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Abstract. We study properties of “hyperbolic directions” in groups acting co-

compactly on properly convex domains in real projective space, from three dif-

ferent perspectives simultaneously: the (coarse) metric geometry of the Hilbert
metric, the projective geometry of the boundary of the domain, and the sin-

gular value gaps of projective automorphisms. We describe the relationship

between different definitions of “Morse” and “regular” quasi-geodesics arising
in these three different contexts. This generalizes several results of Benoist

and Guichard to the non-Gromov hyperbolic setting.
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1. Introduction

Group actions on Hn have classically played a pivotal role in the study of
discrete subgroups of Lie groups, geometric topology, and geometric group the-
ory. Hyperbolic geometry provides a strong link between these fields, since hy-
perbolic manifolds (whose holonomy representations have discrete images lying in
PO(n, 1) ≃ Isom(Hn)) give some of the most important examples of geometric
structures on manifolds, and the properties of hyperbolic space are effectively coar-
sified via the theory of Gromov-hyperbolic groups.

It is thus natural to try and find a substitute for hyperbolic geometry which
extends this connection beyond the negative curvature setting. In particular, one
would like to find a model geometry which facilitates the study of discrete subgroups
of higher-rank Lie groups, such as SL(d,R) for d ≥ 3. One reasonable possibility to
consider is the non-positively curved Riemannian symmetric space SL(d,R)/SO(d),
but actions on the symmetric space are often unsatisfyingly rigid. For instance,

Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig
E-mail addresses: mitul.islam@mis.mpg.de, weisman@mis.mpg.de.
Date: May 7, 2024.

1



2 MORSE PROPERTIES IN CONVEX PROJECTIVE GEOMERTY

when d ≥ 3, any discrete Zariski-dense subgroup of SL(d,R) which acts cocompactly
on a convex subset of SL(d,R)/ SO(d) is a uniform lattice in SL(d,R) [Qui05, KL06].

Convex projective geometry fills this gap by providing examples of natural spaces—
properly convex domains—for discrete subgroups of SL(d,R) to act on. A prop-

erly convex domain Ω is an open subset of real projective space P(Rd), which is
bounded in some affine chart. Such a domain can be equipped with its Hilbert
metric dΩ, and the group Aut(Ω) ⊂ PGL(d,R) of projective transformations pre-

serving Ω acts by isometries of this metric. When Ω is a round ball in P(Rd+1), then
Aut(Ω) ≃ PO(d, 1) and the space (Ω,dΩ) is precisely the projective Beltrami-Klein

model of the real hyperbolic space Hd. By virtue of this example, convex pro-
jective geometry can be viewed as a far-reaching generalization of real hyperbolic
geometry. This viewpoint has been of much interest lately, and consequently convex
projective geometry has developed close connections with higher Teichmüller theory
(see e.g. [Gol90, CG93, GW08, Wie18]) and the theory of Anosov representations
[DGK17, Zim21].

Outside of coarse negative curvature, however, convex projective geometry can
also be used to model examples which have a mixture of “negatively curved” and
“flat” behavior. This allows for the study of discrete subgroups of Lie groups which
have markedly different behavior from those in rank one. For instance, consider a
closed 3-manifold M with a geometric decomposition along a nonempty collection
of tori, into pieces whose interiors admit finite-volume complete hyperbolic struc-
tures. Benoist [Ben06a] constructed examples of such 3-manifolds M which are
diffeomorphic to a quotient Ω/Γ, where Ω is a properly convex domain and Γ is a
discrete subgroup of Aut(Ω) In this case, Γ ≃ π1M , is relatively hyperbolic relative
to 2-flats and the domain Ω is quasi-isometric to π1(M).

In this above example, the projective structure on the manifold Ω/Γ is not
“non-positively curved,” in the sense that Ω equipped with its Hilbert metric dΩ
is not a CAT(0) metric space. In fact, a classical theorem states that a Hilbert
geometry (Ω,dΩ) is CAT(0) if any only if Ω is equivalent to the projective model
of hyperbolic space [KS58]. Despite this, convex projective domains share some
striking similarities with CAT(0) geometry. Lately, there has been much activity
in understanding these similarities [IZ23, Isl, Wei23, Bob21, IZ21, Bla21]. A key
upshot of these recent developments is the realization that irreducible properly
convex domains with a cocompact action essentially come in two flavors: rank one
and higher rank [Isl, Zim23]. The higher-rank domains are special, and have a
complete classification. On the other hand, many different examples of rank one
domains have been constructed [Ben06b, Ben06a, Kap07, CLM16, BDL18, BV23],
and their classification seems difficult. These domains are characterized by the
presence of abundant “negatively curved behavior” (see Section 1.4.2).

Summary of results. Motivated by this, we initiate in this paper a study of “hyper-
bolic” geodesic directions in (Ω,dΩ). We are mainly interested in the case where
there is a discrete subgroup Γ ⊂ Aut(Ω) acting cocompactly on Ω; in this situation,
following Benzécri [Ben60] and Benoist [Ben08], we say that Γ divides Ω and that
Ω is divisible. We consider projective geodesic rays in a divisible domain Ω, i.e.
geodesic rays c : [0,∞) → Ω whose image is a projective line segment, and se-
quences {γn} in Γ whose orbits give a coarse approximation of c. In this paper we
understand “hyperbolicity” of these geodesic rays from three different perspectives:
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(I) The coarse metric geometry of the space (Ω,dΩ). In this context, there
are two notions of “hyperbolic geodesic” which are relevant for this paper: Morse
geodesics, which are geodesics which satisfy the same “Morse” or “quasi-geodesic
stability” property as geodesics in hyperbolic spaces, and contracting geodesics,
whose nearest-point projection maps have a similar “contracting” property as hy-
perbolic geodesics. In CAT(0) spaces, Morse and contracting geodesics coincide;
we prove that the same is true for Hilbert geometries (Theorem 1.16).
(II) The linear algebraic behavior of the sequence {γn} in SL(d,R). Here,
our understanding of “hyperbolicity” of a geodesic comes from results of Benoist
[Ben04], Bochi-Potrie-Sambarino [BPS19], and Kapovich-Leeb-Porti [KLP17], im-
plying that a discrete group Γ ⊆ Aut(Ω) acting cocompactly on Ω is Gromov-
hyperbolic if and only if the singular values of Γ satisfy a uniform exponential gap
condition along all geodesics in Γ. Thus we understand “hyperbolic directions” as
geodesics in Γ whose singular value gaps satisfy a similar exponential growth condi-
tion. This perspective is closely tied to the notion of a k-Morse quasi-geodesic in the
Riemannian symmetric space SL(d,R)/SO(d), introduced by Kapovich-Leeb-Porti
[KLP18].
(III) The projective geometry of the boundary of the domain Ω. Our
motivation for this perspective comes from results of Benoist [Ben04] and [Gui05],
which imply that, if Γ is a discrete hyperbolic group dividing a domain Ω, then the
boundary of Ω is a Cα hypersurface in projective space for some α > 1. From this
perspective, the “hyperbolicity” of a geodesic ray c in a general divisible domain Ω
is captured by the local regularity of the hypersurface ∂Ω at the endpoint of c.

Our main aim in this paper is to establish relationships between geodesics satisfy-
ing various versions of these notions of “hyperbolicity.” Many of these relationships
(in the case of a projective geodesic c in a convex divisible domain with exposed
boundary, see Definition 2.2) are summarized in Figure 1 below.

strongly unif.
1-regular

uniformly
1-regular

β-convex

contracting Morse +

1-Morse
(KLP)

strongly unif.
(d− 1)-regular

uniformly
(d− 1)-regular

Cα-regular

1.16
1.6
1.8

1.12

1.12

Figure 1. Relationships between various notions of “hyperbolic-
ity” for a projective geodesic in a convex divisible domain with
exposed boundary.

Before giving precise theorem statements in the next section, we briefly outline
the main results expressed by this diagram. Theorem 1.6 and Theorem 1.8 relate
perspectives (I) and (II) above. These theorems show that, if c is a projective geo-
desic in a divisible domain tracked by a sequence {γn}, then Morseness of c (in the
sense of (I)) is characterized by the behavior of singular value gaps of the sequence
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{γn}. In particular, this implies that for projective geodesics, the Kapovich-Leeb-
Porti notion of “1-Morseness” for quasi-geodesics in symmetric spaces coincides
with the coarse metric notion of Morseness in (I) (Corollary 1.10).

Theorem 1.12 in the diagram directly relates perspectives (II) and (III). The the-
orem concerns projective geodesics c whose endpoint c(∞) in ∂Ω satisfies a certain
regularity property; roughly, this property asserts that if ∂Ω is locally the graph
of a convex function f(x) near c(∞), then f is sandwiched between C1 ∥x∥α and

C2 ∥x∥β for some α > 1 and β < ∞. We prove that this property is characterized
by the behavior of the singular values of the sequence {γn}, and give a formula for
the optimal constants α and β in terms of these singular values. Via the results
alluded to in the previous paragraph, this also relates perspectives (I) and (III),
and shows that every Morse quasi-geodesic in the sense of (I) satisfies the regularity
property mentioned above. However, the converse to this statement turns out to
be false (see Theorem 1.9). Effectively, this theorem says that the reverse of the
implications “strong uniform regularity” =⇒ “uniform regularity” in Figure 1 do
not always hold.

Statement of the main results. We now provide a more detailed and precise
account of the main results in the paper.

1.1. M-Morse geodesics and uniform regularity.

Definition 1.1. Let (X, d) be a proper geodesic metric space andM : R≥0 ×R≥0 →
R≥0 be any function. A geodesic (segment, ray, line) ℓ is M -Morse if any (λ, a)-
quasi-geodesic ℓ′ with endpoints x, y ∈ ℓ lies in the M(λ, a)-neighborhood of ℓ.

The function M is called a Morse gauge for the geodesic ℓ. At times, we will
skip explicit mention of the Morse gauge and only say that ℓ is Morse, instead of ℓ
is M -Morse.

Geodesic rays in H2 are all M0-Morse for a fixed Morse gauge M0. On the
other hand, flat spaces like R2 and higher rank CAT(0) spaces like H2 ×H2 or
SL(3,R)/ SO(3) do not contain any Morse geodesics. The results in [Isl] and [Zim23]
indicate that a “generic” divisible domain Ω has many Morse geodesics that project
to closed geodesics in the quotient Ω/Γ (see Section 1.4.2). It is also straightforward
to check (see Section 3) that any M -Morse geodesic ray in a convex projective
domain Ω is uniformly close to a projective geodesic ray.

We would like to understand the Morseness of a projective geodesic ray by study-
ing the sequence of automorphisms that approximates the ray via an orbit map.
To make this precise, we use the following terminology throughout this paper.

Definition 1.2 (Tracking sequences). Let Ω be a properly convex domain, c :
[0,∞) → Ω be a projective geodesic ray, x0 ∈ Ω, and R > 0. We say that a
sequence {γn}n∈N in Aut(Ω) R-tracks c with respect to x0 if dΩ(x0, γ

−1
n c(n)) < R

for every n ∈ N.

Remark 1.3. While discussing tracking sequences, unless necessary we will omit
the specific constant R and the basepoint x0, and simply say that {γn} tracks c.
Note that if Ω/Γ is compact, then every geodesic is R-tracked by some sequence
in Γ for R = diam(Ω/Γ). Also, by definition, {γn} tracks c along a sequence of
equally-spaced points {c(n)}. One can consider other kinds of sequences, but we
do not pursue this here.
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Now, for any g ∈ GL(d,R), let σ1(g) ≥ . . . ≥ σd(g) be the singular values of g,

and for any 1 ≤ i < j ≤ d, let µi,j(g) := log σi(g)
σj(g)

. Note that µi,j descends to a

well-defined map on PGL(d,R).

Definition 1.4. For 1 ≤ k < d, we say that a sequence {gn} in GL(d,R) is
uniformly k-regular if it is divergent (it leaves every compact set in GL(d,R)) and

lim inf
n→∞

µk,k+1(gn)

µ1,d(gn)
> 0.

