ and finite collection of conjugacy representatives P for H.

The coned-off Cayley graph Cay(Γ, S,P) is a metric space obtained from the Cayley graph
Cay(Γ, S) as follows: for each coset gPi for Pi ∈ P, we add a vertex v(gPi). Then, we add
an edge of length 1 from each h ∈ gPi to v(gPi).

The quasi-isometry class of Cay(Γ, S,P) is independent of the choice of generating set
S. When (Γ,H) is a relatively hyperbolic pair, Cay(Γ, S,P) is a hyperbolic metric space. It
is not a proper metric space if H is nonempty. The Gromov boundary of Cay(Γ, S,P) is
equivariantly homeomorphic to the set ∂conΓ of conical limit points in ∂(Γ,H).
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3. Lie theory notation and background

For the rest of the paper, we let G be a connected semisimple Lie group with no compact
factor and finite center. We will be concerned with representations ρ : Γ → G, where Γ is a
relatively hyperbolic group. We want to consider the action of ρ(Γ) on the flag manifold
G/P , where P is a parabolic subgroup of G.

In this section, we give an overview of the definitions and notation we will use to describe
the dynamical behavior of the Γ-action on G/P . We mostly follow the notation of [GGKW17],
but we will also identify the connection to the language of [KLP17].

The exposition here is fairly brief, since most of this paper does not use much of the
technical theory of semisimple Lie groups and their associated Riemannian symmetric spaces.
In fact, in nearly every case, our approach will be to use a representation of G to reduce to
the case G = PGL(n,R). The most important part of this section is 3.5, which identifies the
connection between P -divergence (or equivalently τmod-regularity) and contracting dynamics
in G.

Standard references for the general theory are [Ebe96], [Hel01], and [Kna02]. See also
section 3 of [Rie21] for a careful discussion of the theory as it relates to Anosov representations
and the work of Kapovich-Leeb-Porti.

3.1. Parabolic subgroups. Let K be a maximal compact subgroup of the semisimple Lie
group G, and let X be the Riemannian symmetric space G/K. A subgroup P ⊂ G is a
parabolic subgroup if it is the stabilizer of a point in the visual boundary ∂∞X of X. Two
parabolic subgroups P,Q are opposite if there is a bi-infinite geodesic c in X so that P is
the stabilizer of c(∞) and Q is the stabilizer of c(−∞).

The compact homogeneous G-space G/P is called a flag manifold. If P and Q are parabolic
subgroups, then we say that two flags ξ+ ∈ G/P and ξ− ∈ G/Q are opposite if the stabilizers
of ξ+, ξ− are opposite parabolic subgroups. (In particular a conjugate of Q must be opposite
to P ).

3.2. Root space decomposition. Let g be the Lie algebra of G, and let k be the Lie
algebra of the maximal compact K. We can decompose g as k⊕ p, and fix a maximal abelian
subalgebra a ⊂ p. The restriction of the Killing form B to p is positive definite, so any
maximal abelian a ⊂ p is naturally endowed with a Euclidean structure.

Each element of the abelian subalgebra a acts semisimply on g, with real eigenvalues.
So we let Σ ⊂ a∗ denote the set of roots for this choice of a, i.e. the set of nonzero linear
functionals α ∈ a∗ such that the linear map g → g given by X − α(X)I has nonzero kernel
for every X ∈ a. We have a restricted root space decomposition

g = g0 ⊕
⊕
α∈Σ

gα,

where X ∈ a acts on gα by multiplication by α(X).
We choose a set of simple roots ∆ ⊂ Σ so that each α ∈ Σ can be uniquely written as a

linear combination of elements of ∆ with coefficients either all nonnegative or all nonpositive.
We let Σ+ denote the positive roots, i.e. roots which are nonnegative linear combinations of
elements of ∆.

The simple roots ∆ determine a Euclidean Weyl chamber

a+ = {x ∈ a : α(x) ≥ 0, for all α ∈ ∆}.

The kernels of the roots α ∈ ∆ are the walls of the Euclidean Weyl chamber.



14 THEODORE WEISMAN

Choosing a maximal compact K, a maximal abelian a ⊂ p, and a Euclidean Weyl chamber
a+ determines a Cartan projection

µ : G→ a+,

uniquely determined by the equation g = k exp(µ(g))k′, where k, k′ ∈ K and µ(g) ∈ a+.

3.3. P -divergence. Fix a subset θ of the simple roots ∆. We define a standard parabolic
subgroup P+

θ to be the normalizer of the Lie algebra⊕
α∈Σ+

θ

gα,

where Σ+
θ is the set of positive roots which are not in the span of ∆ − θ. The opposite

subgroup P− is the normalizer of ⊕
α∈Σ+

θ

g−α.

Every parabolic subgroup P ⊂ G is conjugate to a unique standard parabolic subgroup
P+
θ , and every pair of opposite parabolics (P+, P−) is simultaneously conjugate to a unique

pair (P+
θ , P

−
θ ).

For a fixed θ ⊂ ∆, the group P+
θ is the stabilizer of the endpoint of a geodesic ray

exp(tZ) ·p, where p ∈ X is the image of the identity in G/K, and for any α ∈ ∆, the element
Z ∈ a+ satisfies

α(Z) = 0 ⇐⇒ α ∈ ∆− θ.

Definition 3.1. Let gn be a sequence in G. The sequence gn is P+
θ -divergent if for every

α ∈ θ, we have
α(µ(gn)) → ∞.

That is, the Cartan projections of the sequence gn drift away from the walls of a determined
by the subset θ ⊂ ∆.

For a general parabolic subgroup P ⊂ G, we say that gn is P -divergent if gn is P+
θ -divergent

for P+
θ conjugate to P .

3.4. Affine charts.

Definition 3.2. Let P+, P− be opposite parabolic subgroups in G. Given a flag ξ ∈ G/P−,
we define

Opp(ξ) = {η ∈ G/P+ : ξ is opposite to η}.
We call a set of the form Opp(ξ) for some ξ ∈ G/P− an affine chart in G/P+.

An affine chart is the unique open dense orbit of StabG(ξ) in G/P
+. When G = PGL(d,R)

and P+ is the stabilizer of a line ℓ ⊂ Rd, G/P+ is identified with P(Rd) and this notion of
affine chart agrees with the usual one in P(Rd).

3.5. Dynamics in flag manifolds. There is a close connection between P -divergence in
the group G and the topological dynamics of the action of G on the associated flag manifold
G/P . Kapovich-Leeb-Porti frame this connection in terms of a contraction property for
P -divergent sequences.

Definition 3.3 ([KLP17], Definition 4.1). Let gn be a sequence of group elements in G. We
say that gn is P+-contracting if there exist ξ ∈ G/P+, ξ− ∈ G/P− such that gn converges
uniformly to ξ on compact subsets of Opp(ξ−).

The flag ξ is the uniquely determined limit of the sequence gn.
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Definition 3.4. For an arbitrary sequence gn ∈ G, a P+-limit point of gn in G/P+ is the
limit point of some P+-contracting subsequence of gn.

The P+-limit set of a group Γ ⊂ G is the set of P+-limit points of sequences in Γ.

The importance of contracting sequences is captured by the following:

Proposition 3.5 ([KLP17], Proposition 4.15). A sequence gn ∈ G is P+-divergent if and
only if every subsequence of gn has a P+-contracting subsequence.

Proposition 3.5 implies in particular that if gn ∈ G is P+-divergent, then up to subsequence
there is an open subset U ⊂ G/P+ such that gn · U converges to a singleton in G/P+. It
turns out that this “weak contraction property” is enough to characterize P+-divergence.

Proposition 3.6. Let gn be a sequence in G, and suppose that for some nonempty open
subset U ⊂ G/P+, we have gn · U → {ξ} for ξ ∈ G/P+. Then gn is P+-divergent, and has
a unique P+-limit point ξ ∈ G/P+.

We provide a proof of this fact in Appendix A.

3.5.1. Dynamics of inverses of P+-divergent sequences. When gn is a P+-divergent sequence,
the inverse sequence is P−-divergent. Kapovich-Leeb-Porti show that this can be framed in
terms of the dynamical behavior of the inverse sequence.

Lemma 3.7 ([KLP17], Lemma 4.19). For gn ∈ G and flags ξ− ∈ G/P−, ξ+ ∈ G/P+, the
following are equivalent:

(1) gn is P+-contracting and gn|Opp(ξ−) → ξ+ uniformly on compacts.

(2) gn is P+-divergent, gn has unique P+-limit point ξ+, and g
−1
n has unique P−-limit

point ξ−.

3.6. τmod-regularity. P -divergent sequences are equivalent to the τmod-regular sequences
discussed in the work of Kapovich-Leeb-Porti, where τmod is the unique face corresponding
to P in a spherical model Weyl chamber. We explain the connection here.

Remark 3.8. The language of τmod-regularity is not used anywhere else in this paper, so
this part of the background is provided for convenience only and may be safely skipped.

For any point p ∈ X, we let p be the uniquely determined subspace of g such that g = k⊕p,
where k is the Lie algebra of the stabilizer of p in G.

Let z ∈ ∂∞X. There is a point p ∈ X, a maximal abelian subalgebra a ⊂ p, a Euclidean
Weyl chamber a+ ⊂ a, and a unit-length Z ∈ a+ such that z is the endpoint of the geodesic
ray c(t) = exp(tZ) · p.

Up to the action of the stabilizer of z, the point p, the maximal abelian subalgebra a,
the Euclidean Weyl chamber a+, and the unit vector Z ∈ a+ are uniquely determined. In
addition, the stabilizer in G of the triple (p, a, a+) acts trivially on a+.

This means that we can identify the space ∂∞X/G with the set of unit vectors in any
Euclidean Weyl chamber a+. This set has the structure of a spherical simplex. We let σmod

denote the model spherical Weyl chamber ∂∞X/G.
We let π : ∂∞X → σmod be the type map to the model spherical Weyl chamber. For fixed

z ∈ ∂∞X, we let Pz denote the parabolic subgroup stabilizing z.
After choosing a maximal compact K, a maximal abelian a ⊂ p, and a Euclidean Weyl

chamber a+, the data of a face τmod of the spherical simplex σmod is the same as the data
of a subset of the simple roots of G: the set of roots identifies a collection of walls of the
Euclidean Weyl chamber a+. The intersection of those walls with the unit sphere in a is
uniquely identified with a face of σmod.
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Definition 3.9. Let τmod be a face of the model spherical Weyl chamber σmod. We say
that a sequence gn ∈ G is τmod-regular if gn is Pz-divergent for some z ∈ ∂∞X such that
π(z) ∈ τmod.

For a fixed model face τmod ⊂ σmod, we let Pτmod
denote any parabolic subgroup which is

the stabilizer of a point z ∈ π−1(τmod). All such parabolic subgroups are conjugate, so as a
G-space the flag manifold G/Pτmod

depends only on the model face τmod.

4. EGF representations and relative Anosov representations

In this section we cover basic properties of the central objects of this paper: extended
geometrically finite representations from a relatively hyperbolic group Γ to a semisimple Lie
group G with no compact factor and trivial center. We also show that they generalize a defi-
nition of relative Anosov representation (Theorem 1.9), and prove our Anosov relativization
theorem (Theorem 1.15).

We refer also to Section 2 of the related paper [Wei23b] for an overview of the definition
in the special case where G = PGL(d,R) or SL(d,R) and the parabolic subgroup P is the
stabilizer of a flag of type (1, d− 1) in Rd.

Definition 4.1. Let P be a parabolic subgroup of G. We say that P is symmetric if P = P+

is conjugate to a subgroup P− opposite to P .
When P = P+ is symmetric, we can identify G/P+ with G/P−, so that it makes sense

to say that two flags ξ1, ξ2 ∈ G/P are opposite.

Definition 4.2. Let P be symmetric, and let A,B be two subsets of G/P . We say that A
and B are opposite if every ξ ∈ A is opposite to every ν ∈ B.

Definition 4.3. Let (Γ,H) be a relatively hyperbolic pair, and let Λ ⊂ G/P for a symmetric
parabolic P . We say that a continuous surjective map ϕ : Λ → ∂(Γ,H) is antipodal if for
every pair of distinct points z1, z2 ∈ ∂(Γ,H), ϕ−1(z1) is opposite to ϕ−1(z2).

We recall the main definition of the paper here:

Definition 1.3. Let Γ be a relatively hyperbolic group, let ρ : Γ → G be a representation,
and let P ⊂ G be a symmetric parabolic subgroup. We say that ρ is extended geometrically
finite (EGF) with respect to P if there exists a closed ρ(Γ)-invariant set Λ ⊂ G/P and a
continuous ρ-equivariant surjective antipodal map ϕ : Λ → ∂(Γ,H) extending the convergence
action of Γ.

The map ϕ is called a boundary extension of the representation ρ, and the closed invariant
set Λ is called the boundary set.

Remark 4.4. Unfortunately, the boundary set Λ ⊂ G/P is not necessarily uniquely
determined by the representation ρ. In many contexts, we will be able to make a natural
choice, but we do not give a procedure for doing so in general.

4.1. Discreteness and finite kernel. When ρ : Γ → G is EGF, the action of ρ(Γ)
on the boundary set Λ is by definition an extension of the topological dynamical system
(Γ, ∂(Γ,H)). When Γ is non-elementary, convergence dynamics imply that the homomorphism
Γ → Homeo(∂(Γ,H)) has finite kernel and discrete image. So the map Γ → Homeo(Λ) must
also have discrete image and finite kernel, and therefore so does the representation ρ : Γ → G.
The case where Γ is elementary can be verified directly.
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4.2. Shrinking the sets Cz. Let ρ : Γ → G be an EGF representation with boundary map
ϕ : Λ → ∂(Γ,H). By assumption, we know there exists an open subset Cz ⊂ G/P for each
z ∈ ∂(Γ,H), satisfying the extended convergence dynamics conditions (Definition 1.2). In
general, there is not a canonical choice for the set Cz. We are able to make some assumptions
about the properties of the Cz, however.

Proposition 4.5. Let ρ : Γ → G be an EGF representation with boundary extension ϕ. For
any z ∈ ∂(Γ,H), we can choose the set Cz to be a subset of

Opp(ϕ−1(z)) := {ξ ∈ G/P : ξ is opposite to ν for every ν ∈ ϕ−1(z)}.

Proof. Since ϕ−1(z) is closed, Opp(ϕ−1(z)) is an open subset of G/P . And, transversality
of ϕ implies that Opp(ϕ−1(z)) contains Λ− ϕ−1(z). So the intersection Cz ∩Opp(ϕ−1(z)) is
open and nonempty, meaning we can replace Cz with this intersection. □

4.3. An equivalent characterization of EGF representations. It is often possible to
prove properties of relatively hyperbolic groups by first showing that the property holds
for conical subsequences in the group, and then showing that the property holds inside of
peripheral subgroups. There is a characterization of the EGF property along these lines,
which is frequently useful for constructing examples of EGF representations (see [Wei23b]).

Proposition 4.6. Let ρ : Γ → G be a representation of a relatively hyperbolic group, and let
Λ ⊂ G/P be a closed ρ(Γ)-invariant set, where P ⊂ G is a symmetric parabolic subgroup.
Suppose that ϕ : Λ → ∂(Γ,H) is a continuous surjective ρ-equivariant antipodal map.

Then ρ is an EGF representation with EGF boundary extension ϕ if and only if both of
the following conditions hold:

(a) For any sequence γn ∈ Γ limiting conically to some point in ∂(Γ,H), ρ(γ±1
n ) is P -

divergent and every P -limit point of ρ(γ±1
n ) lies in Λ.

(b) For every parabolic point p ∈ ∂par(Γ,H), there exists an open set Cp ⊂ G/P , with
Λ − ϕ−1(p) ⊂ Cp, such that for any compact K ⊂ Cp and any open set U containing
ϕ−1(p), for all but finitely many γ ∈ Γp, we have ρ(γ) ·K ⊂ U .

The proof of Proposition 4.6 requires the technical machinery of relative quasigeodesic
automata, so we defer it to Section 8. At the end of Section 8, we also provide another
(weaker) characterization of EGF representations which may be of interest.

4.4. Properties of Λ.

Proposition 4.7. Let (Γ,H) be a relatively hyperbolic pair, and let ρ : Γ → G be a
representation which is EGF with respect to a symmetric parabolic P , with boundary extension
ϕ : Λ → ∂(Γ,H). Then Λ contains the P -limit set of ρ(Γ).