We say that the sequence {gn} is strongly uniformly k-regular if it is divergent and
there are constants C,N > 0 such that for all n,m ∈ N with m > N , we have

µk,k+1(g
−1
n gn+m)

µ1,d(g
−1
n gn+m)

> C.

Remark 1.5. It is immediate that a strongly uniformly k-regular sequence is also
uniformly k-regular. In general, the converse does not hold; the construction in
Section 7 of this paper provides a counterexample.

Note that our definition of “uniform regularity” is slightly different from defini-
tions appearing in the work of Kapovich-Leeb-Porti [KLP17, KLP18, KL18]. This
is unavoidable as the definitions of uniform regularity appearing in those papers
are not mutually consistent. Our “strongly uniformly regular” sequences coincide
with the “coarsely uniformly regular” sequences defined in [KLP18].

We prove the following:

Theorem 1.6 (Section 5). Suppose Ω is a properly convex domain, c : [0,∞) → Ω
is a geodesic ray, and {γn} R-tracks c with respect to x0 ∈ Ω. If c is M -Morse,
then {γn} is strongly uniformly k-regular for both k = 1 and k = d− 1.

Moreover, the constants C,N in the definition of strong uniform regularity de-
pend only on M , R, and the basepoint x0 ∈ Ω.

This theorem implies in particular that Morse geodesics give rise to uniformly
regular sequences. We express this via the corollary below.

Corollary 1.7. Suppose that Ω is a properly convex domain, c is a projective
geodesic ray, and {γn} R-tracks c with respect to x0 ∈ Ω. For any Morse gauge M ,
there exists ξ = ξ(M,R, x0) > 1 so that

lim inf
n→∞

µ1,d(γn)

µ1,d−1(γn)
> 1 +

1

ξ − 1
and lim sup

n→∞

µ1,d(γn)

µ1,2(γn)
< ξ.

If we impose additional assumptions on the domain Ω, then a partial converse
to Theorem 1.6 also holds. Specifically, we have the following:

Theorem 1.8 (Section 5). Let Ω be a convex divisible domain with exposed bound-
ary and let c be a projective geodesic ray in Ω. Suppose {γn} R-tracks c with respect
to x0 ∈ Ω. If {γn} is strongly uniformly k-regular for k = 1 and k = d− 1, then c
is M -Morse for some Morse gauge M .

Moreover, M can be chosen to depend only on x0, R, and the constants in the
definition of strong uniform k-regularity.

We provide the precise definition of a convex projective domain with exposed
boundary in Definition 2.2. The additional assumptions on Ω in Theorem 1.8 are
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necessary, as is the assumption that c is a projective geodesic; see Example 5.5 and
Example 5.6.

Together, Theorem 1.6 and Theorem 1.8 show that, when Ω is a convex divisible
domain with exposed boundary, it is possible to completely characterize (projective)
Morse geodesics in terms of the singular values of tracking sequences. We also
show that the weaker uniform regularity condition in Corollary 1.7 does not imply
Morseness:

Theorem 1.9 (Section 7). There exists a convex divisible domain Ω with exposed
boundary, a projective geodesic ray c, and a sequence {γn} tracking c so that {γn} is
both uniformly 1-regular and uniformly (d− 1)-regular, but not strongly uniformly
1-regular. In particular, due to Theorem 1.6, c is not M -Morse for any Morse
gauge M .

1.1.1. k-Morseness in symmetric spaces. In [KLP18], Kapovich-Leeb-Porti devel-
oped a notion of “Morseness” for quasi-geodesics in certain symmetric spaces. If
X is the Riemannian symmetric space PGL(d,R)/PO(d), then a quasi-geodesic
ray q : [0,∞) → X is k-Morse in the sense of Kapovich-Leeb-Porti if it satis-
fies a “higher-rank Morse property” with respect to the Grassmannian of k-planes
Gr(k, d), viewed as a space of simplices in the visual boundary of X. This property
says that q lies in a bounded neighborhood of a Euclidean Weyl sector asymptotic
to a k-plane in Gr(k, d).

In the same paper, Kapovich-Leeb-Porti proved a higher-rank Morse lemma,
characterizing Morse quasi-geodesics in terms of their uniform regularity. Applying
this result with Theorem 1.6 and Theorem 1.8, we obtain the following:

Corollary 1.10. Let Ω be a convex divisible domain with exposed boundary, let
c : [0,∞) → Ω be a projective geodesic, and let {γn} be a sequence in Aut(Ω)
which tracks c. Then c is a Morse geodesic if and only if the mapping N →
PGL(d,R)/PO(d) given by n 7→ γn PO(d) is a 1-Morse quasi-geodesic in the sense
of Kapovich-Leeb-Porti.

1.2. Uniform regularity and boundary regularity. We now relate the singular
value gap conditions appearing in Theorem 1.6 and Corollary 1.7 to the smoothness
or regularity of the boundary ∂Ω at the endpoint of a projective geodesic. The
boundary ∂Ω is a convex hypersurface in P(Rd), meaning it is locally the graph of

a convex function f : Rd−2 → R. Typically, this hypersurface is nowhere C1, but
we can still make sense of local regularity using convexity.

We say that a point z ∈ ∂Ω is a C1 point if there is a unique supporting hyper-
plane of Ω at z, i.e. a hyperplane containing z, but not intersecting Ω. At a C1

point z, we further have a local notion of α-Hölder regularity. We say that z is a
Cα point if there exist Euclidean coordinates on an affine chart in P(Rd) such that
∂Ω is the graph of a convex function f , (z, f(z)) is the origin, and f(x) ≤ C1||x||α
for some C1 > 0 and all x sufficiently close to z. Dually, we say that z is a β-convex
point if f(x) ≥ C2||x||β for some C2 > 0 and all x sufficiently close to z.

Definition 1.11. Let Ω be a properly convex domain and x ∈ ∂Ω be a C1 point.
Set

α(x,Ω) := sup{α > 1 : ∂Ω is Cα at x}
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and

β(x,Ω) := inf{β < ∞ : ∂Ω is β-convex at x}.

If ∂Ω is not Cα at x for any α > 1, we define α(x,Ω) = 1. Similarly if ∂Ω is not
β-convex at x for any β < ∞, we define β(x,Ω) = ∞.

We show that for a divisible domain Ω, the functions α(x,Ω) and β(x,Ω) defined
above are determined by singular values of tracking sequences. To state our result,
we require x to be an exposed boundary point; see Definition 2.2 and Fig. 5.

Theorem 1.12 (Section 6). Let Ω be a properly convex domain, let {γn} track a
projective geodesic ray c : [0,∞) → Ω, and suppose that c(∞) = x is an exposed C1

extreme point in ∂Ω. Define

α0 := lim inf
n→∞

µ1,d(γn)

µ1,d−1(γn)
and β0 := lim sup

n→∞

µ1,d(γn)

µ1,2(γn)
.

Then α0 = α(x,Ω) and β0 = β(x,Ω).
In particular, c(∞) is a Cα point for some α > 1 if and only if {γn} is uniformly

(d − 1)-regular, and c(∞) is β-convex for β < ∞ if and only {γn} is uniformly 1-
regular.

An immediate consequence of Corollary 1.7 and Theorem 1.12 is the following,
which is our link between perspectives (I) and (III) in this paper:

Corollary 1.13. Suppose Ω is a properly convex domain and {γn} R-tracks a
projective geodesic ray c with respect to x0 ∈ Ω. If c is M -Morse, then c(∞) is Cα

and β-convex for some α > 1, β < ∞, depending only on M , R, and x0. Moreover

α(c(∞),Ω) = lim inf
n→∞

µ1,d(γn)

µ1,d−1(γn)
> 1 and β(c(∞),Ω) = lim sup

n→∞

µ1,d(γn)

µ1,2(γn)
< ∞.

By applying Theorem 1.9 and Theorem 1.12, we can also see that the converse
to Corollary 1.13 does not hold:

Corollary 1.14. There exists a convex divisible domain Ω with exposed boundary
and a projective geodesic ray c so that c is not M -Morse for any Morse gauge M ,
but c(∞) is both a Cα point for some α > 1 and a β-convex point for some β < ∞.

1.3. D-contracting geodesics and Morse local-to-global spaces. We now
mention a few additional results regarding notions of “coarsely negatively curved”
geodesic directions in Ω. Recall that geodesics in hyperbolic metric spaces always
satisfy a contracting property, which motivates the following definition:

Definition 1.15. Let (X, d) be a proper metric space, ℓ a geodesic (ray, segment,
line), and let πℓ : X → 2ℓ denote the closest-point projection on ℓ, i.e.

πℓ(x) = {y ∈ ℓ : d(x, y) = d(x, ℓ)}.

Then ℓ is D-contracting for D > 0 if, for any metric ball Br(x) disjoint from ℓ,

diam(πℓ(Br(x))) ≤ D.

If ℓ is D-contracting for some D > 0, then we simply say that ℓ is contracting.

A result of Charney-Sultan [CS15] implies that, if X is a CAT(0) metric space,
then contracting geodesics are exactly the same as Morse geodesics. We prove:
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Theorem 1.16 (Section 3). Let Ω be a properly convex domain, and let c be a
geodesic in Ω. Then c is Morse if and only if c is contracting.

Remark 1.17. It is well-known that in general metric spaces, every D-contracting
geodesic is M -Morse for some Morse gauge M depending only on D. So, our main
contribution in Theorem 1.16 is proving the converse, i.e. that Morse geodesics are
always contracting. Our proof for this direction relies on specific features of the
projective geometry of Ω.

When we prove this direction, we do not in general obtain uniform control over
the contraction constant D in terms of the Morse gauge M . However, we do
have uniform control if we additionally assume that Ω has a cocompact action by
automorphisms; see Corollary 3.28.

1.3.1. Morse local-to-global property. One may apply Theorem 1.16 to prove that
divisible convex domains have the so-called Morse local-to-global property [RST22].
As the name suggests, this property means the following. Suppose c is a path in
a metric space X, such that any sufficiently long finite sub-segment of c is an M -
Morse quasi-geodesic. Then the entire path c is an M ′-Morse quasi-geodesic, for
some Morse gauge M ′. Metric spaces that have Morse local-to-global property were
studied extensively in [RST22]. This property holds for a large class of spaces, e.g.
hyperbolic spaces, CAT(0) spaces, and mapping class groups of most finite-type
surfaces. In Section 3.13 we observe:

Theorem 1.18. If Ω is any convex divisible domain, the metric space (Ω,dΩ) is
Morse local-to-global.

1.4. Comparison to previous results.

1.4.1. The Gromov-hyperbolic case. Several of the results in this paper are inspired
by previous work of Benoist and Guichard on convex divisible domains. In partic-
ular, we are motivated by the following theorem:

Theorem 1.19 ([Ben04]). Let Γ be a group dividing a properly convex domain

Ω ⊂ P(Rd). Then the following are equivalent:

(a) Γ is Gromov-hyperbolic;
(b) The inclusion Γ ↪→ PGL(d,R) is a 1-Anosov representation.
(c) The domain Ω is strictly convex, i.e. its boundary ∂Ω contains no nontrivial

projective segments;
(d) The boundary ∂Ω is a C1 hypersurface.

We can interpret this theorem as giving a link between our perspectives (I), (II)
(III) in the hyperbolic setting. In particular, if Γ is a Gromov-hyperbolic group,
then every geodesic in Γ is M0-Morse for some uniform Morse gauge M0, so every
geodesic direction in Γ is “hyperbolic” in the sense of our perspective (I). Part
(b) of the theorem connects to perspective (II) via work of Kapovich-Leeb-Porti
[KLP17] and Bochi-Potrie-Sambarino [BPS19], who poved that a representation
Γ → PGL(d,R) is 1-Anosov if and only if it is a quasi-isometric embedding and every
geodesic is strongly uniformly 1-regular. From this viewpoint, our Theorem 1.6,
Theorem 1.8, and Corollary 1.13 give a generalization of Theorem 1.19 to the
situation where Γ is not necessarily a Gromov-hyperbolic group. Effectively, we
prove that the equivalences in Theorem 1.19 still hold locally, “along hyperbolic
directions.”
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Remark 1.20. There are explicit constructions for divisible domains in P(Rd) that
are not strictly convex (so none of the conditions in Theorem 1.19 hold), but still
contain Morse geodesics (so that our main results apply); for examples, see [Ben06a,
CLM16, BDL18] when 4 ≤ d ≤ 7, and [BV23] for any d ≥ 4.

In [Gui05], Guichard also investigated the relationship between regularity of the
boundary of a strictly convex divisible domain Ω, and the linear algebraic properties
of the dividing group Γ. In particular, Guichard showed that, assuming Γ is a
hyperbolic group, the global Hölder regularity of ∂Ω can be computed in terms of
the asymptotic behavior of the eigenvalues of sequences in Γ; this provides another
link between our perspectives (II) and (III), again in the case where Γ is assumed
to be a hyperbolic group. We mention also related work of Crampon [Cra09], which
shows that for strictly convex divisible domains, the regularity of the boundary Ω
is related to the Lyapunov exponent of the geodesic flow. Our Theorem 1.12 can
be thought of as a localized version of Guichard’s result, which applies to geodesic
directions in any (not necessarily strictly convex) divisible domain.

1.4.2. Closed geodesics in rank-one convex projective manifolds. In [Isl], the first
author introduced a notion of rank one properly convex domains, a family that
encompasses the Gromov hyperbolic ones. An infinite order element γ ∈ Aut(Ω) is
called a rank one automorphism if γ acts by a translation along a projective geo-
desic ℓγ ⊂ Ω, and ℓγ is not contained in any half triangle (see Definition 3.7). The
results in [Isl] show that the axis ℓγ of a rank one automorphism is always a Morse
geodesic, and also characterize rank-one automorphisms in terms of their eigenval-
ues. By combining this with results in the present paper, we obtain the following
more complete description of the relationship between rank one automorphisms and
Morseness.

Proposition 1.21. Suppose an infinite order element γ ∈ Aut(Ω) acts by a trans-
lation along a projective geodesic ℓγ ⊂ Ω. Then the following are equivalent:

(1) γ is a rank one automorphism.
(2) The geodesic ℓγ is Morse (equivalently, ℓγ is contracting).

If, in addition, there is a discrete group Γ ⊆ Aut(Ω) such that Γ divides Ω and
γ ∈ Γ, then either of the above conditions is equivalent to:

(3) γ is biproximal, i.e. the matrix representing γ has unique eigenvalues of
maximum and minimum modulus.

Proof. (1) =⇒ (2) is [Isl, Proposition 1.12]. (2) =⇒ (1) follows from the results in
Section 3 of this paper: since ℓγ is Morse, Corollary 3.25 implies that the endpoints
of ℓγ cannot lie in the closure of a non-trivial projective line segment in ∂Ω. Thus
ℓγ is not contained in any half triangle.

Finally, (1) ⇐⇒ (3) is [Isl, Proposition 6.8]. □

A main result of [Isl] is that, if Γ divides Ω and Γ contains a rank one automor-
phism, then Γ in fact has many rank one automorphisms. In particular, Γ is an
acylindrically hyperbolic group. That is to say that Γ has a ‘nice’ action on some
(possibly non-proper) Gromov hyperbolic metric space, although (Ω,dΩ) itself may
not be Gromov hyperbolic.

On the other hand, in [Zim23], Zimmer proved a rank rigidity theorem for prop-
erly convex domains. This result implies that if Γ does not contain any rank one
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automorphisms, then either Ω is reducible (meaning a cone over Ω splits as a prod-
uct of cones) or else Ω and Γ are very restricted: in particular, Ω is a projective
model for the Riemannian symmetric space G/K for a simple Lie group G, and Γ is
isomorphic to a uniform lattice in G. Taken together, the results in [Isl] and [Zim23]
indicate that a “generic” divisible domain contains many projective geodesics that
point in “hyperbolic” directions.

1.5. Comments on the proofs. The proof of Theorem 1.6 (our first main theo-
rem) relies on two key ingredients. The first is a “straightness” lemma (Lemma 4.10)
that does not rely on Morseness at all—it holds for any sequence {γn} tracking a
projective geodesic. The lemma says that for any three elements γi, γj , γk in the

tracking sequence, with i < j < k, the gap µ1,2(γ
−1
i γk) is coarsely bounded below

by the sum µ1,2(γiγ
−1
j ) + µ1,2(γ

−1
j γk). In particular, this implies that µ1,2(γn) is

coarsely nondecreasing as a function of n, which is not a property satisfied by ar-
bitrary quasi-geodesic sequences in PGL(d,R). We also remark that this “straight-
ness” property does not require any assumption on the regularity of the sequence
{γn}, which is critical for a later application in the proof of Theorem 1.9.

The second ingredient in the proof of Theorem 1.6 relies crucially onM -Morseness,
see Lemma 5.1. This lemma shows that Morseness forces growth in µ1,2 as one shad-
ows a M -Morse geodesic for a sufficiently long time. The proof of Theorem 1.6 then
follows by a telescoping argument splitting up the Morse geodesic into pieces with
sufficiently large µ1,2 growth; see Proposition 5.3.

1.6. Outline of the paper. The first part of this paper focuses mainly on the re-
lationship between the coarse metric geometry and projective geometry of a convex
projective domain. We provide some background about convex projective geometry
in Section 2. In Section 3, we give several projective geometric characterizations of
Morse geodesics in Hilbert geometry, prove Theorem 1.16, and sketch the proof of
Theorem 1.18. This section also introduces the notion of conically related pairs of
points in the boundary of a pair of convex projective domains, which is an important
ingredient in the proof of Theorem 1.8.

The next part of the paper focuses more on the linear algebraic viewpoint. In
Section 4, we prove singular value estimates along sequences {γn} in PGL(d,R)
that tracks a projective geodesic; in particular, we prove the “straightness” Lemma
4.10 alluded to previously. Then in Section 5, we use results from Section 4 (and
also Section 3) to prove the relationship between Morse geodesics and strongly
uniformly regular sequences, as described by Theorem 1.6 and Theorem 1.8.

In Section 6 we consider Cα regularity and β-convexity of the boundary of a
convex projective domain, and prove Theorem 1.12. Finally, we construct the
counterexample described by Theorem 1.9 in Section 7.

1.7. Acknowledgments. The first author was partially supported by DFG Emmy
Noether project 427903332 and DFG project 338644254 (SPP 2026). The second
author was partially supported by NSF grant DMS-2202770. The second author
thanks Heidelberg University for hospitality where a part of the work was com-
pleted.

2. Preliminaries

2.1. Notation. We standardize some notation for the entire paper. If (X, d) is a
metric space, A ⊆ X, and r > 0, then we denote the (open) metric r-neighborhood
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of A by
NX

r (A) := {x ∈ X : d(x,A) < r}.
If X is clear from context, we will simply write NX

r (A) = Nr(A). If A = {x}, then
we will use the notation Br(x) to denote the metric r-ball Nr({x}).

2.1.1. Projective space. When V is a real vector space, we let P(V ) denote the
projectivization of V , i.e. the space of 1-dimensional vector subspaces of V . If v is
a nonzero vector in V then [v] denotes the point in P(V ) given by the span of v.

If U ⊆ V is a subset, then P(U) denotes the image of U − {0} under the projec-
tivization map v 7→ [v]. If U is a vector subspace of V , this notation identifies the
projective space P(U) as a subset of P(V ) (a projective subspace). We will never
implicitly identify a vector subspace W ⊆ V with the corresponding projective
subspace P(W ). If P is a projective subspace, equal to P(W ) for W ⊆ V , we write

W = P̃ .
If U ⊆ V then the projective span of U is the projective subspace spanP{U} :=

P(Span(U)). Similarly if P ⊂ P(V ), the projective span of P is spanP{P} :=

P(Span(P̃ )), where P̃ is a lift of P in V .
We let P∗(V ) denote the space of codimension-1 subspaces of V . If W ∈ P∗(V ),

then the projective subspace P(W ) ⊂ P(V ) is a projective hyperplane.

When V = Rd, we have projective coordinates on projective space P(Rd) defined
in terms of the standard basis: the notation [x1 : . . . : xd] denotes the projectiviza-
tion of the vector (x1, . . . xd).

2.2. Properly convex domains. In this section, we give some reminders about
convex projective geometry. For a set X ⊂ P(Rd), we denote by X the closure of

X in the subspace topology induced from P(Rd).

Definition 2.1. A subset Ω̃ ⊂ Rd is a convex cone if it is convex, nonempty, and
closed under multiplication by positive scalars. If Ω̃ ⊂ Rd is a convex cone, we say
that its projectivization Ω ⊂ P(Rd) is a properly convex domain if Ω is open and

Ω does not contain any projective line in P(Rd) (equivalently, if Ω is a bounded

convex subset of some affine chart in P(Rd)).

The boundary of a properly convex domain Ω is its topological boundary ∂Ω :=
Ω − Ω. Note that Ω is topologically a closed ball and ∂Ω is homeomorphic to the
boundary of this ball. A supporting hyperplane of a convex projective domain Ω is
a projective hyperplane in P(Rd) which intersects Ω, but not Ω.

If x, y ∈ P(Rd) is a pair of distinct points, then spanP{x, y} is a projective line
that contains both of them. However, there does not exist a canonical notion of a
projective line segment joining x and y in general. But in the presence of a properly
convex domain Ω such that x, y ∈ Ω, we can make a canonical choice.

For x, y ∈ Ω, we say that the open projective line segment joining x and y is the
unique connected component of spanP{x, y} − {x, y} that is contained entirely in
Ω. We denote this by (x, y). The projective line segment joining x and y, denoted
by [x, y], is the closure of (x, y) in Ω. We will use the notation [x, y) := [x, y]−{y}
and (x, y] := [x, y]− {x}. Finally, if x = y, we define [x, y] = {x} while (x, y) = ∅.
Often, we will also refer to projective line segments as projective geodesics, as we
explain below in Section 2.3.

A face of Ω is an equivalence class in ∂Ω of the relation ∼, where x ∼ y if there
is an open projective segment in ∂Ω containing x and y.
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x

H

Figure 2. The point x is a C1 extreme point and H is the unique
supporting hyperplane at x. Here FΩ(x) = {x} is a face, but not
an exposed face.

Definition 2.2 (Exposed boundary). We say that a face F ⊂ ∂Ω is exposed if
there is a supporting hyperplane H of Ω whose intersection with ∂Ω is precisely F ;
see Fig. 2. A point x ∈ ∂Ω is exposed if it lies in an exposed face. We say that Ω
has exposed boundary if every point in ∂Ω is exposed.

Note that every known example of a convex divisible domain has exposed bound-
ary. However, it is still unknown whether this property holds for every convex
divisible domain.

2.3. The Hilbert metric. If Ω is properly convex, the automorphism group Aut(Ω) ⊂
PGL(d,R) is the group of projective transformations preserving Ω. One can always
define an Aut(Ω)-invariant metric dΩ on Ω, called the Hilbert metric, as follows.
Fix a projective cross-ratio [·, ·; ·, ·] on RP1. We choose the cross-ratio given by

[a, b;x, y] =
|a− y| · |b− x|
|a− x| · |b− y|

,

where |u−v| is the distance measured using any Euclidean metric on an affine chart
of RP1 containing u, v; the choice of chart and metric does not matter.

Definition 2.3. Let Ω be a properly convex domain. The distance between x, y ∈ Ω
in the Hilbert metric is defined as

dΩ(x, y) =
1

2
log[a, b;x, y].

The pair (Ω,dΩ) is always a proper geodesic metric space, on which Aut(Ω) acts
by isometries. This ensures that the action of Aut(Ω) on Ω is always proper. When
Ω is an ellipsoid, then this metric space is isometric to (d−1)-dimensional hyperbolic
space; thus Hilbert geometry is a strict generalization of hyperbolic geometry.