Proof. Let ξ ∈ G/P be a flag in the P -limit set of ρ(Γ). Then there is a P -contracting
sequence ρ(γn) for γn ∈ Γ and a flag ξ− ∈ G/P such that ρ(γn)η converges to ξ for any η in
Opp(ξ−). Up to subsequence γ±1

n converges to z± ∈ ∂(Γ,H), so for any flag η ∈ Cz− , the
sequence ρ(γn)η subconverges to a point in ϕ−1(z+). But since Opp(ξ−) is open and dense,
for some η ∈ Cz− we have ρ(γn)η → ξ and hence ξ ∈ ϕ−1(z+). □

In particular, Proposition 4.7 implies that the EGF boundary set Λ ⊂ G/P of an EGF
representation ρ : Γ → G must always contain the P -proximal limit set of ρ(Γ). (Recall
that g ∈ G is P -proximal if it has a unique attracting fixed point in G/P ; the P -proximal
limit set of a subgroup of G is the closure of the set of attracting fixed points of P -proximal
elements).
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We will see that most of the power of EGF representations lies in the fact that their
associated boundary extensions ϕ : Λ → ∂(Γ,H) do not have to be homeomorphisms (so the
Bowditch boundary of Γ does not need to be equivariantly embedded in any flag manifold).
However, it turns out that it is always possible to choose the boundary extension ϕ so that
it has a well-defined inverse on conical limit points in ∂(Γ,H). In fact, we can even get a
somewhat precise description of all the fibers of ϕ. Concretely, we have the following:

Proposition 4.8. Let ρ : Γ → G be an EGF representation, with boundary extension
ϕ : Λ → ∂(Γ,H). There is a ρ(Γ)-invariant closed subset Λ′ ⊂ G/P and a ρ-equivariant map
ϕ′ : Λ′ → ∂(Γ,H) such that:

(1) ϕ′ : Λ′ → ∂(Γ,H) is also a boundary extension for ρ,
(2) for every z ∈ ∂con(Γ,H), ϕ′−1(z) is a singleton, and
(3) for every p ∈ ∂par(Γ,H), ϕ′−1(p) is the closure of the set of all accumulation points

of orbits γn · x for γn a sequence of distinct elements in Γp and x ∈ Cp.

We will prove Proposition 4.8 at the end of Section 9, where it will follow as a consequence
of the proof of the relative stability theorem for EGF representations (Theorem 1.4)—see
Remark 9.18.

We will rely on both Proposition 4.6 and Proposition 4.8 to prove the rest of the results
in this section (which are not needed anywhere else in this paper).

4.5. Relatively Anosov representations. EGF representations give a strict generalization
of the relative Anosov representations mentioned in the introduction. We give a precise
definition here.

Definition 4.9 ([KL23, Definition 7.1] or [ZZ22, Definition 1.1]; see also [ZZ22, Proposition
4.4]). Let Γ be a subgroup of G and suppose (Γ,H) is a relatively hyperbolic pair. Let
P ⊂ G be a symmetric parabolic subgroup.

The subgroup Γ is relatively P -Anosov if it is P -divergent, and there is a Γ-equivariant
antipodal embedding ∂(Γ,H) → G/P whose image Λ is the P -limit set of Γ.

Here, we say an embedding ψ : ∂(Γ,H) → G/P is antipodal if for every distinct ξ1, ξ2 in
∂(Γ,H), ψ(ξ1) and ψ(ξ2) are opposite flags.

Remark 4.10. Several remarks on the definition are in order:

(a) In [KL23], Kapovich-Leeb provide several possible ways to relativize the definition of an
Anosov representation; Definition 4.9 agrees with essentially their most general definition,
that of a relatively asymptotically embedded representation.

(b) When Γ is a hyperbolic group (and the collection of peripheral subgroups H is empty),
then the Bowditch boundary ∂(Γ,H) is identified with the Gromov boundary ∂Γ. In
this case, Definition 4.9 coincides with the usual definition of an Anosov representation.

(c) In general, it is possible to define (relatively) P -Anosov representations for a non-
symmetric parabolic subgroup P . However, there is no loss of generality in assuming that
P is symmetric: a representation ρ : Γ → G is P -Anosov if and only if it is P ′-Anosov
for a symmetric parabolic subgroup P ′ ⊂ G depending only on P .

Proposition 4.11. Let ρ : Γ → G be an EGF representation with respect to P , and suppose
that the boundary extension ϕ : Λ → ∂(Γ,H) is a homeomorphism. Then:

(1) ρ(Γ) is P -divergent, and Λ is the P -limit set of ρ(Γ).
(2) The sets Cz for z ∈ ∂(Γ,H) can be taken to be

Opp(ϕ−1(z)) = {ν ∈ G/P : ν is opposite to ϕ−1(z)}.
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Proof. (1). Let γn be any infinite sequence of elements in Γ. After extracting a subsequence,
we have γ±1

n → z±, and since ϕ is a homeomorphism, ρ(γn) converges to the point ϕ−1(z+)
uniformly on compacts in the open set Cz− . Then Proposition 3.6 implies that ρ(γn) is
P -divergent, with unique P -limit point ϕ−1(z+) ∈ Λ.

(2). The fact that ϕ is antipodal is exactly the statement that the sets Opp(ϕ−1(z)) contain
Λ− ϕ−1(z) for every z ∈ ∂(Γ,H), so we just need to see that the appropriate dynamics hold
for these sets. Let γn be an infinite sequence in Γ with γ±1

n → z± for z± ∈ ∂(Γ,H).
We know that for open subsets U± ⊂ G/P , we have ρ(γn)·U+ → ϕ−1(z+) and ρ(γ

−1
n )U− →

ϕ−1(z−), uniformly on compacts. Proposition 3.6 implies that ρ(γn) and ρ(γ
−1
n ) are both

P -divergent with unique P -limit points ϕ−1(z+), ϕ
−1(z−). So in fact by Lemma 3.7 ρ(γn)

converges to ϕ−1(z+) uniformly on compacts in Opp(ϕ−1(z−)). □

Using the previous proposition, we can see the relationship between relatively Anosov
representations and EGF representations (Theorem 1.9). We restate this theorem as the
following:

Proposition 4.12. Let (Γ,H) be a relatively hyperbolic pair, and let P ⊂ G be a symmetric
parabolic subgroup. A representation ρ : Γ → G is relatively P -Anosov in the sense of
Definition 4.9 if and only if ρ is EGF with respect to P , and has an injective boundary
extension ϕ : Λ → ∂(Γ,H).

Proof. Proposition 4.11 ensures that if ρ is an EGF representation, and the boundary
extension ϕ is a homeomorphism, then ρ is P -divergent and ϕ−1 is an antipodal embedding
whose image is the P -limit set.

On the other hand, if ρ is relatively P -Anosov, with boundary embedding ψ : ∂(Γ,H) → Λ,
for each z ∈ ∂(Γ,H), we can take

Cz = Opp(ψ(z)).

Antipodality means that Cz contains Λ−ψ(z), and P -divergence and Lemma 3.7 imply that
ρ(Γ) has the appropriate convergence dynamics. □

4.6. Relativization. We now turn to the situation where we have an EGF representation
of a hyperbolic group Γ with a nonempty collection of peripheral subgroups. That is, for
some invariant set Λ ⊂ G/P , we have an EGF boundary extension ϕ : Λ → ∂(Γ,H), where
∂(Γ,H) is the Bowditch boundary of Γ with peripheral structure H.

We want to prove Theorem 1.15, which says that in this situation, if ρ restricts to a
P -Anosov representation on each H ∈ H, then ρ is a P -Anosov representation of Γ. For
the rest of this section, we assume that Γ is a hyperbolic group, and H is a collection of
subgroups of Γ so that the pair (Γ,H) is relatively hyperbolic. We let ρ : Γ → G be an EGF
representation for the pair (Γ,H) with respect to a symmetric parabolic subgroup P ⊂ G,
and we assume that for each H ∈ H, ρ|H : H → G is P -Anosov, with Anosov limit map
ψH : ∂H → G/P .

The main step in the proof is to observe that it is always possible to choose the boundary
extension ϕ : Λ → ∂(Γ,H) so that Λ is equivariantly homeomorphic to the Gromov boundary
of Γ (which we here denote ∂Γ).

Whenever Γ is a hyperbolic group and H is a collection of subgroups so that (Γ,H) is a
relatively hyperbolic pair, there is an explicit description of the Bowditch boundary ∂(Γ,H)
in terms of the Gromov boundary ∂Γ of Γ—see [Ger12], [GP13], or [Tra13]. Specifically, we
can say:
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Proposition 4.13. There is an equivariant surjective continuous map ϕΓ : ∂Γ → ∂(Γ,H)
such that for each conical limit point z in ∂(Γ,H), ϕ−1

Γ (z) is a singleton, and for each

parabolic point p ∈ ∂(Γ,H) with H = StabΓ(p), ϕ
−1
Γ (p) is an embedded copy of ∂H in ∂Γ.

In our situation, we can see that the boundary extension ϕ : Λ → ∂(Γ,H) satisfies similar
properties.

Lemma 4.14. There is a closed ρ(Γ)-invariant subset Λ′ ⊂ G/P and an EGF boundary
extension ϕ′ : Λ′ → ∂(Γ,H) such that:

(1) For each conical limit point z ∈ ∂(Γ,H), ϕ′−1(z) is a singleton.
(2) For each parabolic point p ∈ ∂(Γ,H), with H = StabΓ(p), we have ϕ′−1(p) =

ψH(∂H).

Proof. We choose Λ′ as in Proposition 4.8. The only thing we need to check is that for
H = StabΓ(p), the set ψH(∂H) is exactly the closure of the set of accumulation points of
ρ(H)-orbits in Cp. But since we may assume Cp is contained in Opp(ψH(∂H)), this follows
immediately from the fact that ρ(H) is P -divergent and the closed set ψH(∂H) is the P -limit
set of ρ(H).

□

Next we need a lemma which will allow us to characterize the Gromov boundary of Γ as
an extension of the Bowditch boundary ∂(Γ,H). First recall that if Γ acts as a convergence
group on a space Z, the limit set of Γ is the set of points z ∈ Z such that for some y ∈ Z
and some sequence γn ∈ Γ, we have

γn|Z−{y} → z

uniformly on compacts.

Lemma 4.15. Let Γ act on compact metrizable spaces X and Y , and let ϕX : X → ∂(Γ,H),
ϕY : Y → ∂(Γ,H) be continuous equivariant surjective maps such that for every conical
limit point z ∈ ∂(Γ,H), ϕ−1

X (z) and ϕ−1
Y (z) are both singletons, and for every parabolic point

p ∈ ∂(Γ,H), H = StabΓ(p) acts as a convergence group on X and Y , with limit sets ϕ−1
X (p),

ϕ−1
Y (p) equivariantly homeomorphic to ∂H.
Then for any sequences zn, z

′
n ∈ ∂con(Γ,H), we have

lim
n→∞

ϕ−1
X (zn) = lim

n→∞
ϕ−1
X (z′n)

if and only if
lim

n→∞
ϕ−1
Y (zn) = lim

n→∞
ϕ−1
Y (z′n).

Proof. We proceed by contradiction, and suppose that for a pair of sequences zn, z
′
n ∈

∂con(Γ,H), we have
lim
n→∞

ϕ−1
X (zn) = lim

n→∞
ϕ−1
X (z′n) = x,

but
lim

n→∞
ϕ−1
Y (zn) ̸= lim

n→∞
ϕ−1
Y (z′n).

After taking a subsequence we may assume zn converges to z ∈ ∂(Γ,H), and that yn = ϕ−1
Y (zn)

converges to y and y′n = ϕ−1
Y (z′n) converges to y

′ for y ̸= y′. By continuity, we have

ϕY (y) = ϕY (y
′) = ϕX(x) = z.

Since ϕX and ϕY are bijective on ϕ−1
X (∂con(Γ,H)) and ϕ−1

Y (∂con(Γ,H)) respectively, we
must have z = p for a parabolic point p ∈ ∂par(Γ,H). Let H = StabΓ(p).
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Since p is a bounded parabolic point, we can find sequences of group elements hn, h
′
n ∈ H

so that for a fixed compact subset K ⊂ ∂(Γ,H)− {p}, we have

(1) hnzn ∈ K, h′nz
′
n ∈ K.

This implies that no subsequence of hnyn or h′ny
′
n converges to a point in ϕ−1

Y (p).

Then, since H acts as a convergence group on Y with limit set ϕ−1
Y (p), up to subsequence

there are points u, u′ ∈ ϕ−1
Y (p) so that hn converges to a point in ϕ−1

Y (p) uniformly on

compacts in Y − {u}, and h′n converges to a point in ϕ−1
Y (p) uniformly on compacts in

Y − {u′}. So, we must have u = y and u′ = y′.
This means that the sequences h−1

n and h′−1
n have distinct limits in the compactification

H = H ⊔ ∂H. So, there are distinct points v, v′ ∈ ϕ−1
X (p) so that (again up to subsequence)

hn converges to a point in ϕ−1
X (p) uniformly on compacts in X − {v}, and h′n converges to

a point in ϕ−1
X (p) uniformly on compacts in X − {v′}. Without loss of generality, we can

assume x ̸= v.
But then ϕ−1

X (zn) lies in a compact subset of X − {v}, so hnϕ−1
X (zn) converges to a point

in ϕ−1
X (p) and hnzn converges to p. But this contradicts (1) above. □

Proposition 4.16. If the set Λ satisfies the conclusions of Lemma 4.14, then Λ is equivari-
antly homeomorphic to the Gromov boundary of Γ.

Proof. Let ϕΓ : ∂Γ → ∂(Γ,H) denote the quotient map identifying the limit set of each
H ∈ H to the parabolic point p with H = StabΓ(p). For each conical limit point z ∈ ∂(Γ,H),
the fiber ϕ−1

Γ (z) is a singleton. So, there is an equivariant bijection f from ϕ−1
Γ (∂con(Γ,H))

to ϕ−1(∂con(Γ,H)).
Moreover, since ϕ−1

Γ (∂con(Γ,H)) is Γ-invariant, and the action of Γ on its Gromov boundary

∂Γ is minimal, ϕ−1
Γ (∂con(Γ,H)) is dense in ∂Γ. We claim that f extends to a continuous

injective map ∂Γ → Λ by defining f(x) = lim f(xn) for any sequence xn → x.
To see this, we can apply Lemma 4.15, taking ∂Γ = X and Λ = Y . We know that Γ

always acts on its own Gromov boundary as a convergence group (so in particular each
H ∈ H acts on ∂Γ as a convergence group with limit set ∂H). And, since ρ restricts to a
P -Anosov representation on each H ∈ H, for any infinite sequence hn ∈ H, up to subsequence
there are u, u− ∈ ψH(∂H) so that ρ(hn) converges to u uniformly on compacts in Opp(u−).
Antipodality of ϕ implies that ρ(hn) converges to u uniformly on compacts in Λ− ψH(∂H).
The other hypotheses of Lemma 4.15 follow from Proposition 4.13 and Lemma 4.14.

We still need to check that f is actually surjective. We know that f restricts to a bijection
on ϕ−1

Γ (∂con(Γ,H)), and that f takes ϕ−1
Γ (p) to ϕ−1(p) for each parabolic point p in ∂(Γ,H).

So we just need to check that for every H ∈ H, f restricts to a surjective map ∂H → ψH(∂H).
If H is non-elementary, this must be the case because the action of H on ∂H is minimal and
f maps ∂H into ψH(∂H) as an invariant closed subset. Otherwise, H is virtually cyclic and
∂H, ψH(∂H) both contain exactly two points. Then injectivity of f implies surjectivity.

So we conclude that there is a continuous bijection f : ∂Γ → Λ, and since ∂Γ is compact
and Λ is metrizable, f is a homeomorphism. □

We let f : Λ → ∂Γ denote the equivariant homeomorphism from Proposition 4.16. The
final step in the proof of Theorem 1.15 is the following:

Proposition 4.17. The equivariant homeomorphism f : Λ → ∂Γ extends the convergence
action of Γ on its Gromov boundary ∂Γ.

Proof. By Proposition 4.6, we just need to show that if γn ∈ Γ is a conical limit sequence
with γ±1

n → z± for z± ∈ ∂Γ, then every P -limit point of ρ(γ±1
n ) lies in Λ.
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We consider two cases:

Case 1: ϕ ◦ f(z+) is a parabolic point p in ∂(Γ,H). In this case, γn lies along a quasigeodesic
ray in Γ limiting to some z+ ∈ ∂H, with H = StabΓ(p). This means that for a bounded
sequence bn ∈ Γ, we have γnbn ∈ H. Since ρ restricts to a P -Anosov representation on H,
this means that ρ(γnbn) is P -divergent and every P -limit point of ρ(γnbn) lies in ψH(z+).
For the same reason, every P -limit point of ρ(b−1

n γ−1
n ) lies in ψH(z+).

Up to subsequence bn is a constant b. We can use Proposition 3.5 to see that ρ(γn) has
the same P -limit set as ρ(γnb). This P -limit set lies in Λ. And, every P -limit point of ρ(γ−1

n )
is a b-translate of a P -limit point of ρ(b−1γ−1

n ). This P -limit set also lies in Λ.