A projective line segment [x, y] that lies in Ω (instead of lying entirely in ∂Ω)
is a geodesic for the metric dΩ. Hence, we will call [x, y] the projective geodesic
segment joining x and y. In the same vein, if x, y ∈ Ω, we call (x, y) a projective
geodesic. Note that a projective geodesic may be infinite or bi-infinite and, wherever
necessary, we will emphasize this by using specific terminology. If x ∈ Ω and
y ∈ ∂Ω, then we will call [x, y) (also (x, y)) a projective geodesic ray. If x, y ∈ ∂Ω
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but (x, y) ⊂ Ω, we will call (x, y) a bi-infinite projective geodesic (or a projective
geodesic line).

A projective geodesic segment, however, is often not the only geodesic joining
points x, y ∈ Ω. One can easily verify the following:

Fact 2.4 (Characterizing geodesics). For pairwise distinct points w1, w2, w3 ∈ Ω,
we have

dΩ(w1, w2) = dΩ(w1, w3) + dΩ(w3, w2)

if and only if there are segments [y, y′] and [z, z′] in ∂Ω such that y, w1, w3, z and
y′, w3, w2, z

′ are aligned in that order.

Fact 2.4 implies that if Ω is a strictly convex domain (i.e. if there are no nontrivial
projective segments in ∂Ω), then every geodesic in Ω is projective.

2.4. Finer metric properties of dΩ. As mentioned in the introduction to this
paper, the metric space (Ω,dΩ) is typically not a CAT(0) space, and in fact the
Hilbert metric often fails to satisfy some of the strong convexity properties en-
joyed by general CAT(0) metrics. However, the Hilbert metric does satisfy a weak
convexity property called the maximum principle.

Lemma 2.5 (Maximum principle; see [CLT15, Corollary 1.9]). If C is a closed
convex set in a properly convex domain Ω, then for every compact subset K ⊂ Ω,
the function K → R≥0 given by

x 7→ dΩ(x,C)

attains its maximum at an extreme point of K.

It is also true that when C is a convex subset of a convex projective domain Ω,
the nearest-point projection map Ω → C is not always well-defined. One can still
define a set-valued nearest-point projection map πC : Ω → 2C , but this map is not
necessarily continuous with respect to Hausdorff distance on 2C . However, using
the maximum principle, one can see that the nearest-point projection map onto a
projective geodesic in Ω always maps convex sets to connected sets:

Lemma 2.6. Let ℓ be a projective geodesic in a properly convex domain Ω, and let
πℓ : Ω → 2ℓ denote the set-valued nearest-point projection map, i.e. the map

πℓ(x) = {y ∈ ℓ : dΩ(x, y) = dΩ(x, ℓ)}.
If A ⊂ Ω is convex, then πℓ(A) is connected.

Proof. Fix points x′, y′ ∈ ℓ, so that x′ ∈ πℓ(x), y
′ ∈ πℓ(y) for x, y ∈ A, and let z′ be

a point on the open segment (x′, y′) ⊂ ℓ. We wish to show that z′ ∈ πℓ(A). The
point z′ separates ℓ into two components, so let ℓ− be the closure of the component
containing x′, and let ℓ+ be the closure of the component containing y′.

Since A is convex, it contains the projective geodesic [x, y]. Consider the contin-
uous function f : [x, y] → R given by

f(u) = dΩ(u, ℓ−)− dΩ(u, ℓ+).

For any u ∈ [x, y], we know that dΩ(u, ℓ) = min{dΩ(u, ℓ−),dΩ(u, ℓ+)}. So, since
dΩ(x, ℓ) = dΩ(x, x

′) ≥ dΩ(x, ℓ−), it follows that f(x) is nonpositive. Similarly,
f(y) is nonnegative, so there is some z ∈ [x, y] with f(z) = 0, i.e. z satisfying
dΩ(z, ℓ−) = dΩ(z, ℓ+). Thus there are points z± ∈ ℓ± which satisfy

dΩ(z, z+) = dΩ(z, z−) = dΩ(z, ℓ±) = dΩ(z, ℓ).
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Then Lemma 2.5 implies that every point w in [z−, z+] satisfies dΩ(z, w) ≤ dΩ(z, ℓ),
so in fact each such w satisfies dΩ(z, w) = dΩ(z, ℓ), i.e. w ∈ πℓ(z). As z ∈ A and the
geodesic [z−, z+] contains the previously chosen point z′, this proves the claim. □

2.5. Space of properly convex domains. Suppose (X, d) is a metric space. This
induces a notion of Hausdorff distance between closed subsets A,B ⊂ X defined
by:

dHaus(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
.

Fixing a metric on the projective space P(V ), compatible with the standard
topology on P(V ), defines a notion of Hausdorff distance between subsets of P(V )
(or more precisely, their closures).

Definition 2.7. Let V be a real vector space. We denote by C(V ) the space of
properly convex projective domains in P(V ). The topology on C(V ) is the topology
induced by Hausdorff distance, with respect to any metrization of P(V ).

Note that the topology on C(V ) is independent of the metrization on P(V ).

2.6. The Benzécri cocompactness theorem.

Definition 2.8. Let C*(V ) denote the space of pointed domains in P(V ), i.e. the
space

C*(V ) := {(Ω, x) ∈ C(V )× P(V ) : x ∈ Ω} .

The topology on C*(V ) is the product topology that it inherits from C(V )×P(V ).
The group PGL(V ) acts pointwise on C(V ), and diagonally on C*(V ). We have the
following important result:

Theorem 2.9 (Benzécri cocompactness [Ben60]). The action of PGL(V ) on C*(V )
is both proper and cocompact.

Theorem 2.9 turns out to be very useful when we consider the case of a non-
cococompact group action on a properly convex domain. Although divisible domains
Ω are often technically easier to work with than general domains, they require the
automorphism group Aut(Ω) to be ‘large’. In this paper, we will often be interested
in studying general properly convex domains, not necessarily divisible. In such
cases, the Benzécri cocompactness theorem becomes a powerful tool that we can
use to import techniques for divisible domains to the non-divisible case.

Typically, we apply the theorem to a sequence of points xn in some domain
Ω which leaves every compact subset of Ω, to find a sequence of “approximate
automorphisms” taking xn back to some fixed basepoint. The properness part of
the theorem ensures that any choice of “approximate automorphisms” differ by
elements in a compact set, which we can often use to obtain information about a
given sequence of divergent elements in Aut(Ω).

2.7. Properties of faces in properly convex domains. Every face F of a
properly convex domain is itself a properly convex domain in its own projective
span. Consequently, F can be endowed with its own Hilbert metric dF . This
Hilbert metric is related to the Hilbert metric on the larger domain Ω, and gives
a way to characterize faces in terms of metric (rather than projective) geometry.
This is expressed via Lemma 2.10 below.
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We state this lemma in a fairly general form. In particular, we allow the domain
Ω to vary continuously in the space of all properly convex domains C(Rd) (see
Definition 2.7).

Lemma 2.10. Let {Ωn} be a sequence of properly convex domains in P(Rd), con-

verging in C(Rd) to a properly convex domain Ω∞. Suppose that points xn, yn ∈ Ωn

converge to x, y ∈ Ω∞. If

lim inf
n→∞

dΩn
(xn, yn) < ∞,

then x and y lie in the same face F of Ω∞, and

dF (x, y) ≤ lim inf
n→∞

dΩn
(xn, yn).

Since this version of the lemma is slightly more general than versions that typi-
cally appear in the literature, we provide a proof.

Proof of Lemma 2.10. Note that there is nothing to prove if x = y, so assume that
x ̸= y. Let [an, bn] := Ωn∩spanP{xn, yn} where the labels an, bn are assigned in such
a way that the four points an, xn, yn, bn appear in this order along spanP{xn, yn}.
Up to passing to a subsequence, we can assume that an → a and bn → b in P(Rd).
Since Ωn → Ω∞, a, b ∈ Ω∞ and [an, bn] → [a, b]. Thus x, y ∈ [a, b] which implies
that a ̸= b, since otherwise x will be equal to y. By the ordering of the labels
an, bn, we know that the points a, x, y, b appear in this order along spanP{a, b}.
If either a = x or b = y, then the cross-ratio [an, bn;xn, yn] → ∞ and contradicts
lim infn→∞(xn, yn) < ∞. Thus, the four points a, x, y, b ∈ Ω∞ are pairwise distinct.
Hence x, y ∈ (a, b).

Now observe that (a, b), which is an open projective line segment in Ω∞, is
either disjoint from ∂Ω∞ or is entirely contained in it. Since x, y ∈ (a, b) ∩ ∂Ω∞,
(a, b) ⊂ ∂Ω∞. This implies that x, y belong to a face F in Ω∞. Moreover, by
continuity of cross-ratios,

dF (x, y) ≤ d(a,b)(x, y) ≤ lim inf
n→∞

d(an,bn)(xn, yn) = lim inf
n→∞

dΩn
(xn, yn). □

When the domain Ω is fixed, we can use Lemma 2.10 together with the maxi-
mum principle (Lemma 2.5) to obtain a related estimate for the Hausdorff distance
between a pair of projective geodesics. For this lemma, we follow the convention
that FΩ(x) = Ω if x ∈ Ω, while FΩ(x) is the face containing x if x ∈ ∂Ω.

Lemma 2.11. Suppose Ω is a properly convex domain, x± ∈ Ω, and y± ∈ FΩ(x±).
If (x+, x−) ⊂ Ω, then (y−, y+) ⊂ Ω and

dΩ
Haus((y+, y−), (x+, x−)) ≤ max

{
dFΩ(x±)(x±, y±)

}
.

2.8. Properly embedded simplices. For any k ≥ 0, a standard projective k-
simplex in P(Rd) is

Sk := {[x1 : x2 : · · · : xk+1 : 0 : · · · : 0] | x1, . . . , xk+1 > 0}.

We say that Sk is the simplex spanned by [e1], . . . , [ek+1]. A projective k-simplex is

any set in P(Rd) that is projectively equivalent to a standard projective k-simplex.

Definition 2.12. Suppose Ω is a properly convex domain and A ⊂ Ω is a convex
subset. Then we say that:
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(1) A is a properly embedded subset if A ↪→ Ω is a proper map, or equivalently
if ∂A ⊂ ∂Ω.

(2) A is a properly embedded k-simplex if A is properly embedded in Ω and a
projective k-simplex.

Properly embedded simplices are projective analogs of totally geodesic flats in
CAT(0) spaces. Consider, for example, a properly embedded triangle, or 2-simplex.
Suppose the vertices of such a triangle ∆ are represented by the standard basis
vectors in R3. Then the group

2a

2b

2c

 : a, b, c ∈ Z, a+ b+ c = 0


acts properly discontinuously and cocompactly on ∆. So (∆, d∆) equipped with its
Hilbert metric is quasi-isometric to a 2-flat. Hence properly embedded simplices
serve as analogs of isometrically embedded flats in CAT(0) spaces.

2.9. Singular values and the Cartan projection. In this section we briefly
recall the definitions and basic properties of the Cartan projection GL(d,R) → Rd.

We will always equip Rd with its standard Euclidean inner product.

Definition 2.13. For any g ∈ GL(d,R), we let σ1(g) ≥ σ2(g) ≥ . . . ≥ σd(g) > 0

denote the singular values of g, counted with multiplicity. We let µ : GL(d,R) → Rd

denote the Cartan projection, given by µi(g) = log σi(g). The Cartan projection can
be also be defined via the Cartan decomposition of a group element g ∈ GL(d,R):
µ(g) is the unique vector in Rd with nonincreasing entries such that

g = k · exp(diag(µ1(g), . . . µd(g))) · ℓ,
for some k, ℓ ∈ O(d). For 1 ≤ i ≤ j ≤ d, we let µi,j(g) denote the nonnegative
quantity µi(g)− µj(g).

Remark 2.14. Although the Cartan projection µ is only defined on GL(d,R), the
values of µi,j are well-defined on the quotient PGL(d,R).

The singular values of any g ∈ GL(V ) have an interpretation in terms of the
norm and the conorm of g. Recall that if g ∈ GL(V ), the operator norm is

||g|| = sup
v∈Rd −{0}

||gv||
||v||

,

while the conorm is

m(g) = ||g−1||−1.

The largest singular value is given by σ1(g) = ∥g∥ while the smallest singular value
is given by σd(g) = m(g). More generally, for any 1 ≤ k ≤ d, we let Gr(k, d) denote

the Grassmannian of k-dimensional subspaces of Rd. Then one has the “minimax”
formula:

(1) σk(g) = max
W∈Gr(i,d)

m(g|W ).

Note that if g ∈ SL(d,R), we have
∏

σi(g) = 1 and thus
∑

µi(g) = 0. Using
this, we see that for any g ∈ SL(d,R), we have

µ1,d(g) = log(||g||) + log(||g−1||).
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Lemma 2.15 (Additivity of Cartan projection, see [GGKW17, Fact 2.18]). There
is a constant K0 > 0 so that for any g, h1, h2 ∈ GL(d,R), we have

(2) ||µ(h1gh2)− µ(g)|| ≤ K0(||µ(h1)||+ ||µ(h2)||).
In particular, for any 1 ≤ i < j ≤ d, there is a constant K > 0 such that

(3) |µi,j(h1gh2)− µi,j(g)| ≤ K(||µ(h1)||+ ||µ(h3)||).

Remark 2.16. For an appropriate choice of norm on Rd (which is typically not the
standard norm), the inequality (2) can be strengthened to

||µ(h1gh2)− µ(g)|| ≤ ||µ(h1)||+ ||µ(h2)||.
This immediately implies the version of the inequality we have stated above.

Lemma 2.17. Suppose g ∈ GL(d,R) and there exist C > 0 and 1 ≤ i ≤ j ≤ d
such that

|µi,j(g)− µ1,d(g)| ≤ C.

Then:

(1) µ1,k(g) ≤ C for k ∈ {1, . . . , i},
(2) µk,d(g) ≤ C for k ∈ {j, . . . , d}, and
(3) µk,k+1(g) ≤ C for k ∈ {1, . . . , i− 1} ∪ {j, . . . , d− 1}.

Proof. Since the values of µk(g) are non-increasing, µi′,j′(g) ≥ 0 for any 1 ≤ i′ ≤
j′ ≤ d. But µ1,d(g) is equal to the sum µ1,i(g)+µi,j(g)+µj,d(g). Thus µ1,i(g) ≤ C
and µj,d(g) ≤ C. The first two inequalities are then immediate as µ1,k(g) ≤ µ1,i(g)
whenever k ∈ {1, . . . , i− 1}, and µk,d(g) ≤ µj,d(g) for any k ∈ {j, . . . , d}. The
third inequality follows from the first two and the fact that µk,k+1(g) is bounded
by either µ1,i(g) or µj,d(g) whenever k ∈ {1, . . . , i− 1} ∪ {j, . . . , d− 1}. □

Let ∠ be the standard angle in Rd induced by the standard Euclidean inner
product. Note that ∠ also defines a Riemannian metric dP on P(Rd), by setting

dP(u, v) = ∠(u, v) for any u, v ∈ P(Rd). There is an analogous notion of angles
between subspaces.

Definition 2.18. If U,W are two transverse subspaces of Rd, we define the angle
∠(U,W ) by

∠(U,W ) = inf
u∈U−{0}
w∈W−{0}

∠(u,w).

Lemma 2.19. For any ε > 0, there exists C ≡ C(ε) satisfying the following.
Suppose we have two decompositions

Rd = U1 ⊕ . . .⊕ Uk,

Rd = W1 ⊕ . . .⊕Wk,

such that dim(Ui) = dim(Wi) for all i, and ∠(Ui, Uj) ≥ ε and ∠(Wi,Wj) ≥ ε for
all i ̸= j. Then there is some k ∈ GL(d,R) such that k(Ui) = Wi for all i and
µ1,d(k) ≤ C.

Proof. By choosing orthogonal bases for each Ui and each Wi, we can reduce to
the case where the subspaces Ui and Wi are all one-dimensional. Then, using
Lemma 2.15, we can further reduce to the case where the subspaces Ui give the
decomposition of Rd into the lines spanned by the standard basis vectors e1, . . . , ed.
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We can pick unit vectors w1, . . . , wd spanning each Wi, and consider the matrix
k whose columns are w1, . . . , wd. Then k takes Ui to Wi, and lies in the compact
subset K(ε) of GL(d,R) consisting of matrices whose columns are unit vectors
having pairwise angles at least ε. By compactness there is a uniform upper bound
C on µ1,d(K(ε)), and the result follows. □

3. Morse geodesics are contracting

Our main goal in this section is to prove Theorem 1.16, which says that Morse
geodesics (Definition 1.1) in a convex projective domain Ω are equivalent to con-
tracting geodesics (Definition 1.15). As part of the proof, we also introduce the
framework of conically related pairs of points in boundaries of convex projective
domains, and use this to provide a number of other characterizations of Morse
geodesics in Ω. These ideas will reappear later in Section 5, when we use them to
study the linear algebraic behavior of Morse geodesics.

Our proof of the equivalence between Morse and contracting geodesics goes
through a δ-slimness property for geodesic triangles, which is reminiscent of a sim-
ilar property that also characterizes Morseness in CAT(0) spaces. We define this
property below. Note that the definition does not apply in general metric spaces,
since it relies on the existence of a preferred geodesic between every pair of points
(in this case, a projective geodesic).

Definition 3.1. Let ℓ be a projective geodesic in a properly convex domain Ω
and δ ≥ 0. We say that ℓ is projectively δ-slim if, any projective geodesic triangle
[x, y] ∪ [y, z] ∪ [z, x] with x, y, z ∈ Ω and [x, y] ⊂ ℓ is δ-slim, i.e., for {a, b, c} =
{x, y, z}, we have

[a, c] ⊂ Nδ([a, b]) ∪Nδ([b, c]).

Remark 3.2. [IZ23, Lemma 13.8] implies that for a projective geodesic triangle to
be δ-slim, it suffices that one of its edges is contained in the δ

2 neighborhood of
its other two edges. More precisely, [x, y] ∪ [y, z] ∪ [z, x] ⊂ Ω is δ-slim if [x, y] ⊂
Nr([x, z]) ∪Nr([z, y]) with r := δ

2 .

Our main result in this section is the following:

Proposition 3.3. Let Ω be a properly convex domain and let ℓ be a projective
geodesic in Ω. The following are equivalent:

(1) ℓ is Morse.
(2) ℓ is projectively δ-slim.
(3) ℓ is contracting.

In Proposition 3.3, the implication (3) =⇒ (1) follows from a well-known general
result, stated below. The proof is standard; see e.g. [Sul14, Lemma 3.3].

Proposition 3.4. Let X be a proper geodesic metric space and let D > 0. There
exists a Morse gauge M , depending only on D and X, so that any D-contracting
geodesic in X is M -Morse.

The implication (2) =⇒ (3) in Proposition 3.3 is also straightforward, and we
provide a quick proof below. Most of the rest of this section is then devoted to the
proof of the implication (1) =⇒ (2).
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3.1. Projectively δ-slim implies contracting. This is the implication (2) =⇒
(3) in Proposition 3.3. For this result, we mostly imitate the proof, due to Charney-
Sultan, of an analogous statement for CAT(0) spaces (see Theorem 2.14 in [CS15]).
It turns out that in most situations, the Charney-Sultan proof does not use the
full strength of the CAT(0) condition, but only the weaker maximum principle (see
Lemma 2.5).

The Charney-Sultan proof does also appeal to the CAT(0) condition in ways not
covered by the maximum principle. However, it is not difficult to modify the proof
to avoid this, at the cost of increasing some of the constants appearing in the proof.
The first step is the following lemma.

Lemma 3.5. Let Ω be a properly convex domain and let ℓ ⊂ Ω be a projective
geodesic. Suppose that ℓ is projectively δ-slim. Then, for any x ∈ Ω, y ∈ ℓ, and
z ∈ πℓ(x), we have dΩ(z, [x, y]) < 4δ.

Proof. If dΩ(y, z) ≤ 2δ we are done, so assume that dΩ(y, z) > 2δ, and then choose
a point w ∈ [y, z] so that 2δ < dΩ(w, z) < 3δ. Then let u be a point on [x, z] so
that

dΩ(w, u) = dΩ(w, [x, z]).

From the triangle inequality we have

dΩ(x, u) + dΩ(u,w) ≥ dΩ(x,w),

and since z ∈ πℓ(x) and w ∈ ℓ we know that

dΩ(x,w) ≥ dΩ(x, z) = dΩ(x, u) + dΩ(u, z).

Putting the previous two lines together we see that dΩ(u, z) ≤ dΩ(u,w). But then

2δ < dΩ(w, z) ≤ dΩ(w, u) + dΩ(u, z) ≤ 2 dΩ(u,w),

which implies that dΩ(w, [x, z]) = dΩ(w, u) > δ.
Now, as ℓ is projectively δ-slim, the projective geodesic triangle [x, y]∪[y, z]∪[z, x]

is δ-slim. Since dΩ(w, [x, z]) > δ, we have dΩ(w, [x, y]) < δ. Thus

dΩ(z, [x, y]) ≤ dΩ(z, w) + dΩ(w, [x, y]) < 4δ.

□

The following completes the proof that (2) =⇒ (3) in Proposition 3.3.

Proposition 3.6. Let Ω be a properly convex domain and let ℓ be a projective
geodesic in Ω. If ℓ is projectively δ-slim, then ℓ is 24δ-contracting.

Proof. Let B = B(x, r) be a ball not intersecting ℓ. Let y ∈ B and let x′ ∈
πℓ(x), y

′ ∈ πℓ(y).
By Lemma 3.5, there is a point u ∈ [y, x′] such that d(y′, u) < 4δ. The maximum

principle (Lemma 2.5) implies that

dΩ(x, u) ≤ max{dΩ(x, y),dΩ(x, x′)} = dΩ(x, x
′),

so

dΩ(x, y
′) ≤ dΩ(x, x

′) + 4δ.
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Then we apply Lemma 3.5 again to see that there is a point w ∈ [y′, x] so that
dΩ(x

′, w) < 4δ. Then

dΩ(x, y
′) = dΩ(x,w) + dΩ(w, y

′)

≥ dΩ(x, x
′)− dΩ(x

′, w) + dΩ(y
′, x′)− dΩ(x

′, w)

≥ dΩ(x, x
′) + dΩ(y

′, x′)− 8δ.

That is, we have

dΩ(x, x
′) + dΩ(y

′, x′)− 8δ ≤ dΩ(x, y
′) ≤ dΩ(x, x

′) + 4δ,

which implies dΩ(y
′, x′) < 12δ. Thus the diameter of the nearest-point projection

of B onto ℓ is at most 24δ. □

Having proved that (2) =⇒ (3) =⇒ (1) in Proposition 3.3, we now turn to the
implication (1) =⇒ (2). Our proof of this implication relies much more heavily
on the convex projective geometry of the domain Ω. In particular, we develop a
notion of conically related pairs of points in the boundary of certain pairs of properly
convex domains, and show that Morseness is preserved between conically related
points. This allows us to develop several other more technical characterizations
of Morse geodesics in a convex projective domain Ω, which we ultimately use to
establish the desired implication in Proposition 3.3.

We state all of our different equivalences below in Proposition 3.10. First, how-
ever, we need a few more definitions.

3.2. Half triangles. Half-triangles in convex projective domains extend the anal-
ogy between properly embedded triangles and flats in CAT(0) spaces (see Sec-
tion 2.8) to isometrically embedded half-flats in CAT(0) spaces.

Definition 3.7. Let Ω be a properly convex domain. A half-triangle in Ω consists
of three points x, y, z ∈ ∂Ω, such that exactly two of the segments [x, y], [y, z], [z, x]
are contained in ∂Ω.