Case 2: ϕ ◦ f(z+) is a conical limit point in ∂(Γ,H). In this case, a subsequence of γn is a
conical limit sequence for the action of Γ on ∂(Γ,H), and the desired result follows from the
“only if” part of Proposition 4.6.

□

Proof of Theorem 1.15. Let Γ be hyperbolic, let H be a collection of subgroups such that
(Γ,H) is a relatively hyperbolic pair, and let ρ : Γ → G be an EGF representation with
respect to P , for the peripheral structure H.

Suppose that ρ restricts to a P -Anosov representation on each H ∈ H. Proposition 4.17
implies that ρ is also an EGF representation of Γ for its empty peripheral structure, whose
boundary extension can be chosen to be a homeomorphism. Then Theorem 1.9 says that ρ
is relatively P -Anosov (again for the empty peripheral structure on Γ). This ensures that ρ
is actually (non-relatively) P -Anosov; see e.g. [KLP17, Theorem 1.1]. □

5. Relative quasigeodesic automata

In the next three sections, we develop the technical tools needed to prove the main results
of the paper: namely, a relative quasigeodesic automaton for a relatively hyperbolic group Γ
acting on a flag manifold G/P , and a system of open sets in G/P which is in some sense
compatible with both the relative quasigeodesic automaton and the action of Γ on G/P .

The basic idea is motivated by the computational theory of hyperbolic groups. Given a
hyperbolic group Γ with finite generating set S, it is always possible to find a finite directed
graph G, with edges labeled by elements of S, so that directed paths on G starting at a fixed
vertex vid ∈ G are in one-to-one correspondence with geodesic words in Γ. The graph G is
called a geodesic automaton for Γ.

Geodesic automata are really a manifestation of the local-to-global principle for geodesics
in hyperbolic metric spaces: the fact that the automaton exists means that it is possible to
recognize a geodesic path in a hyperbolic group just by looking at bounded-length subpaths.

In this section of the paper, we consider a relative version of a geodesic automaton. This
is a finite directed graph G which encodes the behavior of quasigeodesics in the coned-off
Cayley graph of a relatively hyperbolic group Γ. Eventually, our goal is to build such an
automaton by looking at the dynamics of the action of Γ on its Bowditch boundary ∂(Γ,H).
The main result of this section is Proposition 5.13, which says that we can construct such
a relative quasigeodesic automaton for a relatively hyperbolic pair (Γ,H) using an open
covering of the Bowditch boundary ∂(Γ,H) which satisfies certain technical conditions.

In this section of the paper and the next, we will work in the general context of a relatively
hyperbolic group Γ acting by homeomorphisms on a connected compact metrizable space M ,
before returning to the case where M is a flag manifold G/P for the rest of the paper.

Throughout the rest of this section, we fix a non-elementary relatively hyperbolic pair
(Γ,H), and let Π ⊂ ∂par(Γ,H) be a finite set, containing exactly one point from each Γ-orbit
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in ∂par(Γ,H). We also fix a finite generating set S for Γ, which allows us to refer to the
coned-off Cayley graph Cay(Γ, S,P) (Definition 2.14).

Definition 5.1. A Γ-graph is a finite directed graph G where each vertex v is labelled with
a subset Tv ⊂ Γ, which is either:

• A singleton {γ}, with γ ̸= id, or
• A cofinite subset of a coset gΓp for some p ∈ Π, g ∈ Γ.

A sequence {αn} ⊂ Γ is a G-path if αn ∈ Tvn for a vertex path {vn} in G.

Remark 5.2. We will often refer to “the” vertex path {vn} corresponding to a G-path {αn},
although we will never actually verify that such a vertex path is uniquely determined by the
sequence of group elements {αn} in Γ.

A vertex of a Γ-graph which is labeled by a cofinite subset of a (necessarily unique) coset
gΓp is a parabolic vertex. If v is a parabolic vertex, we let pv = g · p denote the corresponding
parabolic point in ∂par(Γ,H).

Remark 5.3. It will be convenient to allow parabolic vertices to be labeled by cofinite
subsets of peripheral cosets (instead of just the entire coset) when we construct Γ-graphs
using the convergence dynamics of the Γ-action on ∂(Γ,H).

Definition 5.4. Let z ∈ ∂(Γ,H). We say that a G-path {αn} limits to z if either:

• z ∈ ∂con(Γ,H), {αn} is infinite, and the sequence

{γn = α1 · · ·αn}∞n=1

limits to z in the compactification Γ = Γ ⊔ ∂(Γ,H), or
• z ∈ ∂par(Γ,H), {αn} is a finite G-path whose corresponding vertex path {vn} ends
at a parabolic vertex vN , and

z = α1 · · ·αN−1pvN .

Definition 5.5. Let G be a Γ-graph. The endpoint of a finite G-path {αn}Nn=1 is

α1 · · ·αN .

Definition 5.6. A Γ-graph G is a relative quasigeodesic automaton if:

(1) There is a constant D > 0 so that for any infinite G-path αn, the sequence

{γn = α1 · · ·αn} ⊂ Γ

lies Hausdorff distance at most D from a geodesic ray in Cay(Γ, S,P), based at the
identity.

(2) For every z ∈ ∂(Γ,H), there exists a G-path limiting to z.

One way to think of a relative quasigeodesic automaton is that it gives us a system for
finding quasigeodesic representatives of every element in the group. More concretely, we
have the following:

Lemma 5.7. Let G be a relative quasigeodesic automaton. There is a constant R > 0 so
that set of endpoints of G-paths is R-dense in Γ.

Proof. If Γ is hyperbolic and H is empty, then this is a consequence of the Morse lemma
and the fact that the union of the images of all infinite geodesic rays based at the identity in
Γ is coarsely dense in Γ (see [Bog97]).
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If H is nonempty, there is some R > 0 so that the union of all of the cosets g · Γp for
p ∈ Π is R-dense in Γ. So it suffices to show that for each p ∈ Π, there is some R > 0 so
that all but R elements in any coset g · Γp are the endpoints of a G-path.

For any such coset g · Γp, we can find a finite G-path {αn}N−1
n=1 limiting to the vertex g · p.

That is,
g · p = α1 · · ·αN−1pvN .

By definition pvN = g′ · p with TvN a cofinite subset of the coset g′Γp That is,

g · Γp = α1 · · ·αN−1g
′Γp,

so for all but finitely many γ ∈ g · Γp (depending only on the size of the complement of TvN
in g′ · Γp), we can find αN ∈ g′Γp with

α1 · · ·αN = γ.

□

Remark 5.8. In general, we do not require the set of elements in Γ labelling the vertices
of a relative quasigeodesic automaton G to generate the group Γ (although the proposition
above implies that they at least generate a finite-index subgroup).

5.1. Compatible systems of open sets. A relative quasigeodesic automaton always exists
for any relatively hyperbolic group (although we will not prove this fact in full generality).
We will give a way to construct a relative quasigeodesic automaton using the convergence
group action of a group acting on its Bowditch boundary.

Definition 5.9. Suppose that Γ acts on a metrizable space M by homeomorphisms, and
let G be a Γ-graph. A G-compatible system of open sets for the action of Γ on M is an
assignment of an open subset Uv ⊂M to each vertex v of G such that for each edge e = (v, w)
in G, for some ε > 0, we have

(2) α ·NM (Uw, ε) ⊂ Uv

for all α ∈ Tv.

Remark 5.10. If G has no parabolic vertices (so each set Tv contains a single group element
αv ∈ Γ), then (2) is equivalent to requiring αv ·Uw ⊂ Uv for every edge (v, w) in G. When G
has parabolic vertices (so Tv may be infinite), (2) may be a stronger condition.

Proposition 5.11. Let G be a Γ-graph, and let {Uv : v vertex of G} be a G-compatible
system of subsets of ∂(Γ,H) for the action of Γ on ∂(Γ,H).

There is a constant D > 0 satisfying the following: let {αn} be an infinite G-path,
corresponding to a vertex path {vn}, and suppose the sequence {γn = α1 · · ·αn} is divergent
in Γ. Then for any point z in the intersection

U∞ =

∞⋂
n=1

α1 · · ·αnUvn+1
,

the sequence γn lies within Hausdorff distance D of a geodesic ray in Cay(Γ, S,P) tending
towards z.

Proof. Fix a point z ∈ U∞, and write z = z+ and Un = Uvn . We first claim that there is a
uniform ε > 0 and a point z− ∈ ∂(Γ,H) such that

(3) d(γ−1
n z+, γ

−1
n z−) > ε

for all n ≥ 0.
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To prove the claim, choose a uniform ε > 0 so that for every vertex v in G, we have
N(Uv, ε) ̸= ∂(Γ,H), and for every edge (v, w) in G and every α ∈ Tv, we have α ·N(Uw, ε) ⊂
Uv. Then we choose some z− ∈ ∂(Γ,H)−N(U1, ε).

By the G-compatibility condition, we know that for any n, γnUn+1 ⊂ . . . ⊂ γ1U2 ⊂ U1, so
we know that d(z+, z−) > ε.

Then, for any n ≥ 1, we have
γ−1
n z+ ∈ Un+1.

Moreover since γnN(Un+1, ε) ⊂ U1, we also have

γ−1
n z− ∈ ∂(Γ,H)−N(Un+1, ε).

So for all n we have d(γ−1
n z+, γ

−1
n z−) > ε, which establishes that (3) holds for all n.

Now, consider a bi-infinite geodesic c in a cusped space Y for Γ joining z+ and z−. The
sequence of geodesics γ−1

n · c has endpoints in ∂Y = ∂(Γ,H) lying distance at least ε apart,
so each geodesic in the sequence passes within a uniformly bounded neighborhood of a fixed
basepoint y0 ∈ Y . Therefore γn · y0 lies in a uniformly bounded neighbood of the geodesic c.

Since γn is divergent, γny0 can only accumulate at either z+ or z−. But in fact γny0 can
only accumulate at z+—for in the construction of c above, we could have chosen any z− in
the nonempty open set ∂(Γ,H)−N(U1, ε), and since ∂(Γ,H) is perfect there is at least one
such z′− ̸= z−.

This implies that γn is a conical limit sequence in Γ, limiting to z+. Since the distance
between γn and γn+1 is bounded in Cay(Γ, S,P), the desired conclusion follows. □

Definition 5.12. Let G be a Γ-graph. An infinite G-path {αn} is divergent if the sequence
{γn = α1 · · ·αn} leaves every bounded subset of Γ.

We say that a Γ-graph G is divergent if every infinite G-path is divergent.

Whenever {Uv} is a G-compatible system of open sets for a Γ-graph G, one can think of a
G-path {αn} as giving a symbolic coding of a point in the intersection

α1 · · ·αnUn+1.

The following proposition gives a way to construct such a coding for a given point z ∈ ∂(Γ,H),
given an appropriate pair of open coverings of the Bowditch boundary ∂(Γ,H) compatible
with a Γ-graph G.

Proposition 5.13. Let G be a divergent Γ-graph. Suppose that for each vertex a ∈ G, there
exist open subsets Va,Wa of ∂(Γ,H) such that the following conditions hold:

(1) The sets {Wa} give a G-compatible system of sets for the action of Γ on ∂(Γ,H).
(2) For all vertices a, we have Va ⊂Wa and Wa ̸= ∂(Γ,H).
(3) The sets Va give an open covering of ∂(Γ,H).
(4) For every z ∈ ∂(Γ,H) and every non-parabolic vertex a such that z ∈ Va, there is an

edge (a, b) in G such that α−1
a · z ∈ Vb for {αa} = Ta.

(5) For every z ∈ ∂(Γ,H) and every parabolic vertex a such that z ∈ Va −{pa}, there is
an edge (a, b) in G and α ∈ Ta such that α−1 · z ∈ Vb.

Then G is a relative quasigeodesic automaton for Γ.

Proof. Proposition 5.11 implies that any infinite G-path lies finite Hausdorff distance from a
geodesic ray in Cay(Γ, S,P). So, we just need to show that every z ∈ ∂(Γ,H) is the limit of
a G-path.

The idea behind the proof is to use the fact that the sets Va cover ∂(Γ,H) to show that
we can keep “expanding” a neighborhood of z in ∂(Γ,H) to construct a path in G limiting
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zn

Wan+1

Van+1

Wan

Van

αn

an an+1

Figure 1. Illustration for the proof of Proposition 5.13. The group element
αn nests an ε-neighborhood of Wan+1

inside of Wan
whenever αn · Van+1

intersects Van
.

W0 W1 W2

α1 α2z0 z1 z2

a0

a1
a2

. . .

Figure 2. By iterating the nesting procedure backwards, we produce an
infinite G-path and a sequence of subsets intersecting in the initial point
z = z0.

to z. The {Va} covering tells us how to find the next edge in the path, and the {Wa} cover
gives us the G-compatible system we need to show that the path is a geodesic.

We let A denote the vertex set of G. When a ∈ A is not a parabolic vertex, we write
Ta = {γa}.
Case 1: z is a conical limit point. Fix a ∈ A so that z ∈ Va. We take z0 = z, a0 = a, and
define sequences {zn}∞n=0 ⊂ ∂conΓ, {an}∞n=0 ⊂ A, and {αn}∞n=1 ⊂ Γ as follows:

• If an is not a parabolic vertex, then we choose αn+1 = γan . Let zn+1 = α−1
n+1 · zn.

Since conical limit points are invariant under the action of Γ, zn+1 is a conical limit
point. By condition 4, there is a vertex an+1 satisfying zn+1 ∈ Van+1 with (an, an+1)
an edge in G.

• If an is a parabolic vertex, then since zn is a conical limit point, zn ̸= p for p = pan
.

Then condition 5 implies that there exists some αn+1 ∈ Tan
so that α−1

n+1 ·zn ∈ Van+1

for an edge (an, an+1) in G. Again, zn+1 = α−1
n+1 · zn must be a conical limit point

since ∂conΓ is Γ-invariant.

The sequence {αn} necessarily gives a G-path. By assumption the sequence

γn = α1 · · ·αn
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is divergent. And by construction z = γnzn lies in γnWan for all n. So, Proposition 5.11
implies that γn is a conical limit sequence, limiting to z. See Figure 2.

Case 2: z is a parabolic point. As before fix a ∈ A so that z ∈ Va, and take z0 = z, a0 = a.
We inductively define sequences zn, an, αn as before, but we claim that for some finite N ,
aN is a parabolic vertex with zN = paN

. For if not, we can build an infinite G-path (as in
the previous case) limiting to z. But then, Proposition 5.11 would imply that z is actually a
conical limit point. So, we must have

z = γNaN = α1 · · ·αNaN

as required.
□

Remark 5.14. In a typical application of Proposition 5.13, it will not be possible to
construct the open coverings {Va} and {Wa} so that Va =Wa for all vertices a. In particular
we expect this to be impossible whenever ∂(Γ,H) is connected.

To conclude this section, we make one more observation about systems of G-compatible
sets as in Proposition 5.13.

Lemma 5.15. Let Γ be a relatively hyperbolic group, let G be a Γ-graph, and let {Va}, {Wa}
be an assignment of open subsets of ∂(Γ,H) to vertices of G satisfying the hypotheses of
Proposition 5.13.

Fix z ∈ ∂conΓ and N ∈ N. There exists δ > 0 so that if d(z, z′) < δ, then there are G-paths
{αn}, {βn} limiting to z, z′ respectively, with αi = βi for all i < N .

Proof. Let {αn} be a G-path limiting to z coming from the construction in Proposition 5.13,
passing through vertices vn. We choose δ > 0 small enough so that if d(z, z′) < δ, then z′

lies in the set

α1 · · ·αNVvn+1
.

Then for every i < N , we have

α−1
i α−1

i−1 · · ·α
−1
1 z′ ∈ Vvi+1

.

As in Proposition 5.13, we can then extend {αn}N−1
n=1 to a G-path limiting to z′. □

6. Extended convergence dynamics

Let Γ be a relatively hyperbolic group acting on a connected compact metrizable space M .
In this section, we will show that if the action of Γ on M extends the convergence dynamics
of Γ (Definition 1.2), then we can construct a relative quasigeodesic automaton G and a
G-compatible system of open subsets of M which are in some sense reasonably well-behaved
with respect to the group action.

To give the precise statement, we let Λ ⊂ M be a closed Γ-invariant subset, and let
ϕ : Λ → ∂(Γ,H) be an equivariant, surjective, and continuous map satisfying the following:
for each z ∈ ∂(Γ,H), there is an open set Cz ⊂M containing Λ− ϕ−1(z) such that:

(1) For any sequence γn ∈ Γ limiting conically to z, with γ−1
n → z−, any open set U

containing ϕ−1(z), and any compact K ⊂ Cz− , we have γn ·K ⊂ U for all sufficiently
large n.