Note that, as a subspace of Ω with its restricted Hilbert metric, a half-triangle
is not necessarily isometric to a half-space (i.e. a subspace bounded by a geodesic)
in a properly embedded triangle. Nevertheless half-triangles still bear some resem-
blance to half-flats, since segments in the boundary of a properly convex domain
correspond roughly to “flat directions” (see e.g. Lemma 3.22).

3.3. Conically related points. The idea behind our next definition (that of con-
ically related points) is to consider what a properly convex domain Ω “looks like”
from the perspective of a sequence of points traveling along a projective geodesic
ray c towards the ideal endpoint c(∞) in ∂Ω. If Ω has a cocompact action by
projective automorphisms, we can consider a sequence of points {xn} limiting to
an ideal endpoint z of c, and a sequence of group elements {γn} in Aut(Ω) taking
xn back to some fixed compact subset of Ω. The projective geometry of the accu-
mulation points of the sequence {γnz} in ∂Ω should inform the metric geometry of
the geodesic c.

More generally, when Aut(Ω) does not act cocompactly on Ω, we can use the
Benzécri cocompactness theorem (Theorem 2.9) to find elements gn in PGL(V )
which “translate” points in the sequence {xn} into a fixed compact subset of some
limiting domain Ω∞. Again, we can understand the metric geometry of the geodesic
c by looking at accumulation points of {gnz} in ∂Ω∞.
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In [Ben03], Benoist used essentially this approach to investigate the global hy-
perbolicity of arbitrary convex projective domains. The definition below gives one
way to formalize this idea. (For another, see e.g. [Wei23, Section 5]).

Definition 3.8. Let Ω1,Ω2 be properly convex domains, let z1 ∈ ∂Ω1, and let
z+2 , z

−
2 be points in ∂Ω2 such that (z+2 , z

−
2 ) ⊂ Ω2. Suppose that:

(1) there is a sequence of points {xn} in the projective geodesic ray [x, z1) ⊂ Ω1

such that xn converges to z1, and
(2) there is a divergent sequence of group elements {gn} in PGL(V ) (i.e. a se-

quence {gn} which leaves every compact set in PGL(V )) such that gn(z1, xn)
converges to (z+2 , z

−
2 ) ⊂ Ω2 and gnΩ1 converges to Ω2.

Then we say that (z1,Ω1) is forward conically related to (z+2 ,Ω2) by the sequence
{gn}, and backward conically related to (z−2 ,Ω2) by the sequence {gn}.

If the domains Ω1,Ω2 are understood from context, we will sometimes just say
that z1 is (forward or backward) conically related to z+2 or z−2 .

Observe that if (z1,Ω1) is (forward or backward) conically related to (z2,Ω2), it
follows immediately that for any g1, g2 ∈ PGL(V ), (g1z1, g1Ω1) is also (forward or
backward) conically related to (g2z2, g2Ω2). That is:

Proposition 3.9. The relation “(z1,Ω1) is conically related to (z2,Ω2)” is well-
defined when we regard (zi,Ωi) as elements in the quotient set

{(x,Ω) ∈ P(V )× C(V ) : x ∈ ∂Ω}/PGL(V ),

where PGL(V ) acts diagonally on P(V )× C(V ).

Later we will prove a number of other straightforward but useful properties of
conically related points. In particular, we will show that Morseness is preserved
between geodesics with conically related endpoints (see Lemma 3.21).

3.4. Characterizations of Morseness. We can now state our full characteriza-
tion of Morse projective geodesics, giving a more general version of Proposition 3.3:

Proposition 3.10. Suppose ℓ is a projective geodesic in a properly convex domain
Ω. Then the following are equivalent:

(M) The geodesic ℓ is Morse for some Morse gauge M .
(HT ) For every endpoint z1 of ℓ in ∂Ω, if z1 is forward conically related to a point

z2 ∈ ∂Ω2, then z2 does not lie in the boundary of a half-triangle in Ω2.
(HT−) For every endpoint z1 of ℓ in ∂Ω, if z1 is backward conically related to a

point z2 ∈ ∂Ω2, then z2 does not lie in the boundary of a half-triangle in
Ω2.

(SC) For every endpoint z1 of ℓ in ∂Ω, if z1 is forward conically related to a point
z2 ∈ ∂Ω2, then (z2, w) ⊂ Ω2 for every w ∈ ∂Ω2 − {z2}.

(SC−) For every endpoint z1 of ℓ in ∂Ω, if z1 is backward conically related to a
point z2 ∈ ∂Ω2, then (z2, w) ⊂ Ω2 for every w ∈ ∂Ω2 − {z2}.

(δ) The geodesic ℓ is projectively δ-slim for some δ > 0.
(C) The geodesic ℓ is D-contracting for some D.

Remark 3.11. We allow the projective geodesic ℓ in the statement of Proposi-
tion 3.10 to have zero, one, or two endpoints in the boundary of the properly
convex domain Ω. In the case where ℓ has zero ideal endpoints (meaning it is
a compact segment in Ω), then the conditions (HT ), (HT−), (SC), and (SC−)
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are vacuous. In this case, conditions (M) and (C) hold trivially since ℓ has finite
diameter, and condition (δ) follows from Lemma 2.11.

The proof of Proposition 3.10 follows the scheme given in Figure 3 below. Each
implication is labeled with the number of the intermediate result(s) that provide
its proof.

(SC) (HT )

(δ) (C) (M) (δ)

(SC−) (HT−)

3.26

3.6 3.4

3.25+3.21

3.25+3.21 3.26

Figure 3. Proof outline for Proposition 3.10

Note that we have already shown the implications (δ) =⇒ (C) =⇒ (M).
There are no labels on the implications (SC) =⇒ (HT ) and (SC−) =⇒ (HT−)
as they are immediate. Indeed, if z2 ∈ ∂Ω2 is in the boundary of a half-triangle in
Ω2, then there exists w ∈ ∂Ω2 − {z2} such that [z2, w] ⊂ ∂Ω2.

3.5. Projective geodesics in triangles and half-triangles. The first step to-
wards proving the remaining implications in Proposition 3.10 is to observe that
Morse geodesics cannot have endpoints lying in the boundary of triangles or half-
triangles. This should be unsurprising if we accept that triangles and half-triangles
are analogs of flats and half-flats.

Lemma 3.12. Suppose that y ∈ ∂Ω lies in the boundary of a properly embedded
triangle in Ω. Then for any x ∈ Ω, the projective geodesic [x, y) is not Morse.

Proof. Since Morseness does not depend on the choice of basepoint, we can assume
that x lies in the interior of the properly embedded triangle ∆ whose boundary
contains y. Then the projective geodesic [x, y) is also contained in ∆. But ∆ is
quasi-isometric to a 2-flat, and 2-flats contain no Morse quasi-geodesics, so [x, y)
cannot be Morse. □

Lemma 3.13. Let x, y, z be the vertices of a half-triangle in ∂Ω with (y, z) ⊂ Ω,
and suppose that [x, y] is a maximal segment in ∂Ω. Then for any w ∈ Ω, the
projective geodesic [w, y) is not Morse.

The proof of Lemma 3.13 is somewhat more complicated than the proof of
Lemma 3.12, because half-triangles in a properly convex domain are not necessar-
ily quasi-isometric to half-flats. Our proof instead takes advantage of the following
result of Cordes:

Lemma 3.14 ([Cor17, Key Lemma]). Let X be a geodesic metric space. For any
Morse gauge M , there exists a constant δM so that, if α : [0,∞) → X is an M -
Morse geodesic ray, and β : [0,∞) → X is a geodesic ray such that β(0) = α(0)
and the images of α, β have finite Hausdorff distance, then for all t ∈ [0,∞) we
have dX(α(t), β(t)) < δM .
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Figure 4. Left: the sequence of “broken geodesics” cn. Right:
verifying that each cn is actually a geodesic, using Fact 2.4.

Proof of Lemma 3.13. Let x, y, z, w be as in the statement of the lemma. Since
Morseness is basepoint-independent, we may assume that w actually lies in the
convex hull of x, y, z. Consider the projective geodesic [w, y), and fix a point u ∈
(y, x) so that the projective line spanned by u,w has its other ideal endpoint in the
interval (z, x). Let c : [0,∞) → Ω be a unit-speed parameterization of the geodesic
ray [w, y), and let s : [0,∞) → Ω be a unit-speed parameterization of [w, u).

For each n ∈ N, let rn : [0,∞) → Ω be a unit-speed parameterization of the
projective geodesic [s(n), y). Consider the sequence of “broken geodesics” cn :
[0,∞) → Ω given by

cn(t) =

{
s(t), t ≤ n

rn(t− n), t > n
.

Fact 2.4 implies that each cn is actually a geodesic in Ω, with endpoint y (see
Figure 4). Moreover, by Lemma 2.11, the Hausdorff distance between cn([0,∞))
and (w, y) is bounded by dΩ(cn(n), (w, y)).

Now suppose that (w, y) is a M -Morse geodesic for some M . Then Lemma 3.14
tells us that dΩ(cn(n), c(n)) is bounded above by a constant that depends only on
M . As n → ∞, the sequence cn(n) approaches u, and c(n) approaches y. Then
Lemma 2.10 implies that u ∈ FΩ(y), which contradicts the maximality of the line
segment [x, y] ∈ ∂Ω. Thus (w, y) cannot be Morse. □

3.6. Properties of conically related points. The previous two lemmas show
that, for a projective geodesic ℓ in Ω, having an endpoint in a triangle or half-
triangle is an obstruction to Morseness for ℓ. For the proof of Proposition 3.10, we
want to show that having an endpoint which is conically related to an endpoint in a
triangle or half-triangle also obstructs Morseness; this will follow from Lemma 3.21
below. Before we state and prove this lemma, however, we make a brief digression
to develop the theory of conically related points a little further.

First, observe that “(z1,Ω1) is conically related to (z2,Ω2)” is not an equivalence
relation, since it is not in general symmetric. In addition, the relation is not even
necessarily reflexive, since we require the sequence of group elements gn appearing
in the definition to be divergent. However, the relation does satisfy the following:
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Lemma 3.15. Suppose Ω is a properly convex domain and x ∈ ∂Ω. Then there ex-
ists a properly convex domain Ω′ and x′

± ∈ ∂Ω′ such that (x,Ω) is forward conically
related to (x′

+,Ω
′) and backward conically related to (x′

−,Ω
′).

Proof. Fix a basepoint x0 ∈ Ω and pick a sequence {pn} in [x0, x) such that pn →
x. Pick another sequence {qn} such that qn ∈ [pn, x) and dΩ(pn, qn) = n. By
Theorem 2.9, there exists a sequence {gn} in PGL(V ) such that gn(Ω, qn) converges
to (Ω∞, q∞) ∈ C∗(V ). Up to passing to a subsequence, we can assume that gnpn →
p∞ and gnx → x∞.

Since x ∈ ∂Ω, we have x∞ ∈ ∂Ω∞. We also know that p∞ ∈ ∂Ω∞, because
dΩ(qn, pn) → ∞ and q∞ ∈ Ω∞. But (p∞, x∞) ⊂ Ω∞ as q∞ ∈ (p∞, x∞) ∩ Ω∞.
Thus gn(pn, x) → (p∞, x∞). Hence gn(x0, x) → (p∞, x∞).

As the sequence qn ∈ (x0, x) converges to q∞ ∈ Ω∞ under gn, we see that (x,Ω)
is forward (resp. backward) conically related to (x∞,Ω∞) (resp. (p∞,Ω∞)). □

Remark 3.16. It turns out that the conical relation is also transitive, in the sense
that, if (z1,Ω1) is forward conically to (z2,Ω2), and (z2,Ω2) is forward conically
related to (z3,Ω3), then (z1,Ω1) is forward conically related to (z3,Ω3). The proof
of this fact is straightforward; we omit it as we have no need for it in this paper.