(2) For any parabolic point p, any compact K ⊂ Cp, and any open set U containing
ϕ−1(p), for all but finitely many γ ∈ Γp, we have γ ·K ⊂ U .
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Note that in particular, any map extending convergence dynamics satisfies these conditions.
For the rest of this section, however, we only assume that (1) and (2) both hold for our map
ϕ. In this context, we will show:

Proposition 6.1. For any ε > 0, there is a relative quasigeodesic automaton G for Γ, a
G-compatible system of open sets {Uv} for the action of Γ on M , and a G-compatible system
of open sets {Wv} for the action of Γ on ∂(Γ,H) such that:

(1) For every vertex v, there is some z ∈Wv so that

ϕ−1(Wv) ⊂ Uv ⊂ NM (ϕ−1(z), ε).

(2) For every p ∈ Π, there is a parabolic vertex a with pa = p. Moreover, for every
parabolic vertex w with pw = g · p, (a, b) is an edge of G if and only if (w, b) is an
edge of G.

(3) If q = g · p for p ∈ Π, a is a parabolic vertex with pa = q, and (a, b) is an edge of G,
then q ∈Wa and Ub ⊂ Cp.

Remark 6.2. By equivariance of ϕ, for each p ∈ ∂parΓ, we can replace Cp with Γp · Cp and
assume that Cp is Γp-invariant (and that if q = g · p, then Cq = g · Cp).

The proof of Proposition 6.1 involves some technicalities, so we first outline the general
approach:

(1) For each z ∈ ∂(Γ,H), we construct a pair Vz, Wz of small open neighborhoods of z
and a subset Tz ⊂ Γ so that for each α ∈ Tz, α

−1 is “expanding” about some point
in Vz. When z is a conical limit point, then we can choose a single element αz ∈ Γ
which expands about every point in Vz. When z is a parabolic point, we may use a
different element of Γ to “expand” about each u ∈ Vz − {z}.

We choose Vz, Wz, and Tz so that if α−1 is “expanding” about u ∈ Vz, and
α−1u ∈ Vy, then α

−1Wz ⊃Wy. See Figure 3.

α−1u
u

Wz

Vz

Wy

Vy

α−1

Figure 3. The group element α−1 is “expanding” about u ∈ Vz. We will
construct Vz,Wz and Vy,Wy so that if α−1u lies in Vy, then α

−1Wz contains
Wy. Equivalently, we get the containment αWy ⊂Wz illustrated earlier in
Figure 1.

(2) Using compactness of ∂(Γ,H), we pick a finite set of points a ∈ ∂(Γ,H) so that the
sets {Va} give an open covering of ∂(Γ,H). These points in ∂(Γ,H) are identified
with the vertices of a Γ-graph G. We define the edges of G in such a way so that if,
for some α ∈ Ta, α

−1 expands about u ∈ Va and α−1u ∈ Vb, then there is an edge
from a to b. This ensures that {Wa} is a G-compatible system of open subsets of
∂(Γ,H).
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(3) Simultaneously, we construct a G-compatible system {Ua} of open sets in M by
taking Ua to be a small neighborhood of ϕ−1(a). The idea is to use the extended
convergence dynamics to ensure that if, for some α ∈ Tz, α

−1 “expands” about some
u ∈ Vz and the point α−1u lies in Vy, then α

−1Uz contains Uy. See Figure 6 below.
(4) Finally, we use Proposition 5.13 to prove that G is actually a relative quasigeodesic

automaton. The open sets Va,Wa are constructed exactly to satisfy the conditions
of the proposition, so the main thing to check in this step is that the graph G is
actually divergent (using the action of Γ on M).

Throughout the rest of the section, we will work with fixed metrics on both ∂(Γ,H) and
M . Critically, none of our “expansion” arguments will depend sensitively on the precise
choice of metric. That is, in the sketch above, when we say that some group element α ∈ Γ
“expands” on a small open subset U of a metric space X, we just mean that αU is quantifiably
“bigger” than U , and not that for any x, y ∈ U , we have d(α · x, α · y) ≥ C · d(x, y) for some
expansion constant C. Lemma 6.5 and Lemma 6.7 below describe precisely what we mean
by “bigger.” The general idea is captured by the following example.

Example 6.3. We consider the group PGL(2,Z). While PGL(2,Z) is virtually a free group
(and therefore word-hyperbolic), it is also relatively hyperbolic, relative to the collection H

of conjugates of the parabolic subgroup

{(
±1 t
0 1

)
: t ∈ Z

}
.

Since PGL(2,Z) acts with finite covolume on the hyperbolic plane H2, the Bowditch
boundary of the pair (PGL(2,Z),H) is equivariantly identified with ∂H2, the visual boundary
of H2. Given a non-parabolic point w ∈ ∂H2, we can find an element of PGL(2,Z) which
“expands” a neighborhood of w. There are two distinct possibilities:

(1) Suppose w is in a small neighborhood Vz of a conical limit point z ∈ ∂H2. Then
choose some loxodromic element γ ∈ PGL(2,Z) whose attracting fixed point is close
to z. Then, if Wz is a slightly larger neighborhood of z, γ−1 ·Wz is large enough to
contain a uniformly large neighborhood of γ−1 · w. See Figure 4.

(2) On the other hand, suppose w is in a small neighborhood Vq of a parabolic fixed
point q ∈ ∂H2, but w ̸= q. We can find some element γ ∈ Γq = StabΓ(q) so that γ−1

takes w into a fundamental domain for the action of Γq on ∂H2 − {q}. Then, if Wq

is a slightly larger neighborhood of q, γ−1 ·Wq is again large enough to contain a
uniformly large neighborhood of γ−1 · w. See Figure 5.

There is a slight issue with this approach: in the second case above (when w is close to a
parabolic point q), it is actually not quite good enough to “expand” a neighborhood of w
by using Γq to push w into a fundamental domain for Γq on ∂H2 − {q}. The reason is that
there might be no such fundamental domain which is actually far away from ∂H2 − {q}. We
resolve this issue by instead choosing γ to lie in a coset gΓp, where q = gp for some p ∈ Π.
Then γ−1 · w lies in a fundamental domain for Γp on ∂H2 − {p}, which allows us to get
uniform control on the size of the expanded neighborhood γ−1Wq.

The two technical lemmas below (Lemma 6.5 and Lemma 6.7) essentially say that one
can set up this kind of expansion simultaneously on the Bowditch boundary of our relatively
hyperbolic group Γ and in a neighborhood of the Γ-invariant set Λ ⊂ M . The precise
formulation of the expansion condition found in these two lemmas is best motivated by the
proof of Proposition 6.10 below, which shows that the “expanding” open sets we construct
give rise to a G-compatible system of open sets on a Γ-graph G.
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γ−1

z
w

γ−1w

Figure 4. For any point w in a sufficiently small neighborhood Vz (pink) of
z, the expanded neighborhood γ−1Wz (red) contains a uniform neighborhood
of γ−1w.

γ−1

qw

Kq

γ−1w

Figure 5. For any point w ̸= q in a neighborhood Vq (pink) of the parabolic
point q, we find some γ ∈ Γq so that γ−1w lies in Kq (dark gray), a
fundamental domain for the action of Γq on ∂H2 − {q}. The expanded
neighborhood γ−1Wq (red) contains a uniform neighborhood of Kq, so
γ−1Wq contains a uniform neighborhood of γ−1w.

Lemma 6.4. There exists ε > 0 (depending on ϕ and D) so that for any a, b ∈ ∂(Γ,H) with
d(a, b) > D, the ε-neighborhood of ϕ−1(a) in M is contained in Cb.

Proof. Since ϕ−1(z) is closed in M , such an ε > 0 exists for any fixed pair of distinct
(a, b) ∈ ∂(Γ,H)2. Then the result follows, since the space of pairs (a, b) ∈ (∂(Γ,H))2

satisfying d(a, b) > D is compact. □

Lemma 6.5. There exists εcon > 0, δcon > 0 satisfying the following: for any ε > 0, δ > 0
with ε < εcon, δ < δcon, and every conical limit point z, we can find:
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• A group element γz ∈ Γ
• Open subsets Wz, Vz ⊂ ∂(Γ,H) with z ∈ Vz ⊂Wz

such that:

(1) diam(Wz) < δ,
(2) In ∂(Γ,H), we have

N∂Γ(γ
−1
z Vz, δ) ⊂ γ−1

z Wz.

(3) In M we have

NM (γ−1
z ϕ−1(Wz), 2ε) ⊂ γ−1

z NM (ϕ−1(z), ε).

Remark 6.6. Conditions (1) and (2) together imply that for any y, z ∈ ∂conΓ, if γ
−1
z Vz

intersects Vy, then γzWy ⊂Wz. Later, we will see that condition (3) implies that if γ−1
z Vz

intersects Vy, then also γzNM (ϕ−1(y), 2ε) ⊂ NM (ϕ−1(z), ε) (giving us the inclusion indicated
by Figure 3).

2ε

Wz

δ

ϕ

ϕ

γ−1
z

< δ

M

∂(Γ,H)

ε

Vz

z

Figure 6. The group element γ−1
z is “expanding” about Vz ⊂ ∂(Γ,H):

while Wz has diameter < δ, γ−1
z Wz contains a δ-neighborhood of γ−1

z Vz. At
the same time, γ−1

z enlarges an ε-neighborhood of ϕ−1(z) in M , so that it
contains a 2ε-neighborhood of γ−1

z ϕ−1(Wz).

Proof. For a conical limit point z, we choose a sequence γn so that for distinct a, b ∈ ∂(Γ,H),
we have γ−1

n z → a and γ−1
n w → b for any w ̸= z. That is, γn limits conically to z in Γ, and

γ−1
n converges (not necessarily conically) to b. Since the Γ-action on distinct pairs in ∂(Γ,H)

is cocompact (Proposition 2.7), we may assume that d(a, b) > D for a uniform constant
D > 0.

We choose εcon > 0 from Lemma 6.4 so that if a, b ∈ ∂(Γ,H) satisfy d(a, b) > D/2, then a
2εcon-neighborhood of ϕ−1(a) is contained in Cb. Let ε > 0 satisfy ε < εcon, and let δ satisfy
δ < δcon := D/4.

By the triangle inequality, we have d(c, b) > D/2 for all c ∈ B∂Γ(a, 2δ), so the closed
2ε-neighborhood of ϕ−1(B∂Γ(a, 2δ)) is contained in Cb. This means that we can choose n
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large enough so that

γn ·NM (ϕ−1(B(a, 2δ)), 2ε)

is contained in NM (ϕ−1(z), ε) and

γn ·B∂Γ(a, 2δ)

is contained in B∂Γ(z, δ/2). We let γz = γn for this large n, and take

Wz = γz ·B∂Γ(a, 2δ)

and

Vz = γz ·B∂Γ(a, δ).

□

The next lemma is a version of Lemma 6.5 for parabolic points. As before, we want to
show that for a point q in the Bowditch boundary, we can find a neighborhood Wq of q in
∂(Γ,H) with uniformly bounded diameter δ, and group elements γ ∈ Γ so that γ−1 enlarges
Wq enough to contain a 2δ-neighborhood of γ−1z, for some z close to q. Simultaneously
we want to choose γ so that γ−1 enlarges an ε-neighborhood of ϕ−1(q) in a similar manner.
This case is more complicated, because we need to allow γ to depend on the point z ∈Wq:
if q is a parabolic point in ∂(Γ,H), then in general there is not a single group element in Γ
which expands distances in a neighborhood of q.

Lemma 6.7. For each point p ∈ Π, there exist constants εp > 0, δp > 0 such that for any
q = g · p ∈ Γ · p, any ε < εp, and any δ < δp, we can find:

• A cofinite subset Tq of the coset gΓp,
• Open neighborhoods Vq,Wq of ∂(Γ,H), with q ∈ Vq ⊂Wq,

• Open neighborhoods V̂q, Ŵq of ∂(Γ,H) with V̂q ⊂ Ŵq

such that:

(1) diam(Wq) < δ, and ϕ−1(Wq) ⊂ N(ϕ−1(q), ε).
(2) in ∂(Γ,H), we have

N∂Γ(V̂q, δ) ⊂ Ŵq.

(3) For every z ∈ Vq − {q}, there exists γ ∈ Tq with γ−1 · z ∈ V̂q.
(4) For every γ ∈ Tq, we have

NM (ϕ−1(Ŵq), 2ε) ⊂ γ−1NM (ϕ−1(q), ε)

and

Ŵq ⊂ γ−1Wq.

(5) NM (ϕ−1(Ŵq), 2ε) is contained in Cp and gΓp · V̂q contains ∂(Γ,H)− {q}.

Remark 6.8. If z ∈ Vq−{q} and γ−1z ∈ V̂q for some γ ∈ Tq, we think of γ−1 as “expanding”

about z. Conditions (1) and (2) imply that if γ−1z ∈ Vy for some γ ∈ Tq, then Ŵq

contains Wy, and by condition (4), γ−1Wq contains Wy. Here Vy,Wy are the sets from either
Lemma 6.5 or Lemma 6.7.

Proof. Pick a compact set K ⊂ ∂(Γ,H)− {p} so that Γp ·K covers ∂(Γ,H)− {p}. Choose
δp small enough so that the closure of N∂Γ(K, 2δp) does not contain p. Then, for any δ < δp,
we can pick

V̂q = N∂Γ(K, δ), Ŵq = N∂Γ(K, 2δ).
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q = g · pVq

Wq

z

p

V̂q

Ŵq

γ−1

Figure 7. The behavior of sets in ∂(Γ,H) described by Lemma 6.7. Given
z ∈ Vq, we pick an element γ ∈ gΓp so that a uniformly large neighborhood
of γ−1z is contained in γ−1Wq. We cannot pick γ−1 to expand the metric
everywhere close to q—some points in Vq get contracted close to p.

We can choose εp sufficiently small so that a 2εp-neighborhood of ϕ−1(N∂Γ(K, 2δp)) is
contained in Cp. Now, fix ε < εp. We claim that for a cofinite subset Tq ⊂ g · Γp, for any
γ ∈ Tq, we have

γ · Ŵq ⊂ B∂Γ(q, δ/2)(4)

γ ·NM (ϕ−1(Ŵq), 2ε) ⊂ NM (ϕ−1(q), ε)(5)

To see that this claim holds, it suffices to verify that for any infinite sequence γn of distinct
group elements in gΓp, (4) and (5) both hold for all sufficiently large n.

We write γn = g · γ′n for γ′n ∈ Γp. Then γ
′
n converges uniformly to p on compact subsets of

∂(Γ,H)−{p}, so γn converges uniformly to q on compact subsets of ∂(Γ,H)−{p}, implying
that (4) eventually holds. And by our assumptions, we know that

γ′n ·NM (ϕ−1(Ŵq), 2ε) ⊂ g−1 ·NM (ϕ−1(q), ε)

for sufficiently large n, implying that (5) also eventually holds.
So we can take Wq to be the set

{q} ∪
⋃

γ∈Tq

γ · Ŵq,

and Vq to be the set

{q} ∪
⋃

γ∈Tq

γ · V̂q.

To see thatWq and Vq are open we just need to verify that they each contain a neighborhood

of q. Since V̂q and Ŵq each contain K, and Γp ·K covers ∂(Γ,H) − {p}, Vq and Wq each
contain the set

∂(Γ,H)−
⋃

γ∈gΓp−Tq

γK.

Since Tq is cofinite in gΓp this is an open set containing q. □

6.1. Construction of the relative automaton. We will construct the relative automaton
G satisfying the conditions of Proposition 6.1 by choosing a suitable open covering of ∂(Γ,H),
and then using compactness to take a finite subcover. The subsets of this subcover will be
the vertices of G.
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We choose constants ε > 0, δ > 0 so that ε < εcon, δ < δcon (where εcon, δcon are the
constants coming from Lemma 6.5) and ε < εp, δ < δp for each p ∈ Π (where εp, δp are the
constants coming from Lemma 6.7).

Then:

• For each z ∈ ∂conΓ, we define Wz, Vz, γz as in Lemma 6.5, with parameters ε, δ.
• For each q ∈ ∂parΓ, we define Vq,Wq, V̂q, Ŵq, and Tq as in Lemma 6.7, again with
parameters ε, δ.

The collections of sets {Vz : z ∈ ∂conΓ} and {Vq : q ∈ ∂parΓ} together give an open covering
of the Bowditch boundary ∂(Γ,H). So we choose a finite subcover V , which we can write as

V = {Va : a ∈ A}

where A is a finite subset of ∂(Γ,H). We can in particular ensure that A contains the finite
set Π.

We identify the vertices of our Γ-graph G with A. For each a ∈ A, the set Ta is either
{γa} (if a is a conical limit point) or Tq (if a = q for a parabolic point q). Then, for each
a ∈ A, we define the open sets Ua by

Ua = NM (ϕ−1(a), ε).