3.6.1. Conically related points along k-sectors. It is often useful to consider the
behavior of projective automorphisms on a lower-dimensional “projective slice”
of a convex projective domain. Following Benoist and Benzécri, we consider the
following:

Definition 3.17 (k-sectors). Let Ω be a properly convex domain in P(V ). A k-
sector ω of Ω is a nonempty intersection P(W ) ∩ Ω, where P(W ) is a projective
subspace of dimension k.

Fix a k-dimensional projective space P(W0) of P(V ). Then the space of k-
dimensional projective subspaces of P(V ) is a PGL(V ) orbit of P(W0). Thus, any
k-sector in Ω can be canonically identified with a projective equivalence class of
properly convex domains in W0. So, owing to Proposition 3.9, if Ω1 and Ω2 are
properly convex domains in P(V ) and xi ∈ ∂ωi for k-sectors ωi of Ωi (i = 1, 2),
it makes sense to say that (x1, ω1) is (forward or backward) conically related to
(x2, ω2), as elements in W0 × C(W0). The lemma below essentially follows from
[Ben03, Lemma 2.8]:

Lemma 3.18. Let Ω1,Ω2 be properly convex domains in P(V ), and fix 1 ≤ k < d.
Then (x1,Ω1) is (forward or backward) conically related to (x2,Ω2) if and only if
there are k-sectors ω1, ω2 so that xi ∈ ∂ωi for i = 1, 2, and (x1, ω1) is (forward or
backward) conically related to (x2, ω2).

3.6.2. Uniqueness for conically related points. In general, a pair (x1,Ω1) may be
conically related to many different pairs (x2,Ω2), even up to projective equivalence.
However, as a basic application of Theorem 2.9, we can recover some uniqueness
given additional information about the sequence {gn} realizing the conical relation.

Definition 3.19. If (x1,Ω1) is (forward or backward) conically related to (x2,Ω2)
by some gn ∈ PGL(V ), and there is some sequence {pn} in Ω1 so that gn(Ω1, pn)
converges in C*(V ), then we say that (x1,Ω1) is conically related to (x2,Ω2) along
the sequence {pn}.
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Lemma 3.20. Let x1 be a point in the boundary of a properly convex domain
Ω1, and suppose that (x1,Ω1) is forward (resp. backward) conically related to both
(x2,Ω2) and (x′

2,Ω
′
2) along the same sequence {pn} in Ω. Then there is some

h ∈ PGL(V ) such that (hx2, hΩ) = (x′
2,Ω

′
2).

Proof. Consider sequences {gn}, {g′n} in PGL(V ) so that (x1,Ω1) is conically re-
lated to (x2,Ω2) by gn, (x1,Ω1) is conically related to (x′

2,Ω
′
2) by {g′n}, and the

sequences gn(Ω1, pn) and g′n(Ω1, pn) both converge in the space C*(V ) of pointed
domains in P(V ).

This means that we can find compact subsets K,K′ in C*(V ) so that the inter-
section g′ng

−1
n K∩K′ ̸= ∅. From Theorem 2.9, it then follows that g′n = kngn for

kn in a fixed compact subset of PGL(V ). Any subsequence of kn has a further
subsequence which converges to some h ∈ PGL(V ); it follows that h takes the limit
of gn(x1,Ω1) to the limit of g′n(x1,Ω1), i.e. h(x2,Ω2) = (x′

2,Ω
′
2). □

3.7. Points conically related to Morse points. We now return to our main
task of proving Proposition 3.10. The next lemma is a key tool we need for several
of the equivalences in the proposition. It says that Morseness is preserved (in one
direction) along a conical relation.

Lemma 3.21. Let y1 ∈ ∂Ω1, and suppose that the projective geodesic [x1, y1) is
Morse for some (any) x1 ∈ Ω1. If y1 is forward or backward conically related to
y2 ∈ ∂Ω2, then for some (any) x2 ∈ Ω2, the projective geodesic [x2, y2) is Morse.

Proof. We first remark that the choice of x1 and x2 in the statement of the lemma
is not significant, since the Morseness of a a geodesic ray is independent of its
basepoint. So, fix any x1 in Ω1 and y1 ∈ ∂Ω1. We will prove the contrapositive of
the desired statement, and show that if y1 ∈ ∂Ω1 is forward or backward conically
related to y2 ∈ ∂Ω2, and [x2, y2) is non-Morse for some x2 ∈ Ω2, then [x1, y1) is
also non-Morse.

Let (z1, y1) be the bi-infinite projective geodesic in Ω1 that contains [x1, y1). As
y1 is conically related to y2, there is a sequence {gn} in PGL(V ) so that gnΩ1 → Ω2

and y2 is the limit of either gny1 or gnz1 (depending on whether y1 is forward or
backward conically related to y2). By definition of the conical relation, there exists
(z2, y2) ⊂ Ω2 such that gn(x1, y1) → (z2, y2). Fix a point x2 ∈ (z2, y2).

Assume that the projective geodesic ray [x2, y2) is not Morse. This means that
there exist quasi-geodesic constants K ≥ 1, C ≥ 0 such that for every m ∈ N, there
is a (K,C)-quasi-geodesic qm : [0, Tm] → Ω2 with endpoints in [x2, y2) such that
the image of qm does not lie in the m-neighborhood of [x2, y2).

We now claim that there exist constants K ′, C ′ such that: for any m ∈ N, there
exists a (K ′, C ′)-quasi-geodesic q′m : [0, Tm] → Ω1 with endpoints on [x1, y1), but
not contained in the (m−1)-neighborhood of [x1, y1) in the metric dΩ1

. This claim
essentially follows from the fact that the convergence of gnΩ1 to Ω2 in C(V ) is
uniform on compact subsets of P(V ) that intersect Ω2.

Fix any m ∈ N, and pick a compact convex set Dm ⊂ Ω2 large enough to contain
the m-neighborhood of the set qm([0, Tm]). Then for sufficiently large n (depending
on m), the subset Dm is contained in gnΩ1. Moreover, we have

dgnΩ1
|Dm×Dm

→ dΩ2
|Dm×Dm

uniformly as n → ∞.
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As qm(0), qm(Tm) ∈ (z2, y2), the projective geodesic (z2, y2) intersects Dm in a
finite length projective geodesic segment. As n tends to infinity, we have gn(x1, y1)∩
Dm → (z2, y2)∩Dm. Hence, the endpoints qm(0), qm(Tm) lie at a distance at most
1 from gn[x1, y1), with respect to the Hilbert metric on Ω2. So, for each sufficiently
large n, we can define a map qm,n : [0, Tm] → Ω2, agreeing with qm on the open
interval (0, Tm), and whose endpoints lie on the ray gn[x1, y1) at a distance at most
1 from the endpoints of qm([0, Tm]). The image of each qm,n lies in the set Dm.
Since qm is a (K,C)-quasi-geodesic with respect to the Hilbert metric on Ω2, qm,n

must be a (K,C + 1)-quasi-geodesic with respect to the same metric.
Now, we know that the Hilbert on gnΩ1 converges to the Hilbert distance on

Ω2 uniformly on Dm. So, if we fix K ′ = K + 1 and C ′ = C + 2, then for n large
enough, the map qm,n : [0, Tm) → Ω2 must also be a (K ′, C ′)-quasi-geodesic with
respect to the Hilbert metric on gnΩ1.

By construction of qm, we also know that there is some tm ∈ (0, Tm) so that the
(m− 1)-ball B2 about qm(tm) (with respect to the Hilbert metric on Ω2) does not
intersect the geodesic (z2, y2). Letting B1,n be the (m− 1)-ball about qm(tm) with
respect to the Hilbert metric on gnΩ1, the uniform convergence of Hilbert metrics
on Dm implies that B1,n ⊂ Dm for large enough n and that B1,n → B2 as n → ∞.
Then, as gn(x1, y1)∩Dm converges to (z2, y2)∩Dm, for large enough n we see that
B1,n cannot intersect the projective geodesic gn(x1, y1).

This implies that, for all sufficiently large n, the quasi-geodesic qm,n is not con-
tained in the (m− 1)-neighborhood of gn(x1, y1) with respect to the Hilbert metric
on gnΩ1. But then g−1

n qm,n is a (K ′, C ′)-quasi-geodesic with endpoints on [x1, y1),
whose image does not lie in the (m − 1)-neighborhood of [x1, y1) with respect to
the Hilbert metric on Ω1. Since m was arbitrary, and K ′, C ′ are independent of m,
this proves that [x1, y1) cannot be Morse. □

Combining the above lemma with Lemma 3.12 and Lemma 3.13, we obtain
a direct proof of the implications (M) =⇒ (HT ) and (M) =⇒ (HT−) in
Proposition 3.10. However, we need to do some more work to prove the implications
(M) =⇒ (SC) and (M) =⇒ (SC−).

3.8. Conically related points in triangles and half-triangles. The lemma
below is well-known to experts, and a similar proof already appears in [Ben60]. This
result expresses the idea that, in any domain Ω, segments (or non-C1 points) in the
boundary correspond to “flat directions:” as we follow a projective geodesic towards
a segment or corner in ∂Ω, the domain “looks more like” a domain containing a
properly embedded triangle, with the original segment or corner in its boundary.
We give a statement which uses the language of conically related points, and provide
a proof for convenience.

Lemma 3.22. Suppose that x1 ∈ ∂Ω1 is forward conically related to x+
2 ∈ ∂Ω2,

and backward conically related to x−
2 ∈ ∂Ω2.

(1) If x1 lies in the interior of a nontrivial segment in ∂Ω1, then there is a
properly embedded triangle ∆ in Ω2 so that x+

2 lies in the interior of an
edge of ∆, and x−

2 is a vertex of ∆.
(2) If x1 is not a C1 point, then there is a properly embedded triangle ∆ in Ω2

so that x+
2 is a vertex of ∆ and x−

2 is on the interior of an edge of ∆.
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Proof. Via Lemma 3.18, it suffices to consider the case where Ω1,Ω2 are 2-dimensional.
The definition of conically related points implies that there exists a projective geo-
desic ray [a, x1) ⊂ Ω1, a sequence in [a, x1), and a sequence {gn} in PGL(d,R) such
that gn[a, x1) → (x−

2 , x
+
2 ) ⊂ Ω2. Let x

−
1 be a point in ∂Ω1 so that [a, x1) ⊂ (x−

1 , x1),
and hence, (x−

1 , x
+
1 ) ⊂ Ω1. Then gn(x

−
1 , x1) converges to (x−

2 , x
+
2 ). Let {pn} be a

sequence in [a, x1) so that gnpn converges to some point in the interior of (x−
2 , x

+
2 ).

(1) By assumption, there exists a maximal nontrivial projective line segment
[b, c] ⊂ ∂Ω1 with x1 ∈ (b, c). Consider a sequence of projective transformations hn,
defined (with respect to the projective basis {b, c, x−

1 }) by

hn :=

λ−1
n

λ−1
n

λ2
n

 ,

where λn is chosen so that hnpn converges to a point in the interior of the line
segment x1, x

−
1 . Then hnΩ1 converges to the triangle with vertices at b, c, x−

1 . The
result then follows from Lemma 3.20.

(2) This case is similar. Fix a supporting line L− for Ω1 at the point x−
1 . Since

x1 is not a C1-point, we can choose two distinct supporting hyperplanes of Ω1 at
x1 that we label Hb and Hc. Let b = Hb ∩ L− and c = Hc ∩ L−. Here we consider
the sequence of projective transformations (defined with respect to the projective
basis {x1, b, c}) by

hn :=

λ−2
n

λn

λn

 ,

where λn is again chosen so that hnpn converges to a point in the interior of (x1, x
−
1 ).

This time, since Ω1 is not C1 at x1, the sequence of domains converges to a triangle
with a vertex at x1, and an edge containing x−

1 in its interior and again we are done
by Lemma 3.20. □

The next lemma does not appear to be well-known. It says that, just as a point z
in the interior of a boundary segment in a properly convex domain Ω can be thought
of as a “flat direction,” a point z in the closure of a segment can be thought of as
a “half-flat” direction: as we approach z along a projective geodesic, the domain
“looks more” like it contains a properly embedded half-triangle.