The edges of the Γ-graph G are defined as follows:

• For a, b ∈ A with a ∈ ∂conΓ, there is an edge from a to b if (γ−1
a ·Va)∩Vb is nonempty.

• If a, b ∈ A with a ∈ ∂parΓ, there is an edge from a to b if V̂a ∩ Vb is nonempty.

Since V is an open covering of ∂(Γ,H), and the sets V̂a and γ−1
a Va are nonempty, every

vertex of G has at least one outgoing edge. Moreover, for any parabolic point a, the set V̂a
depends only on the orbit of a in ∂(Γ,H), so G must satisfy condition (2) in Proposition 6.1.

Proposition 6.9. For each a ∈ A, we have

ϕ−1(Wa) ⊂ Ua.

Proof. When a is not a parabolic vertex, Part (3) of Lemma 6.5 implies:

ϕ−1(Wa) = γaγ
−1
a ϕ−1(Wa) ⊂ γaN(γ−1

a ϕ−1(Wa), 2ε) ⊂ NM (ϕ−1(a), ε) = Ua.

When a is a parabolic vertex, then the claim follows directly from Part (1) of Lemma 6.7. □

Next we verify:

Proposition 6.10. The collection of sets {Wv} and {Uv} are both G-compatible systems of
open sets for the Γ-graph G.

Proof. First fix an edge (a, b) with a ∈ ∂conΓ. Since (γ−1
a Va) ∩ Vb is nonempty, part 2 of

Lemma 6.5 implies that γ−1
a ·Wa contains the δ-neighborhood of some point z ∈ Vb. Since

diam(Wb) < δ and Vb ⊂Wb, we can find a small ε′ > 0 so that γaN∂Γ(Wb, ε
′) ⊂Wa.

In particular, γ−1
a · Wa contains b, which means that NM (γ−1

a ϕ−1(Wa), 2ε) contains
NM (ϕ−1(b), 2ε), which contains NM (Ub, ε). Then, part 3 of Lemma 6.5 implies that γa ·
NM (Ub, ε) is contained in NM (ϕ−1(a), ε) = Ua.

Next fix an edge (q, b) with q ∈ ∂parΓ. From part 2 of Lemma 6.7, we know that Ŵq

contains the δ-neighborhood of a point z ∈ V̂q ∩ Vb. Since diam(Wb) < δ and Vb ⊂ Wb,

this means that Ŵq contains an ε′-neighborhood of Wb for some small ε′ > 0. So part 4 of
Lemma 6.7 implies that for any γ ∈ Tq, we have γ ·N(Wb, ε

′) ⊂Wq.
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In particular Ŵq contains b, so NM (ϕ−1(Ŵq), 2ε) contains NM (ϕ−1(b), 2ε), which contains
NM (Ub, ε). Then, part 4 of Lemma 6.7 implies that

γNM (Ub, ε) ⊂ NM (ϕ−1(q), ε) = Uq

for any γ ∈ Tq. □

We observe:

Proposition 6.11. The G-compatible systems of open subsets {Uv} and {Wv} satisfy
conditions (1) - (3) in Proposition 6.1.

Proof. Part (1) follows directly from Proposition 6.9, and the fact that we defined each Ua

to be the ε-neighborhood of ϕ−1(a). Part (2) is true by the construction of the open covering
V and the graph G. Part (3) is true by construction and part (5) of Lemma 6.7. □

To finish the proof of Proposition 6.1, we now just need to show:

Proposition 6.12. The Γ-graph G is a relative quasigeodesic automaton for the pair (Γ,H).

Proof. We apply Proposition 5.13, using the G-compatible system {Wa} and the sets {Va}
we defined in the construction of G.

The first three conditions of Proposition 5.13 are satisfied by construction. To see that
conditions 4 and 5 hold, first observe that if z ∈ Va for a non-parabolic vertex a, then γ−1

a · z
lies in some Vb and (a, b) is an edge in G. And if z ∈ Va −{pa} for a parabolic vertex a, then

part (3) of Lemma 6.7 says that there is some γ ∈ Ta such that γ−1 · z ∈ V̂a. If Vb contains
γ−1 · z, the edge (a, b) must be in G.

It only remains to check that G is a divergent Γ-graph. Let {αn} be an infinite G-path,
following a vertex path {vn}. The G-compatibility condition implies that γnUvn+1

is a subset
of γn−1Uvn for every n. Since M is connected and each Uv is a proper subset of M , this
inclusion must be proper. This implies that in the sequence γn, no element can appear more
than #A times and therefore γn is divergent. □

Remark 6.13. This last step is the only part of the proof of Proposition 6.1 which uses the
connectedness of M . This hypothesis is likely unnecessary, but omitting it would involve
introducing additional technicalities in the construction of the sets Va, Wa—and as stated,
the proposition is strong enough for our purposes.

Note that with this hypothesis removed, Proposition 6.1 would imply that any non-
elementary relatively hyperbolic group has a relative quasigeodesic automaton (by taking
M = ∂(Γ,H)). As stated, the proposition only shows that such an automaton exists when
∂(Γ,H) is connected.

We conclude this section by observing that one can slightly refine the construction in
Proposition 6.1 to obtain some stronger conditions on the resulting automaton.

Proposition 6.14. Fix a compact subset Z of the Bowditch boundary ∂(Γ,H). Then, for
any open set U ⊂M containing ϕ−1(Z), there is a relative quasigeodesic automaton G and a
pair of G-compatible systems of open sets {Ua}, {Wa} as in Proposition 6.1, additionally
satisfying the following: any z ∈ Z is the limit of a G-path {αn} (with corresponding vertex
path {vn}) such that Uv1 ⊂ U .

Proof. We choose ε > 0 so that U contains NM (ϕ−1(Z), ε). We then construct our relative
quasigeodesic automaton G as in the proof of Proposition 6.1, but we also choose a finite
subset AZ ⊂ Z so that the sets Va for a ∈ AZ give a finite open covering of Z. We can
ensure that the vertex set A of G contains AZ .
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Then, for any z ∈ Z, by the construction in Proposition 5.13, we can find a G-path
limiting to z whose first vertex is some a ∈ AZ . The corresponding open set for this vertex
is Ua = NM (ϕ−1(a), ε) ⊂ U . □

Proposition 6.15. For each parabolic point p ∈ Π, let Kp be a compact subset of ∂(Γ,H)−{p}
such that Γp·Kp = ∂(Γ,H)−{p}. Then the relative quasigeodesic automaton in Proposition 6.1
can be chosen to satisfy the following:

For every parabolic vertex w with pw = p ∈ Π, and every z ∈ Kp, there is a G-path limiting
to z whose first vertex u is connected to w by an edge (w, u).

Proof. The proof of Lemma 6.7 shows that in our construction of the relative automaton, we
can ensure that each set V̂p contains Kp. So if z ∈ Kp, then by definition of the automaton,
z lies in z lies in Vu with w connected to u by a directed edge. Then, following the proof of
Proposition 5.13, we can find a G-path limiting to z whose first vertex is u. □

7. Contracting paths in flag manifolds

Let Γ ⊂ G be a discrete relatively hyperbolic group, and let G be a Γ-graph. Fix a pair of
opposite parabolic subgroups P+, P−. Our goal in this section is to show that under certain
conditions, if {Uv} is a G-compatible system of open subsets of G/P+ for the action of Γ on
G/P+, then the sequence of group elements lying along an infinite G-path is P+-divergent.

7.1. Contracting paths in Γ-graphs.

Definition 7.1. Let Γ be a discrete subgroup of G, let G be a Γ-graph, and let {Uv}v∈V (G)
be a G-compatible system of open subsets of G/P+. We say that a G-path {αn}n∈N is
contracting if the decreasing intersection

(6)

∞⋂
n=1

α1 · · ·αn · Uvn+1

is a singleton in G/P+.

Definition 7.2. We say that an open set Ω ⊂ G/P+ is a proper domain if the closure of Ω
lies in an affine chart Opp(ξ) ⊂ G/P+ for some ξ ∈ G/P−.

Here is the main result in this section:

Proposition 7.3. Let G be a Γ-graph for (Γ,H), and let {Uv}v∈V (G) be G-compatible system

of open subsets of G/P+.
If the set Uv is a proper domain for each vertex v of the automaton, then every infinite

G-path is contracting.

7.2. A metric property for bounded domains in flag manifolds. To prove Propo-
sition 7.3, we consider a metric CΩ defined by Zimmer [Zim18] on any proper domain
Ω ⊂ G/P+. CΩ is defined so that it is invariant under the action of G on G/P+: for any
x, y in some proper domain Ω ⊂ G/P+, and any g ∈ G, we have

(7) CΩ(x, y) = CgΩ(gx, gy).

In general, CΩ is not a complete metric. However, CΩ induces the standard topology on
Ω as an open subset of G/P . We will show that for a G-path {αn}, the diameter of

α1 · · ·αnUvn+1

with respect to CUv1
tends to zero as n→ ∞.
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Zimmer’s construction of CΩ depends on an irreducible representation ζ : G→ PGL(V )
for some real vector space V . This is provided by a theorem of Guéritaud-Guichard-Kassel-
Wienhard.

Theorem 7.4 ([GGKW17], see also [Zim18], Theorem 4.6). There exists a real vector space
V , an irreducible representation ζ : G→ PGL(V ), a line ℓ ⊂ V , and a hyperplane H ⊂ V
such that:

(1) ℓ+H = V .
(2) The stabilizer of ℓ in G is P+ and the stabilizer of H in G is P−.
(3) gP+g−1 and hP−h−1 are opposite if and only if ζ(g)ℓ and ζ(h)H are transverse.

The representation ζ determines a pair of embeddings ι : G/P+ → P(V ) and ι∗ : G/P− →
P(V ∗) by

ι(gP+) = ζ(g)ℓ, ι∗(gP−) = ζ(g)H.

In this section, we will identify P(V ∗) with the space of projective hyperplanes in P(V ), by
identifying the projectivization of a functional w ∈ V ∗ with the projectivization of its kernel.

Definition 7.5. Let Ω be an open subset of G/P+. The dual domain Ω∗ ⊂ G/P− is

Ω∗ = {ν ∈ G/P− : ν is opposite to ξ for every ξ ∈ Ω}.
Note that Ω∗ is open if and only if Ω is a proper domain.

Definition 7.6. Let w1, w2 ∈ P(V ∗), and let z1, z2 ∈ P(V ). The cross-ratio [w1, w2; z1, z2]
is defined by

w̃1(z̃2)w̃2(z̃1)

w̃1(z̃1)w̃2(z̃2)
,

where w̃i, z̃i are respectively lifts of wi and zi in V
∗ and V .

Remark 7.7. When V is two-dimensional, we can identify the projective line P(V ∗) with
P(V ) by identifying each [w] ∈ P(V ∗) with [ker(w)] ∈ P(V ). In that case, the cross-ratio
defined above agrees with the standard four-point cross-ratio on RP1, given by

(8) [a, b; c, d] :=
(d− a)(c− b)

(c− a)(d− b)
.

The differences in (8) can be measured in any affine chart in RP1 containing a, b, c, d. Our
convention is chosen so that if we identify RP1 with R ∪ {∞}, we have [0,∞; 1, z] = z.

Definition 7.8. Let Ω ⊂ G/P+ be a proper domain. We define the function CΩ : Ω×Ω → R
by

CΩ(x, y) = sup
ξ1,ξ2∈Ω∗

log |[ι∗(ξ1), ι∗(ξ2); ι(x), ι(y)]|.

For any g ∈ G and any proper domain Ω ⊂ G/P+, we have (gΩ)∗ = (gΩ∗). So CΩ must
satisfy the G-invariance condition (7).

If Ω is a properly convex subset of P(V ), and ζ, ι, ι∗ are the identity maps on PGL(V ),
P(V ), and P(V ∗) respectively, then CΩ agrees with the well-studied Hilbert metric on Ω.
More generally we have:

Theorem 7.9 ([Zim18], Theorem 5.2). If Ω is open and bounded in an affine chart, then
CΩ is a metric on Ω which induces the standard topology on Ω as an open subset of G/P+.

Remark 7.10. This particular result in [Zim18] is stated only for noncompact simple Lie
groups, but the proof only assumes that G is semisimple with no compact factor.
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Since taking duals of proper domains reverses inclusions, it follows that if Ω1 ⊂ Ω2, then
CΩ1 ≥ CΩ2 . Our goal now is to sharpen this inequality, and show:

Proposition 7.11. Let Ω1, Ω2 be proper domains in G/P+, such that Ω1 ⊂ Ω2.
There exists a constant λ > 1 (depending on Ω1 and Ω2) so that for all x, y ∈ Ω1,

CΩ1
(x, y) ≥ λ · CΩ2

(x, y).

A consequence is the following, which in particular implies Proposition 7.3.

Corollary 7.12. Let G be a Γ-graph for a relatively hyperbolic group Γ, and let {Uv} be a
G-compatible system of open subsets of G/P+. If each Uv is a proper domain, then there are
constants λ1, λ2 > 0 so that for any G-path {αn} in the Γ-graph G, the diameter of

α1 · · ·αn · Uvn+1

with respect to CUv1
is at most

λ1 · exp(−λ2 · n).

Proof. For any open set U ⊂ G/P+ and A ⊂ U , we let diamU (A) denote the diameter of A
with respect to the metric CU . We choose a uniform ε > 0 so that in some fixed metric on
G/P+, every edge (v, w) in G, and every α ∈ Tv, we have

αN(Uw, ε) ⊂ Uv.

Then for each vertex set Uv, we write Uε
v = N(Uv, ε).

We take
λ1 = max{diamUε

v
(Uv)}.

Proposition 7.11 implies that there exists λv > 0 such that for all x, y ∈ Uv, we have

CUv (x, y) ≥ exp(λv) · CUε
v
(x, y).

Take λ2 = minv{λv}. We claim that for all n ≥ 1, we have

diamUε
1
(α1 · · ·αnUvn) ≤ λ1 exp(−λ2 · (n− 1)).

We prove the claim via induction on the length of the G-path {αn}. For n = 1, the claim is
true because α1Uv2 ⊂ Uv1 . For n > 1, we can assume

λ1 exp(−λ2(n− 2)) ≥ diamUε
v2
(α2 · · ·αn · Uvn+1

).

Then we have

diamUε
v2
(α2 · · ·αn · Uvn+1

) = diamα1Uε
v2
(α1 · · ·αn · Uvn+1

)

≥ diamUv1
(α1 · · ·αn · Uvn+1

)

≥ exp(λ2) · diamUε
v1
(α1 · · ·αn · Uvn+1

).

Finally, the claim implies the corollary because we know that

diamU1
(α1 · · ·αnUn+1) ≤ diamα1Uε

2
(α1 · · ·αnUn+1)

= diamUε
2
(α2 · · ·αnUn+1)

≤ λ1 exp(λ2(n− 2)).

So, we can replace λ1 with λ1 exp(−2λ2) to get the desired result. □

We now proceed with the proof of Proposition 7.11. We first observe that in the special
case where Ω1,Ω2 are properly convex subsets of real projective space, one can show the
desired result essentially via the following:
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Proposition 7.13. Let a, b, c, d be points in RP1, arranged so that a < b < c < d ≤ a in a
cyclic ordering on RP1. Then there exists a constant λ > 1, depending only on the cross-ratio
[a, b; c, d], so that for all distinct x, y ∈ (b, c), we have

| log[b, c;x, y]| ≥ λ · | log[a, d;x, y]|.

Proposition 7.13 is a standard fact in real projective geometry and can be verified by a
computation. Note that we allow the degenerate case a = d: in this situation the right-hand
side is identically zero for distinct x, y ∈ (b, c). We allow no other equalities among a, b, c, d,
so the cross-ratio [a, b; c, d] lies in R− {1}.

To apply Proposition 7.13 to our situation, we need to get some control on the behavior
of the embeddings ι : G/P+ → P(V ) and ι∗ : G/P− → P(V ∗). We do so in the next three
lemmas below.

Lemma 7.14. Let x, y be distinct points in G/P+. There exists a one-parameter subgroup
gt ⊂ G such that ζ(gt) fixes ι(x) and ι(y), and acts nontrivially on the projective line Lxy

spanned by ι(x) and ι(y).

Proof. We can write x = gP+ for some g ∈ G. Let a denote an abelian subalgebra of the
Lie algebra g of G, such that for a maximal compact K ⊂ G, the exponential map a → G
induces an isometric embedding a → G/K whose image is a maximal flat in G/K.

There is a conjugate a′ of a such that the action of exp(a′) on G/P+ fixes both x and y
(see [Ebe96], Proposition 2.21.14). So, up to the action of G on G/P+, we can assume that
x is fixed by a standard parabolic subgroup P+

θ conjugate to P+, and that x, y are both
fixed by the subgroup exp(a).

We choose Z ∈ a+ so that α(Z) ̸= 0 for all α ∈ θ. Then gt = exp(tZ) is a 1-parameter
subgroup of G fixing x. As t→ +∞, gt is P

+
θ -divergent, with unique attracting fixed point

x.
Then [GGKW17], Lemma 3.7 implies that ζ(gt) is P1-divergent, where P1 is the stabilizer

of a line in V , and ι(x) is the unique one-dimensional eigenspace of ζ(gt) whose eigenvalue
has largest modulus. And, since ζ(gt) fixes ι(x) and ι(y), ζ(gt) preserves Lxy, and acts
nontrivially since the eigenvalues of ζ(gt) on ι(x) and ι(y) must be distinct. □

Lemma 7.15. Let L be any projective line in P(V ) tangent to the image of the embedding
ι : G/P+ → P(V ) at a point ι(x) for x ∈ G/P+. There exists a one-parameter subgroup gt
of G so that ζ(gt) acts nontrivially on L with unique fixed point ι(x).

Proof. Fix a sequence yn ∈ G/P+ such that yn ≠ x and the projective line Ln spanned by
ι(x) and ι(yn) converges to L. By Lemma 7.14, there exists Zn ∈ g so that ζ(exp(tZn)) acts
nontrivially on Ln, with fixed points ι(x) and ι(yn).

In the projectivization P(g), [Zn] converges to some [Z]. Since ζ : G→ PGL(V ) has finite
kernel, there is an induced map ζ : P(g) → P(sl(V )), which satisfies

ζ([Zn]) → ζ([Z]).

A continuity argument shows that the one-parameter subgroup ζ(exp(tZ)) acts nontrivially
on the line L, and has unique fixed point at ι(x). □

Lemma 7.16. Let Ω ⊂ G/P+ be a proper domain, and let L be a projective line in P(V )
which is either spanned by two points in ι(Ω), or is tangent to ι(G/P+) at a point ι(x) for
x ∈ Ω. Then

WL = {v ∈ L : v = ι∗(ξ) ∩ L for ξ ∈ Ω∗}
is a nonempty open subset of L.
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Proof. WL is nonempty since Ω∗ is nonempty. So let v ∈ WL, and choose ξ ∈ Ω∗ so that
ι∗(ξ)∩L = v. We need to show that an open interval I ⊂ L containing v is contained in WL.

If L is spanned by x, y ∈ ι(Ω), then Lemma 7.14 implies that we can find a one-parameter
subgroup gt ∈ G such that ζ(gt) fixes x and y, and acts nontrivially on L. Since Ω∗ is open,
we can find ε > 0 so that gt · ξ ∈ Ω∗ for t ∈ (−ε, ε). Since x and y are in ι(Ω), ι∗(ξ) is
transverse to both x and y, so we have v ̸= x, v ̸= y. Then as t varies from −ε to ε,

ι∗(gt · ξ) ∩ L = ζ(gt) · v

gives an open interval in WL containing v.
A similar argument using Lemma 7.15 shows that the claim also holds if L is tangent to

ι(Ω). □

We can now prove a slightly weaker version of Proposition 7.11, which we will then use to
show the stronger version.

Lemma 7.17. Let Ω1,Ω2 be proper domains in G/P+, with Ω1 ⊂ Ω2, and let K ⊂ Ω1 be
compact. There exists a constant λ > 1 such that for all x, y ∈ K,

CΩ1
(x, y) ≥ λ · CΩ2

(x, y).

Proof. Since K is compact, it suffices to show that for fixed x ∈ Ω1, the ratio

CΩ1
(x, y)

CΩ2
(x, y)

is bounded below by some λ > 1 as y varies in K − {x}.
Let y ∈ K −{x}, and let Lxy denote the projective line spanned by ι(x) and ι(y). Choose

ξ, η ∈ Ω∗
2 so that

CΩ2(x, y) = log |[ι∗(ξ), ι∗(η); ι(x), ι(y)]|.
That is, if v = ι∗(ξ) ∩ Lxy, w = ι∗(η) ∩ Lxy, we have

CΩ2
(x, y) = log |[v, w; ι(x), ι(y)]| = log

|v − ι(y)| · |w − ι(x)|
|v − ι(x)| · |w − ι(y)|

,

where the distances are measured in any identification of Lxy with RP1 = R ∪ {∞}.
We can choose an identification of Lxy with R ∪ {∞} so that either v < ι(x) < ι(y) < w

or v < ι(x) < w < ι(y). In either case, for any v′ ∈ (v, ι(x)) ⊂ Lxy, we have

log |[v′, w; ι(x), ι(y)]| > log |[v, w; ι(x), ι(y)]|.

We know that Ω∗
2 ⊂ Ω∗

1, so ξ, η lie in Ω∗
1. Then Lemma 7.16 implies that there exists

ξ′ ∈ Ω∗
1 so that v′ = ι∗(ξ′) ∩ Lxy lies in the interval (v, ι(x)) ⊂ Lxy. See Figure 8.

Then, we have

CΩ1
(x, y) ≥ log |[ι∗(ξ′), ι∗(η); ι(x), ι(y)]|

= log |[v′, w; ι(x), ι(y)]
> log |[v, w; ι(x), ι(y)]
= CΩ2

(x, y).

This shows that
CΩ1

(x,y)

CΩ2
(x,y) > 1 for all y ∈ K − {x}. We still need to find some uniform λ > 1

so that
CΩ1 (x,y)

CΩ2
(x,y) ≥ λ for all y ∈ K − {x}. To see this, suppose for the sake of a contradiction
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ι(x)

ι(y)

ι∗(ξ)

ι∗(η)

ι∗(ξ′)

Lxy

v

w
v′

ι(Ω1)

ι(Ω2)
ι(x)

ι(y)

ι∗(ξ)

ι∗(η)

ι∗(ξ′)

Lxy

v

w

v′

ι(Ω1)

ι(Ω2)

Figure 8. We can always find ξ′ ∈ Ω∗
1 close to ξ so that the absolute value

of the cross-ratio [ι∗(ξ), ι∗(ν); ι(x), ι(y)] increases when we replace ξ with
ξ′. In particular this is possible even when the sets ι(Ω1), ι(Ω2) fail to be
convex (left) or even connected (right).

that for a sequence yn ∈ K − {x}, we have

(9)
CΩ1

(x, yn)

CΩ2
(x, yn)

→ 1.

Since K is compact, yn must converge to x. Up to subsequence, the sequence of projective
lines Ln spanned by ι(x) and ι(yn) converges to a line L tangent to ι(G/P+) at ι(x).

For each yn, choose ξn, ηn ∈ Ω∗
2 so that

CΩ2(x, yn) = log |[ι∗(ξn), ι∗(ηn); ι(x), ι(yn)]|.

Let vn = ι∗(ξn)∩Ln, wn = ι∗(ηn)∩Ln. Then up to subsequence ξn converges to ξ ∈ Ω∗
2, ηn

converges to η ∈ Ω∗
2, and vn, wn respectively converge to v = ι∗(ξ) ∩ L, w = ι∗(η) ∩ L.

Since x is in Ω2, ι
∗(ξ) and ι∗(η) are both transverse to ι(x)—so in particular x ̸= w and

x ̸= v (although a priori we could have v = w).
Since ξ ∈ Ω∗

2 ⊂ Ω∗
1, Lemma 7.16 implies that there exist ξ′, η′ ∈ Ω∗

1 so that for some
identification of L with R ∪ {∞}, we have

v < ι∗(ξ′) ∩ L < ι(x) < ι∗(η′) ∩ L < w.

Note that this is possible even if v = w, because then we can just identify both v and w
with ∞. Let v′n = ι∗(ξ′) ∩ Ln, and let w′

n = ι∗(η′) ∩ Ln. Respectively, v
′
n and w′

n converge
to v′ = ι∗(ξ′) ∩ L and w′ = ι∗(η′) ∩ L.

This means that the cross-ratios [vn, v
′
n;w

′
n, wn] converge to [v, v′;w′, w] ∈ R− {1}, and

in particular are bounded away from both ∞ and 1 for all n.
We choose identifications of Ln with R∪{∞} so that vn < v′n < ι(x) < w′

n < wn. Since yn
converges to x, for all sufficiently large n, we have v′n < ι(yn) < w′

n. Then, Proposition 7.13
implies that for all n, we have

log |[v′n, ι(x), ι(yn), w′
n]| ≥ λ · log |[vn, ι(x), ι(yn), wn]|

for some λ > 1 independent of n. But then since

CΩ1(x, yn) ≥ log |[ι∗(ξ′), ι∗(η′); ι(x), ι(yn)]|,

we have CΩ1
(x, yn)/CΩ2

(x, yn) ≥ λ for all n, contradicting (9) above. □
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Proof of Proposition 7.11. We fix an open set Ω1.5 such that Ω1 ⊂ Ω1.5 and Ω1.5 ⊂ Ω2.
Since CΩ1(x, y) ≥ CΩ1.5(x, y) for all x, y ∈ Ω1, we just need to see that there is some λ > 1
so that

CΩ1.5(x, y)

CΩ2
(x, y)

≥ λ

for all x, y ∈ Ω1. This follows from Lemma 7.17. □

7.3. Contracting paths are P+-divergent.

Proposition 7.18. Let G be a Γ-graph for a group Γ ⊂ G, and let {Uv} be a G-compatible
system of open sets of G/P+ with each Uv a proper domain.

If αn is a contracting G-path, then the sequence

γn = α1 · · ·αn

is P+-divergent with unique limit point ξ, where {ξ} =
⋂∞

n=1 γnUn+1.

Proof. Consider the sequence of open sets

γn · Uvn+1
.

Up to subsequence, Uvn+1
is a fixed open set U ⊂ G/P+. By assumption {αn} is a contracting

path, so γn · Uvn+1
converges to a singleton {ξ}. So, we apply Proposition 3.6. □

8. A weaker criterion for EGF representations

We have now developed enough tools to be able to prove our weaker characterization of
EGF representations. We first prove a pair of lemmas.

Lemma 8.1. Let (Γ,H) be a relatively hyperbolic pair, let ρ : Γ → G be a representation,
and let P ⊂ G be a symmetric parabolic subgroup. Suppose there exists

(1) a Γ-invariant closed set Λ ⊂ G/P and a continuous equivariant surjective antipodal
map ϕ : Λ → ∂(Γ,H), and

(2) a relative quasigeodesic automaton G and a G-compatible system {Uv} of open subsets
of G/P , such that the Uv’s cover Λ and each Uv is a proper domain intersecting Λ
nontrivially.

Then for every sequence γn ∈ Γ which is unbounded in the coned-off Cayley graph Cay(Γ, S,P),
the sequence ρ(γn) is P -divergent, and every P -limit point of ρ(γn) lies in Λ.

Proof. We will show that every subsequence of γn has a P -contracting subsequence, so
take an arbitrary subsequence of γn. By Lemma 5.7, we may assume that for a bounded

sequence bn ∈ Γ, γnbn is the endpoint of a finite G-path {α(n)
m }Mn

m=1. Up to subsequence bn is
a constant b, independent of n.

Let {vnm} be the vertex path associated to {α(n)
m }. Up to subsequence vnMn+1 is a fixed

vertex v, and vn1 is a fixed vertex v′. Let Uε
v′ be an ε-neighborhood of Uv′ , with ε chosen

sufficiently small so that Uε
v′ is still a proper domain.

The sequence Mn must be unbounded, since the length of γn with respect to the coned-off
Cayley graph metric is at most a fixed constant times Mn. Corollary 7.12 then implies that
the diameter of

ρ(γnb) · Uv = ρ(α
(n)
1 ) · · · ρ(α(n)

Mn
)Uv

with respect to the metric CUε
v′ tends to zero, exponentially in n. Since this sequence of sets

lies in the compact set Uv′ ⊂ Uε
v′ , up to subsequence it must converge to a singleton {ξ} in

G/P . In fact ξ must lie in Λ, because Λ is compact and ξ is the limit of a sequence of points
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in the sequence of nonempty closed sets (ρ(γnb) ·Uv)∩Λ. Then, since ρ(γn) ·ρ(b)Uv converges
to {ξ}, Proposition 3.6 implies that ρ(γn) is P -divergent with unique P -limit ξ. □

Lemma 8.2. Let (Γ,H) be a relatively hyperbolic pair, let ρ : Γ → G be a representation, let
Λ ⊂ G/P be a closed Γ-invariant set, and let ϕ : Λ → ∂(Γ,H) be a continuous equivariant
surjective antipodal map.

Suppose that γn ∈ Γ is a sequence converging to z+ ∈ ∂con(Γ,H), such that ρ(γn) is
P -divergent and every P -limit point of ρ(γ±1

n ) lies in Λ. If γ−1
n converges to z− ∈ ∂(Γ,H),

then for every compact set K ⊂ Opp(ϕ−1(z−)) and every open U containing ϕ−1(z+), for
large enough n, we have ρ(γn)K ⊂ U .

Proof. It suffices to show that every subsequence of γn has a further subsequence satisfying
the desired property. So, we can freely extract subsequences throughout this proof.

We assume P symmetric, so ρ(γ−1
n ) is also P -divergent and has nonempty P -limit set.

Let ξ± be a pair of flags in the P -limit sets of ρ(γ±1
n ), respectively; by assumption we have

ξ± ∈ Λ. By Lemma 3.7, we have a subsequence so that ρ(γn) converges to ξ+ uniformly on
compacts in Opp(ξ−).

Antipodality of ϕ implies that every compact subset of ∂(Γ,H)− {ϕ(ξ−)} is contained in
ϕ(Opp(ξ−) ∩ Λ). Then, by equivariance and continuity of ϕ, we see that γn must converge
to ϕ(ξ+) on compacts in ∂(Γ,H)− {ϕ(ξ−)}. This uniquely characterizes the points ϕ(ξ±) as
the limits of γ±1

n in ∂(Γ,H). So, we see that ρ(γn) converges uniformly to ξ+ ∈ ϕ−1(z+) on
every compact in Opp(ϕ−1(z−)) ⊂ Opp(ξ−), as required. □

We recall the statement of our weaker characterization of EGF representations here:

Proposition 4.6. Let ρ : Γ → G be a representation of a relatively hyperbolic group, and let
Λ ⊂ G/P be a closed ρ(Γ)-invariant set, where P ⊂ G is a symmetric parabolic subgroup.
Suppose that ϕ : Λ → ∂(Γ,H) is a continuous surjective ρ-equivariant antipodal map.

Then ρ is an EGF representation with EGF boundary extension ϕ if and only if both of
the following conditions hold:

(a) For any sequence γn ∈ Γ limiting conically to some point in ∂(Γ,H), ρ(γ±1
n ) is P -

divergent and every P -limit point of ρ(γ±1
n ) lies in Λ.

(b) For every parabolic point p ∈ ∂par(Γ,H), there exists an open set Cp ⊂ G/P , with
Λ − ϕ−1(p) ⊂ Cp, such that for any compact K ⊂ Cp and any open set U containing
ϕ−1(p), for all but finitely many γ ∈ Γp, we have ρ(γ) ·K ⊂ U .

Proof. To see the “only if” part, observe that if we know that ϕ is an EGF boundary
extension, we can use the results of Section 6 to construct an automaton satisfying the
hypotheses of Lemma 8.1, which immediately implies that the first condition holds. The
second condition is immediate from the fact that ϕ extends convergence dynamics.

So, we focus on the “if” part. For each conical limit point z ∈ ∂con(Γ,H), we let Cz =
Opp(ϕ−1(z)). Each Cz contains Λ− ϕ−1(z) by antipodality of ϕ. For each p ∈ ∂par(Γ,H),
we can replace Cp with Opp(ϕ−1(p)) ∩ Cp: this set is still open, and it again contains
Λ− {ϕ−1(p)} by antipodality.

Observe that if γn is a sequence limiting conically to z+ ∈ ∂(Γ,H), with γ−1
n converging

to z−, then Lemma 8.2, together with part (b) of our hypotheses, implies that the map
ϕ : Λ → G/P satisfies both conditions (1) and (2) given at the beginning of Section 6. So,
by Proposition 6.1, we know that there is a relative quasigeodesic automaton G satisfying
the hypotheses of Lemma 8.1.

We now want to show that parts (a) and (b) of our hypotheses show that ϕ is an EGF
boundary extension, so let γn ∈ Γ be a sequence with γ±1

n → z± ∈ ∂(Γ,H). We fix an open
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set U ⊂ G/P containing ϕ−1(z+) and a compact K ⊂ Cz− . Our goal is to show that for
large enough n, we have ρ(γn)K ⊂ U .

We consider two cases:

Case 1: γn is unbounded in the coned-off Cayley graph Cay(Γ, S,P). By Lemma 8.1, ρ(γ±1
n )

is P -divergent, and every P -limit point of ρ(γ±1
n ) lies in Λ. Then we are done by Lemma 8.2.

Case 2: γn is bounded in Cay(Γ, S,P). We can write γn as an alternating product

γn = g
(n)
1 h

(n)
1 · · · g(n)k h

(n)
k g

(n)
k+1,

where g
(n)
i is bounded in Γ, and h

(n)
i lies in Γpn

i
for a parabolic point pni ∈ Π. Without loss

of generality, the h
(n)
i are unbounded in Γ as n → ∞. Up to subsequence we can assume

that g
(n)
i = gi and p

n
i = pi (independent of n). Since Π contains exactly one representative

of each parabolic orbit, we can also assume that gi+1pi+1 ̸= pi for any i.
We claim that γn converges to z+ = g1p1, γ

−1
n converges to z− = g−1

k+1pk, and for any

compact K ⊂ Cz− and open U containing ϕ−1(z+), for large n, we have γn ·K ⊂ U .
Fix such a compact K and open U . We will prove the claim by inducting on k. When

k = 1, then p = p1 = pk, and γn = g1hng2 for hn ∈ Γp and g1, g2 ∈ Γ fixed. The distance

between hng2 and hn is bounded in any word metric on Γ, so hng2 converges to p in Γ and
g1hng2 converges to g1p = z+. We also know that K ⊂ Cz− = Cg−1

2 p, so hng2K eventually

lies in a small neighborhood of ϕ−1(p) by part (b) of our hypotheses. Then g1hng2K lies in
any small neighborhood of ϕ−1(g1p) = ϕ−1(z+).

When k > 1, we consider the sequence

γ′n = g2h
(n)
2 · · · gkh(n)k gk+1.

Inductively we can assume that for large n, γ′n → g2p2 and ρ(γ′n) · K is a subset of an
arbitrarily small neighborhood of ϕ−1(g2p2). Then since p1 ̸= g2p2, for large enough n,
ρ(γ′n) ·K is a compact subset of Cp1

. So our hypotheses imply that for large n,

ρ(γn) ·K = ρ(g1h
(n)
1 )ρ(γ′n) ·K ⊂ U.

□

The arguments above also imply the following characterization of EGF representations.
This result is not needed anywhere else in the paper.

Proposition 8.3. Let (Γ,H) be a relatively hyperbolic pair, let ρ : Γ → G be a representation,
and let P ⊂ G be a symmetric parabolic subgroup. Suppose that there exists a closed Γ-
invariant subset Λ ⊆ G/P and a surjective equivariant antipodal map ϕ : Λ → ∂(Γ,H).

Then ρ is EGF with boundary extension ϕ if and only if for every z ∈ ∂(Γ,H), there
exists an open Cz ⊂ G/P containing Λ− ϕ−1(z), such that:

(a) For any sequence γn ∈ Γ limiting conically to some point z in ∂(Γ,H), with γ−1
n → z−,

any open set U containing ϕ−1(z), and any compact K ⊂ Cz− , we have ρ(γn) ·K ⊂ U
for all sufficiently large n.

(b) For any parabolic point p ∈ ∂(Γ,H), any compact K ⊂ Cp, and any open set U containing
ϕ−1(p), for all but finitely many γ ∈ Γp, we have ρ(γ) ·K ⊂ U .

Proof. The “only if” direction is immediate, so suppose we have a representation satisfying
the hypotheses above. The results of Section 6 imply that there is a relative quasigeodesic
automaton satisfying the hypotheses of Lemma 8.1. We then apply this lemma together
with Proposition 4.6 to obtain the desired result. □



AN EXTENDED DEFINITION OF RELATIVE ANOSOV REPRESENTATION 45

9. Relative stability

In this section we prove the main relative stability property for EGF representations
(Theorem 1.4).

9.1. Deformations of EGF representations. In general, the set of EGF representations is
not an open subset of Hom(Γ, G). However, it is relatively open in a subspace of Hom(Γ, G)
where we restrict the deformations of the peripheral subgroups appropriately. Roughly
speaking, we want to consider subspaces W ⊂ Hom(Γ, G) where the dynamical behavior of
the peripheral subgroups changes continuously under deformation. That is, if ρt is a small
deformation of a representation ρ0, where ρ0(Γp) attracts points towards Λp at a particular
“speed,” then we want ρt(Γp) to attract points towards a small deformation of Λp at a similar
“speed.”

The precise condition is the following:

Definition 9.1. Let ρ0 : Γ → G be an EGF representation with boundary extension
ϕ : Λ → ∂(Γ,H), and let W ⊂ Hom(Γ, G) contain ρ0.

We say that W is peripherally stable at (ρ0, ϕ) if for every p ∈ ∂par(Γ,H), every open set
U containing ϕ−1(p), every compact set K ⊂ Cp, and every cofinite set T ⊂ Γp such that

ρ0(T ) ·K ⊂ U,

there is an open set W ′ ⊂ W containing ρ0, such that for every ρ′ ∈ W ′, we have

ρ′(T ) ·K ⊂ U.

We restate the main result of the paper below:

Theorem 1.4. Let ρ : Γ → G be EGF with respect to P , let ϕ : Λ → ∂(Γ,H) be a boundary
extension, and let W ⊆ Hom(Γ, G) be peripherally stable at (ρ, ϕ). For any compact subset Z
of ∂(Γ,H) and any open set V ⊂ G/P containing ϕ−1(Z), there is an open subset W ′ ⊂ W
containing ρ such that each ρ′ ∈ W ′ is EGF with respect to P , and has an EGF boundary
extension ϕ′ satisfying ϕ′−1(Z) ⊂ V .

Remark 9.2. In [Bow98], Bowditch explored the deformation spaces of geometrically
finite groups Γ ⊂ PO(d, 1), and gave an explicit discription of semialgebraic subspaces of
Hom(Γ,PO(d, 1)) in which small deformations of Γ are still geometrically finite.

Bowditch’s deformation spaces are peripherally stable, so it seems desirable to find a
general algebraic description of peripherally stable subspaces.

Even in PO(d, 1), the question is subtle, however. Bowditch also gives examples of
geometrically finite representations ρ : Γ → PO(d, 1) (for d ≥ 4) and deformations ρt of ρ in
Hom(Γ,PO(d, 1)) such that the restriction of ρt to each cusp group in Γ is discrete, faithful,
and parabolic, but ρt is not even discrete; further examples exist where the deformation is
discrete, but not geometrically finite.

Example 9.3. Let B ∈ SL(d,R) be a d-dimensional Jordan block with eigenvalue 1 and

eigenvector v, and let A ∈ SL(d+ 2,R) be the block matrix
(

B
1
1

)
.

Although [v] is not quite an attracting fixed point of A, it is still an “attracting subspace”
in the sense that if K is any compact subset of RPd+1 which does not intersect a fixed
hyperplane of A, then An · K converges to {[v]}. Via a ping-pong argument, one can
use this “attracting” behavior to show that for some k ≥ 1 and some M ∈ SL(d + 2,R),
the group Γ generated by α = Ak and β = MAkM−1 is a discrete free group with free
generators α, β. The group Γ is hyperbolic relative to the subgroups ⟨α⟩, ⟨β⟩, and the
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inclusion Γ ↪→ SL(d + 2,R) is EGF with respect to P1,d+1 (the stabilizer of a line in a
hyperplane in Rd+2).

Here, there are peripherally stable deformations of Γ which change the Jordan block
decomposition of A. For instance, consider a continuous path At : [0, 1] → SL(d+2,R) given
by At =

(
Bt

1
1

)
, where B0 = B and Bt is a diagonalizable matrix in SL(d,R). For small

values of t, the group Γt generated by αt = Ak
t and β is still discrete and freely generated by

αt and β—since the “attracting” fixed points of At deform continuously with t, the same
exact ping-pong setup works for all small t ≥ 0. And indeed the path in Hom(Γ,SL(d+2,R))
determined by the path At is a peripherally stable subspace.

On the other hand, consider the path A′
t =

(
B

et

e−t

)
, and let α′

t = A′k
t . In this case the

corresponding subspace of Hom(Γ,SL(d+ 2,R)) is not peripherally stable: while the group
generated by α′

t is still discrete, the attracting fixed points of A′
t do not deform continuously

in t. So, there is no way to use the ping-pong setup for Γ to ensure that Γ′
t = ⟨α′

t, β⟩ is a
discrete group.

Example 9.4. Here is a somewhat more interesting example of a non-peripherally stable
deformation. Let M be a finite-volume noncompact hyperbolic 3-manifold, with holonomy
representation ρ : π1M → PSL(2,C) (so there is an identification M = H3/ρ(π1M)). Then
π1M is hyperbolic relative to the collection C of conjugates of cusp groups (each of which is
isomorphic to Z2), and the representation ρ is geometrically finite (in particular, EGF).

In this case, for any sufficiently small nontrivial deformation ρ′ of ρ in the character
variety Hom(π1M,PSL(2,C))/PSL(2,C), the restriction of ρ′ to some cusp group C ∈ C
either fails to be discrete or has infinite kernel. So Hom(π1M,PSL(2,C)) is not peripherally
stable, because any sufficiently small deformation of ρ inside of a peripherally stable subspace
must have discrete image and finite kernel on each C ∈ C. This is true despite the fact that
arbitrarily small deformations of ρ are holonomy representations of complete hyperbolic
structures on Dehn fillings of M (so in particular, they are discrete).

The main ingredient in the proof of Theorem 1.4 is the relative quasigeodesic automaton G
and the associated G-compatible system of open sets {Uv} we constructed in Proposition 6.1.
The following proposition is immediate from the definition of peripheral stability:

Proposition 9.5. Let ρ : Γ → G be an EGF representation with boundary extension ϕ, and
let W ⊂ Hom(Γ, G) be a subspace which is peripherally stable at (ρ, ϕ).

If G is a relative quasigeodesic automaton for Γ, and {Uv} is a G-compatible system of
open subsets of G/P for ρ(Γ), then there is an open subset W ′ ⊂ W containing ρ such that
for every ρ′ ∈ W ′, {Uv} is also a G-compatible system of open sets for ρ′(Γ).

Theorem 1.4 then follows from a kind of converse to Proposition 6.1: we will show that
we can reconstruct a map extending the convergence dynamics of Γ from the G-compatible
system {Uv}.

9.2. An equivariant map on conical limit points. For the rest of this section, we
let ρ : Γ → G be a representation which is EGF with respect to a symmetric parabolic
subgroup P ⊂ G. We let ϕ : Λ → ∂(Γ,H) be a boundary extension for ρ, and assume
that W ⊂ Hom(Γ, G) is peripherally stable at (ρ, ϕ). We also let Z be a compact subset
of ∂(Γ,H), and let V ⊂ G/P be an open subset containing ϕ−1(Z). We again fix a finite
subset Π ⊂ ∂par(Γ,H), containing one point from every Γ-orbit in ∂par(Γ,H).
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Using Proposition 6.1, we can find a relative quasigeodesic automaton G and G-compatible
system {Uv} of open subsets of G/P for ρ(Γ). Using Proposition 6.14, we can ensure that
for any z ∈ Z, there is a G-path {αn} limiting to z (with vertex path {vn}) so that Uv1 is
contained in V .

For each p ∈ Π, we also fix a compact set Kp ⊂ ∂(Γ,H)−{p} such that Γp ·Kp = ∂(Γ,H)−
{p}, and assume that the automaton G has been constructed to satisfy Proposition 6.15.

Antipodality of the map ϕ implies that for each z ∈ ∂(Γ,H), each fiber ϕ−1(z) is a closed
subset of some affine chart in G/P . So, we can also assume that Uv is a proper domain for
each vertex v of G. In fact, by way of the following lemma, we can assume even more:

Lemma 9.6. Let ρ be an EGF representation with boundary map ϕ : Λ → ∂(Γ,H).
For any δ > 0, we can find a relative quasigeodesic automaton G with G-compatible

system {Uv} of open sets in G/P as in Proposition 6.1, so that for any x, y ∈ ∂(Γ,H) with
d(x, y) > δ, if ϕ−1(x) ⊂ Uv and ϕ−1(y) ⊂ Uw, then Uv and Uw are opposite.

Proof. We choose ε > 0 so that if d(v, w) > δ/2 for v, w ∈ ∂(Γ,H), then the closed
ε-neighborhoods of

ϕ−1(v), ϕ−1(w)

are opposite. This is possible for a fixed pair v, w ∈ ∂(Γ,H) since antipodality is an open
condition, and ϕ−1(v), ϕ−1(w) are opposite compact sets. Then we can pick a uniform ε for
all pairs since the the subset {(u, v) ∈ (∂(Γ,H))2 : d(u, v) > δ/2} is compact.

Consider G-compatible systems of open subsets {Uv} and {Wv} for the action of Γ on
G/P and ∂(Γ,H), coming from Proposition 6.1. We can ensure that for each vertex a, the
diameter of Wa is at most δ/4, and Ua ⊂ N(ϕ−1(w), ε) for some w ∈Wa.

If x, y ∈ ∂(Γ,H) satisfy d(x, y) > δ, and x ∈Wa, y ∈Wb, we have

d(v, w) > δ/2

for all v ∈Wa, w ∈Wb.
Then, if ϕ−1(x) ⊂ Ua and ϕ−1(y) ⊂ Ub, we have

Ua ⊂ N(ϕ−1(v), ε), Ub ⊂ N(ϕ−1(w), ε)

for v ∈ Wa, w ∈ Wb with d(v, w) > δ/2. By our choice of ε, the closures of N(ϕ−1(w), ε)
and N(ϕ−1(v), ε) are opposite. □

Using cocompactness of the action of Γ on the space of distinct pairs in ∂(Γ,H), we
know that there exists some fixed δ > 0 such that for any distinct z1, z2 ∈ ∂(Γ,H), we can
find some γ ∈ Γ such that d(γz1, γz2) > δ. Then, in light of Lemma 9.6, we can make the
following assumption:

Assumption 9.7. For any z1, z2 ∈ ∂(Γ,H) satisfying d(z1, z2) > δ, if ϕ−1(z1) ⊂ Uv and
ϕ−1(z2) ⊂ Uw for v, w vertices of G, then Uv and Uw are opposite.

With our relative quasigeodesic automaton G and compatible system of open sets {Uv}
fixed, we now choose an open subset W ′ ⊂ W so that for any ρ′ ∈ W ′, {Uv} is also a
G-compatible system for the action of ρ′(Γ) on G/P . Our main goal for the rest of this
section is to show that any ρ′ ∈ W ′ is an EGF representation. So, we fix some ρ′ ∈ W ′.

Let Path(G) denote the set of infinite G-paths. Proposition 7.3 implies that every path in
Path(G) is contracting for the ρ′-action, so we have a map

ψρ′ : Path(G) → G/P,
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where the path {αn} maps to the unique element of
∞⋂

n=1

ρ′(α1) · · · ρ′(αn)Uvn+1
.

Lemma 9.8. The map ψρ′ : Path(G) → G/P induces an equivariant map

ψρ′ : ∂conΓ → G/P.

Proof. We first need to see that ψρ′ is well-defined, i.e. that if z is a conical limit point and
{αn}, {βn} are G-paths limiting to z, then ψρ′({αn}) = ψρ′({βn}).

Let
γn = α1 · · ·αn, ηm = β1 · · ·βm.

We can use Proposition 5.11 to see that γn and ηm lie within bounded Hausdorff distance
of a geodesic in Cay(Γ, S,P) limiting to z, so there is a fixed D so that for infinitely many
pairs m,n,

d(γn, ηm) < D

in the Cayley graph of Γ. Proposition 7.18 implies that ρ′(γn) and ρ
′(ηn) are both P -divergent

sequences and each have a unique P -limit point in G/P , given by ψρ′({αn}), ψρ′({βm}),
respectively. Then, Lemma 4.23 in [KLP17] implies that because ρ′(γn) = ρ′(ηn)gn for a
bounded sequence gn ∈ G, the P -limit points of ρ′(γn) and ρ

′(ηn) must agree and therefore
ψρ′({αn}) = ψρ′({βm}).

Next we observe that ψρ′ is equivariant. Fix a finite generating set S for Γ. It suffices to
show that ψρ′(s · z) = ρ′(s) · ψρ′(z) for all s ∈ S.

Let {αn} be a G-path limiting to some z ∈ ∂conΓ, and consider the sequence

γ′n = sα1 · · ·αn.

Again, Proposition 5.11 implies that γ′n lies bounded Hausdorff distance from a geodesic
in Cay(Γ, S,P), which must limit to s · z. So if we fix a G-path βn limiting to s · z, the same
argument as above shows that ψρ′({βn}) = ρ′(s) · ψρ′({αn}). □

It will turn out that ψρ′ is also both continuous and injective. However, we do not prove
this directly.

9.3. Extending ψρ′ to parabolic points. We want to extend the map ψρ′ : ∂conΓ → G/P
to the entire Bowditch boundary ∂(Γ,H). To do so, we need to view ψρ′ as a map to the set
of closed subsets of G/P .

The first step is to define ψρ′ on the finite set Π ⊂ ∂parΓ. For any vertex v in G, we
consider the set

Bv =
⋃

(v,y) edge in G

Uy.

Then, for each p ∈ Π, we pick a parabolic vertex w so that pw = p. We define Λ′
p to be

the closure of the set of accumulation points of sequences of the form ρ′(γn) · x, for x ∈ Bw

and γn distinct elements of Γp. Part (3) of Proposition 6.1 guarantees that Bw ⊂ Cp, and
G-compatiblity of the system {Uv} for the ρ′(Γ)-action on G/P implies that Λ′

p ⊂ Uw. By
construction, Λ′

p is invariant under the action of ρ(Γp).
Next, given a parabolic point q ∈ ∂parΓ, we write q = g · p for p ∈ Π, and then define

ψρ′(q) := ρ′(g)Λ′
p.

Since Λ′
p is Γp-invariant and Γp is exactly the stabilizer of p, this does not depend on the

choice of coset representative in gΓp. Moreover ψρ′ is still ρ′-equivariant.
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In addition, if v is any parabolic vertex with parabolic point pv = g · p for p ∈ Π, part
(2) of Proposition 6.1 ensures that Bv = Bw for any parabolic vertex w with pw = p. So,
ρ′(g) · Λ′

p is exactly the closure of the set of accumulation points of the form ρ′(gγn) · x for
sequences γn ∈ Γp and x ∈ Bv. Then G-compatibility implies that ψρ′(pv) = ρ(g)Λ′

p is a
subset of Uv.

Remark 9.9. There is a natural topology on the space of closed subsets of G/P , induced
by the Hausdorff distance arising from some (any) choice of metric on G/P . We emphasize
that the map ψρ′ is not necessarily continuous with respect to this topology.

Ultimately we want to use ψρ′ to define a map extending the convergence dynamics of Γ,
so we will need to also define the sets C ′

z for each z ∈ ∂(Γ,H). For now, we only define C ′
p

for p ∈ Π: this will be the set ⋃
γ∈Γp

ρ′(γ)Bw.

We can immediately observe:

Proposition 9.10. C ′
p is ρ′(Γp)-invariant. Moreover, for any infinite sequence γn ∈ Γp, any

compact K ⊂ C ′
p, and any open U ⊂ G/P containing Λ′

p, for sufficiently large n, ρ′(γn) ·K
lies in U .

Proof. Γp-invariance follows directly from the definition.
Fix a compact K ⊂ C ′

p and an open U ⊂ G/P containing Λ′
p. K is contained in finitely

many sets ρ′(γ)Bw for γ ∈ Γp, so any accumulation point of ρ′(γn)x for x ∈ K and γn ∈ Γp

lies in Λ′
p. In particular, for sufficiently large n, γnx lies in U , and since K is compact we

can pick n large enough so that γnx ∈ U for all x ∈ K. □

We next want to use ψρ′ to define an antipodal extension from a subset of G/P to ∂(Γ,H).

Lemma 9.11. For any z ∈ ∂(Γ,H), if {αn} is a G-path limiting to z with corresponding
vertex path {vn}, then ϕ−1(z) and ψρ′(z) are both subsets of Uv1 .

Proof. If z is a conical limit point, then this follows immediately from Proposition 5.11 and
the definition of ψρ′ . On the other hand, if z is a parabolic point, then z = α1 · · ·αNpv, where
v is a parabolic vertex at the end of the vertex path {vn}. By part (3) of Proposition 6.1,
we have pv ∈Wv and thus ϕ−1(pv) ⊂ Uv. By ρ-equivariance of ϕ we have

ϕ−1(z) = ρ(α1 · · ·αN )ϕ−1(pv),

so by G-compatibility we have ϕ−1(z) ⊂ Uv1 . On the other hand, we have constructed
ψρ′ so that ψρ′(pv) ⊂ Uv, so ρ′-equivariance of ψρ′ and G-compatibility also show that
ψρ′(z) ⊂ Uv1 . □

Lemma 9.12. For any two distinct points z1, z2 in ∂(Γ,H), the sets

ψρ′(z1), ψρ′(z2)

are opposite (in particular disjoint).

Proof. We know that for any distinct z1, z2 > 0, we can find γ ∈ Γ so that d(γz1, γz2) > δ. So,
since ψρ′ is ρ′-equivariant, we just need to show that if z1, z2 ∈ ∂(Γ,H) satisfy d(z1, z2) > δ,
then ψρ′(z1) is opposite to ψρ′(z2).

Let {αn}, {βn} be G-paths respectively limiting to points z1, z2 ∈ ∂(Γ,H) with d(z1, z2) >
δ, with corresponding vertex paths {vn} and {wn}. By Lemma 9.11, we must have ϕ−1(z1) ⊂
Uv1 and ϕ−1(z2) ⊂ Uw2

, so under Assumption 9.7, we know that Uv1 and Uw1
are opposite.
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But then we are done since Lemma 9.11 also implies that ψρ′(z1) ⊂ Uv1 and ψρ′(z2) ⊂
Uw1 . □

9.4. The boundary set of the deformed representation. We define our candidate
boundary set Λ′ ⊂ G/P by

Λ′ =
⋃

z∈∂(Γ,H)

ψρ′(z).

We then have an equivariant map

ϕ′ : Λ′ → ∂(Γ,H),

where ϕ′(x) = z if x ∈ ψρ′(z). Lemma 9.12 implies that ϕ′ is well-defined and antipodal.
It is necessarily both surjective and ρ′-equivariant, and its fibers are either singletons or
translates of the sets Λ′

p for p ∈ Π.
It now remains to verify the properties of the candidate set Λ′ and the map ϕ′ needed to

show that ϕ′ is an EGF boundary extension.

Lemma 9.13. For every vertex v of G, the intersection Λ′ ∩ Uv is nonempty.

Proof. The construction in Section 6 ensures that every vertex of the automaton G has at
least one outgoing edge. In particular this means that for a given vertex v, there is an infinite
G-path whose first vertex is v. This G-path limits to a conical limit point z, and Lemma 9.11
implies that ψρ′(z) is a (nonempty) subset of both Uv and Λ′. □

Lemma 9.14. For any z ∈ Z, we have ϕ′−1(z) ⊂ V .

Proof. Recall that we used Proposition 6.14 to construct our automaton so that for any
z ∈ Z, there is a G-path limiting to z with vertex path {vn} such that Uv1 ⊂ V . Then
Lemma 9.11 implies ϕ′−1(z) ⊂ V . □

Lemma 9.15. Λ′ is compact.

Proof. Fix a sequence yn ∈ Λ′, and let xn = ϕ′(yn). Since ∂(Γ,H) is compact, up to
subsequence xn → x. We want to see that a subsequence of yn converges to some y ∈ Λ′.
We consider two possibilities:

Case 1: x is a parabolic point. We can write x = g · p, where p ∈ Π. Let w be a parabolic
vertex with pw = p, and consider the compact set Kp ⊂ ∂(Γ,H) − {p}, chosen so that
Γp ·K = ∂(Γ,H)− {p}. If xn = q for infinitely many n, we are done, so assume otherwise,
and choose γn ∈ Γp so that zn = γ−1

n g−1xn ∈ Kp.
We have assumed (using Proposition 6.15) that the automaton G has been constructed

so that there is always a G-path limiting to zn whose first vertex vn is connected to w by
an edge (w, vn). Lemma 9.11 implies that ϕ′−1(zn) lies in Un, which is contained in C ′

p by
definition.

Then using Proposition 9.10, we know that up to subsequence,

ρ′(γn)ϕ
′−1(zn) = ρ′(γn)ϕ

′−1(γ−1
n g−1xn)

converges to a compact subset of Λ′
p, which means that

yn ∈ ρ′(g)ρ′(γn)ϕ
′−1(γ−1

n g−1xn)

subconverges to a point in ρ′(g)Λ′
p.
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Case 2: x is a conical limit point. We want to show that any sequence in ϕ′−1(xn) limits
to ϕ′−1(x), so fix any ε > 0. Using Corollary 7.12, we can choose N so that if {αm} is any
G-path limiting to x, with corresponding vertex path {vm}, then the diameter of

ρ′(α1 · · ·αN )UvN+1

is less than ε with respect to a metric on Uv1 . We fix such a G-path {αm}. Then, we use
Lemma 5.15 to see that for sufficiently large n, there is a G-path {βn

m} limiting to xn with
βi = αi for i ≤ N . Thus the Hausdorff distance (with respect to CUv1

) between ϕ′−1(xn) and

ϕ′−1(x) is at most ε. Since ϕ′−1(xn) and ϕ
′−1(x) both lie in the compact set ρ′(α1)Uv2 ⊂ Uv1 ,

this proves the claim.
□

Lemma 9.16. ϕ′ is continuous and proper.

Proof. Since Λ′ is compact, we just need to show continuity. Fix y ∈ Λ′ and a sequence
yn ∈ Λ′ approaching y. We want to show that ϕ′(yn) approaches ϕ

′(y) = x.
Suppose otherwise. Since ∂(Γ,H) is compact, up to a subsequence zn = ϕ′(yn) approaches

z ̸= x. Using the equivariance of ϕ′, and cocompactness of the Γ-action on distinct pairs in
∂(Γ,H), we may assume that d(x, z) > δ. For sufficiently large n, we have d(x, zn) > δ as
well. Then, as in the proof of Lemma 9.12, by Assumption 9.7 we know that for any vertices
v, w in G such that Uv contains ψρ′(x) and Uw contains ψρ′(zn), the intersection Uv ∩ Uw is
empty.

But by definition of ϕ′, we have

y ∈ ψρ′(x) ⊂ Uv, yn ∈ ψρ′(zn) ⊂ Uw

for vertices v, w in G. This contradicts the fact that yn → y. □

9.5. Dynamics on the deformation. To complete the proof of Theorem 1.4, we just need
to show:

Proposition 9.17. The map ϕ′ extends the convergence group action of Γ.

Proof. We will apply Proposition 4.6. The preceding arguments show that the relative
quasi-geodesic automaton G, the map ϕ′ : Λ′ → ∂(Γ,H), and the G-compatible system {Uv}
satisfy the hypotheses of Lemma 8.1. This immediately implies that the first condition of
Proposition 4.6 is satisfied.

To see that the second condition is also satisfied, let q be a parabolic point in ∂(Γ,H),
and write q = g · p for p ∈ Π, and then take C ′

q = ρ′(g) · C ′
p. Proposition 9.10 says that for

any p ∈ Π, any compact K ⊂ C ′
p, and any open U ⊂ G/P containing Λ′

p, if γn is an infinite

sequence in Γp, then ρ
′(γn) ·K ⊂ U for sufficiently large n. Then, since Γq = gΓpg

−1, the
same is true for any parabolic point q.

So, we just need to check that for each p ∈ Π, C ′
p contains Λ′ − Λ′

p. We consider the
compact set Kp ⊂ ∂(Γ,H) − {p} satisfying ΓpKp = ∂(Γ,H) − {p}. We observed in the
proof of Lemma 9.15 that C ′

p contains ϕ′−1(Kp). But then since C ′
p is ρ′(Γp)-invariant (by

Proposition 9.10), we have

ρ′(Γp) · ϕ′−1(Kp) = ϕ′−1(∂(Γ,H)− {p}) ⊂ C ′
p.

□

Remark 9.18. The definition of the set Λ′ and the map ϕ′ immediately imply that the
fibers of the deformed boundary extension ϕ′ : Λ′ → ∂(Γ,H) satisfy the conclusions of
Proposition 4.8: the fiber over each conical limit point is a singleton, and the fiber over each
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parabolic point p is the closure of the accumulation sets of Γp-orbits in C
′
p. So, we obtain

Proposition 4.8 by taking W to be the singleton {ρ}, and following the proof of Theorem 1.4
(using Cp for C ′

p throughout).

Appendix A. Contraction dynamics on flag manifolds

Let V be a real vector space, and let An be a sequence of elements of PGL(V ). It is
sometimes possible to determine the global dynamical behavior of An on P(V ) by considering
the action of An on a small open subset of P(V ): if there is an open subset U ⊂ P(V ) such
that An ·U converges to a point in P(V ), then in fact there is a dense open subset U− ⊂ P(V )
(the complement of a hyperplane) on which An converges to the same point, uniformly on
compacts.

A similar statement holds for the action of An on Grassmannians Gr(k, V ). These claims
can be proved by considering the behavior of the singular value gaps of An as n→ ∞.

In this appendix we give a general result along these lines, where we take sequences of
group elements gn ∈ G for a semisimple Lie group G with no compact factor and trivial
center, and consider the limiting behavior of gn on open subsets of some flag manifold G/P+,
where P+ is a parabolic subgroup.

Proposition 3.6. Let gn be a sequence in G, and suppose that for some nonempty open
subset U ⊂ G/P+, we have gn · U → {ξ} for ξ ∈ G/P+. Then gn is P+-divergent, and has
a unique P+-limit point ξ ∈ G/P+.

We will prove Proposition 3.6 by reducing it to the case where G = PGL(d,R) and
P+ = P1 is the stabilizer of [e1] ∈ RPd−1 ≃ G/P1. In this situation, P+-divergence can be
understood in terms of the behavior of the singular value gaps of the sequence gn:

Proposition A.1. Suppose that G = PGL(d,R), and let P+ = P1 ⊂ G be the stabilizer of
a line in Rd. A sequence gn ∈ G is P1-divergent if and only if

σ1(gn)

σ2(gn)
→ ∞,

where σi(gn) is the ith-largest singular value of gn.

For convenience, we give a proof of Proposition 3.6 in this special case.

Lemma A.2. Let gn be a sequence in PGL(d,R), and suppose that for a nonempty open
subset U ⊂ RPd−1, gnU converges to a point in RPd−1. Then, the singular value gap

σ1(gn)

σ2(gn)

tends to ∞ as n→ ∞.

Proof. It suffices to show that any subsequence of gn has a subsequence which satisfies the
property. Using the Cartan decomposition of PGL(d,R), we can write

gn = knank
′
n,

for kn, k
′
n ∈ K = PO(d) and an a diagonal matrix whose diagonal entries are σ1, . . . , σd.

Up to subsequence kn and k′n converge respectively to k, k′ ∈ K. For sufficiently large n,
k′nU ∩ k′U is nonempty, so by replacing U with k′U we can assume that k′n = id for all n.
Furthermore, if knanU converges to a point z ∈ RPd−1, then anU converges to k−1z.

So, anU converges to a point, and since an is a diagonal matrix, the gap between the
moduli of its largest and second-largest eigenvalues must be unbounded. □
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To prove the general case of Proposition 3.6, we take an irreducible representation
ζ : G→ PGL(V ) coming from Theorem 7.4, so that P+ maps to the stabilizer of a line ℓ in
V , P− maps to the stabilizer of a hyperplane H in V , and gP+g−1, hP−h−1 are opposite
if and only if ζ(g)ℓ, ζ(h)H are transverse. As in section 7, this determines embeddings
ι : G/P → P(V ) and ι∗ : G/P− → P(V ∗) by

ι(gP+) = ζ(g)ℓ, ι∗(gP−) = ζ(g)H.

The representation ζ additionally has the property that for any sequence gn ∈ G, the
singular value gaps

σ1(ζ(gn))/σ2(ζ(gn))

are unbounded if and only if gn is P+-divergent (see [GGKW17], Lemma 3.7).

Proof of Proposition 3.6. By [Zim18], Lemma 4.7, there exist flags ξ1, . . . , ξD ∈ U so that
lifts of ι(ξi) give a basis of V . Since gn · U converges to a point in G/P , the set

{ζ(gn) · ι(ξi) : 1 ≤ i ≤ D}
converges to a single point in P(V ).

This means that we can fix lifts ˜ι(ξi) ∈ V so that, up to a subsequence, ζ(gn) takes the
projective (D − 1)-simplex [

D∑
i=1

λi ˜ι(ξi) : λi > 0

]
⊂ P(V )

to a point. This simplex is an open subset of P(V ). Now we can apply Lemma A.2 to see
that the sequence gn is P+-divergent.

We now just need to check that ξ is the unique P+-limit point of gn. Choose any
subsequence of gn. Then any P+-contracting subsequence gm of this subsequence satisfies

gm|Opp(ξ−) → ξ′

uniformly on compacts for some ξ− ∈ G/P− and ξ′ ∈ G/P+. But since Opp(ξ−) is open
and dense, it intersects U nontrivially and thus ξ′ = ξ. □
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