Lemma 3.23. Suppose that x1 ∈ ∂Ω is forward conically related to x+
2 ∈ ∂Ω2 and

backward conically related to x−
2 ∈ ∂Ω2. If x1 lies in the closure of a nontrivial

segment in ∂Ω, then both x+
2 and x−

2 lie in the boundary of a half-triangle in Ω2.

Proof. After applying Lemma 3.18 we may assume that Ω and Ω2 are both two-
dimensional, and using Lemma 3.22, we can further reduce to the case where x1 is
the endpoint of a maximal nontrivial segment in ∂Ω. Let z be the other endpoint
of this segment, and let L+ be the projective span of x1 and z, so that L is a
supporting line of Ω at x1.

Fix a sequence {gn} realizing the conical relations between x1 and x±
2 , so that

gnx1 → x+
2 and for some x−

1 ∈ ∂Ω, we have (x−
1 , x1) ⊂ Ω and gnx

−
1 → x−

2 . Let
L− be a supporting line of Ω at x−

1 , let x0 = L− ∩ L+, and let pn ∈ (x1, x
−
1 ) be a

sequence converging to x1 so that gnpn converges to a point p0 ∈ Ω2.
We fix lifts v1, v0, v

−
1 for x1, x0, x

−
1 respectively, so that {v1, v0, v−1 } is a basis for

R3 and the projectivization of the convex hull of v1, v0, v
−
1 lies in Ω. We consider a
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sequence of linear maps {hn}, defined with respect to this basis by

hn :=

λ−1
n

λ−1
n

λ2
n

 .

Here λn > 0 is chosen so that hnpn converges to a point p′0 ∈ (x1, x
−
1 ). The sequence

of domains hnΩ converges to a triangle with vertices x1, x
−
1 , z (so this triangle does

not contain p′0 in its interior).
Our chosen basis {v1, v0, v−1 } also determines projective coordinates [x : y : z]

for projective space P(R3). Consider the affine chart

{[x : y : 1− x] : x, y ∈ R} ≃ R2,

which has affine coordinates given by (x, y). In these coordinates, the projective
line spanned by x1, x

−
1 corresponds to the horizontal axis y = 0, so without loss of

generality the triangle limited to by hnΩ is a bounded convex subset of the upper
half-plane. Therefore, since hnpn lies in the interior of hnΩ, the intersection of hnΩ
with the lower-half plane is nonempty, and contained in an open subset of the form
I × (0,−εn), where I is a fixed interval and εn is a positive constant tending to
zero.

We can then compose hn with a projective transformation fn given by a “vertical
rescaling” (i.e. a transformation which preserves vertical lines, and acts on them
by homotheties centered at zero) so that the intersection of fnhnΩ with the lower
half-plane converges to a bounded nonempty convex set; explicitly, in our chosen
projective basis, each fn has the formη−1

n

η2n
η−1
n

 .

Since εn → 0, the vertical scaling factor of each fn must tend to infinity, which
means that the intersection of fnhnΩ with the upper half-plane limits to a subset
of the form I × (0,∞). But this subset is projectively equivalent to a half-triangle
in the limit of fnhnΩ.

Altogether, we have seen that the sequence of pointed domains fnhn(Ω, pn) con-
verge to a pointed domain (Ω′

2, p
′
0), so that fnhnx1 = x1 and x−

1 = fnhnx
−
1 both

lie in the boundary of a half-triangle in Ω′
2. We can then apply Lemma 3.20 to

complete the proof. □

3.9. Projective geodesics with endpoints in segments. We can combine our
previous results regarding Morse geodesics and conically related points to prove
some more facts about the endpoints of Morse geodesics.

Corollary 3.24. Suppose that y ∈ ∂Ω is the endpoint of a M -Morse geodesic ray.
Then y is a C1 extreme point of ∂Ω.

Proof. Fix a projective geodesic ray [y0, y) that is M -Morse. By Lemma 3.15,
(y,Ω) is forward conically related to (y′,Ω′). Now suppose that y is not an extreme
point, meaning that y is contained in the interior of a projective line segment in
∂Ω. So Lemma 3.22 part (1) implies that there is a properly embedded triangle
∆′ ⊂ Ω′ whose boundary contains y′. Let p′ ∈ ∆′. By Lemma 3.21, [p′, y′) is a
Morse geodesic ray. This contradicts Lemma 3.12, so y is an extreme point. That
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y is a C1 point follows from similar reasoning, applying part (2) of Lemma 3.22
instead of part (1). □

We can use this result to obtain:

Corollary 3.25. Suppose that y lies in the closure of a nontrivial segment in ∂Ω.
Then for any x ∈ Ω, the projective geodesic [x, y) is not Morse.

Proof. Suppose, for a contradiction, that [x, y) is M -Morse for some x ∈ Ω. In this
case Corollary 3.24 implies that y is a C1 extreme point. So, we may assume that
y is the endpoint of a nontrivial segment in ∂Ω.

By Lemma 3.15, (y,Ω) is forward conically related to (y+,Ω∞) and backward
conically related to (y−,Ω∞) for some properly convex domain Ω∞. Fix a point
p ∈ Ω∞. By Lemma 3.21, [p, y∞) is also Morse, and by Lemma 3.23, y∞ lies in the
boundary of a half-triangle in ∂Ω∞.

Now, Corollary 3.24 again implies that y∞ cannot lie in the interior of a segment
in ∂Ω∞. But in this case Lemma 3.13 implies that [p, y∞) cannot be Morse and we
get a contradiction. □

Combining the above with Lemma 3.21 immediately yields the implications (M)
=⇒ (SC) and (M) =⇒ (SC−) in Proposition 3.10.

3.10. δ-slimness. To finish the proof of Proposition 3.10, we need to prove the
final two implications (HT ) =⇒ (δ) and (HT−) =⇒ (δ) (again see Figure 3).
These both follow from the lemma below.

Lemma 3.26. Let ℓ be a projective geodesic in Ω. If ℓ is not projectively δ-slim
for any δ > 0, then there is an endpoint y of ℓ in ∂Ω and points z+, z− lying in the
boundary of a half-triangle in some domain Ω2 so that y is forward (resp. backward)
conically related to z+ (resp. z−).

Proof. The argument is essentially identical to the proof of Proposition 2.5 in
[Ben04]; we reproduce it here for convenience. Fix a projective geodesic ℓ which is
not projectively δ-slim for any δ. We choose a sequence of triples {(an, bn, cn)} in
Ω, with an, bn ∈ ℓ, such that the projective geodesic triangle with vertices an, bn, cn
is not 2n-slim. Then, by Remark 3.2, the segment [an, bn] cannot be contained in
the union of metric n-neighborhoods

Nn([an, cn]) ∪Nn([bn, cn]).

Since the projective geodesic segment [an, bn] is connected, there is a point xn ∈
[an, bn] so that dΩ(xn, [an, cn]) ≥ n and dΩ(xn, [bn, cn]) ≥ n. Applying Theorem 2.9,
we can choose elements gn ∈ PGL(V ) and extract a subsequence so that the pointed
domains gn(Ω, xn) converge to some limiting pointed domain (Ω∞, x∞), and the
points gnan, gnbn, gncn converge to points a, b, c in ∂Ω∞.

Since gnxn converges to x∞ ∈ Ω∞, the distances dgnΩ(gnxn, gn[an, cn]) and
dgnΩ(gnxn, gn[bn, cn]) must tend to infinity, which means the segments [a, c] and
[b, c] must converge to subsets of ∂Ω∞. However, since the limit of gnxn lies in
the interior of (a, b)∩Ω∞, the segments [a, c] and [b, c] must also be nontrivial and
distinct. As (a, b) contains the limit of gnxn ∈ Ω∞, the points a, b, c are the vertices
of a half-triangle in Ω∞.

If {gn} is a divergent sequence in PGL(V ), then the properness condition in The-
orem 2.9 implies that xn must tend towards an endpoint of ℓ in ∂Ω. This endpoint
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is forward conically related to one of the limiting endpoints a, b of gn[an, bn], and
backward conically related to the other. In this case, we have proved the lemma.

On the other hand, if {gn} is not divergent in PGL(V ), then (Ω∞, [a, b]) = g(Ω, ℓ)
for some g ∈ PGL(V ). Thus both endpoints of ℓ already lie in a half-triangle in Ω.
If the conical relation were reflexive, this would finish the proof. But since conical
relation satisfies only a weak form of reflexivity, we must appeal to Lemma 3.15
followed by Lemma 3.23. This leads to the conclusion that the endpoints of ℓ are
both forward and backward conically related to points in a half-triangle ∆ in some
properly convex domain Ω′, as required. □

This concludes the proof of Proposition 3.10, hence of Proposition 3.3.

3.11. Uniformity. Proposition 3.4 gives us a stronger version of the implication
(C) =⇒ (M) in Proposition 3.10: it says that any D-contracting projective geo-
desic in a properly convex domain Ω is M -Morse for a Morse gauge M determined
solely by D and Ω. In the case where Ω is divisible, we can strengthen the opposite
implication in a similar manner.

Proposition 3.27. Let Ω be a properly convex divisible domain. For every Morse
gauge M , there exists a constant δ > 0 (depending only on M and Ω) so that any
M -Morse geodesic in Ω is projectively δ-slim.

Observe that, by applying this proposition together with Proposition 3.6, we
obtain the following uniform version of (M) =⇒ (C):

Corollary 3.28. Let Ω be a properly convex divisible domain, M be a Morse gauge,
and δ be the constant (determined solely by M and Ω) from Proposition 3.27. Then
any M -Morse geodesic in Ω is 24δ-contracting.

Proof of Proposition 3.27. Fix a Morse gauge M , and suppose for a contradiction
that there is an infinite sequence of M -Morse geodesics {ℓn} in X so that ℓn fails
to be projectively n-slim. Then for each n there is a projective triangle [an, bn] ∪
[bn, cn] ∪ [cn, an] in Ω with [bn, cn] ⊂ ℓn which is not n-slim. By Remark 3.2, this
implies that there is a point un ∈ [bn, cn] such that

dΩ(un, [an, bn] ∪ [an, cn]) ≥ n.

As Ω is divisible, there exists a discrete subgroup Γ ⊆ Aut(Ω) and a compact set
D ⊂ Ω such that Γ ·D = Ω. Then, we can find γn in Γ such that γnun ∈ D. Up to
passing to a subsequence, we can assume that the points γnan, γnbn, γncn, γnun, γnℓn
converge to a, b, c, u, ℓ in Ω respectively. By construction u ∈ D. Since un ∈ ℓn, this
implies that u ∈ ℓ and hence ℓ is a bi-infinite projective geodesic in Ω. Moreover,
[a, b] ∪ [a, c] ⊂ ∂Ω, because

lim inf
n→∞

dΩ(u, [an, bn] ∪ [an, cn]) ≥
(
lim inf
n→∞

dΩ(un, [an, bn] ∪ [an, cn])
)
− lim

n→∞
dΩ(u, un)

= ∞.

Then ℓ = (a, b) and the points a, b, c lie in the boundary of a half triangle in Ω.
Now, as ℓn is a sequence ofM -Morse geodesics converging uniformly to a geodesic

ℓ on compact sets, it follows from [Cor17, Lemma 2.10] that ℓ is M -Morse. But
then this contradicts Lemma 3.13. □
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3.12. Morseness, C1 points, and extreme points. We record a few more con-
sequences of Proposition 3.10. These results will be relevant later in the paper,
when we consider the behavior of Morse geodesics as subsets of the automorphism
group Aut(Ω) ⊂ PGL(V ).

Proposition 3.29. Suppose that y ∈ ∂Ω1 is M -Morse and (y,Ω1) is forward
conically related to (x,Ω2). Then x is an extreme point and a C1 point in ∂Ω2.

Proof. Follows immediately from Lemma 3.21 and Corollary 3.24. □

Below, we provide a partial converse to Proposition 3.29. Recall that C(V )
denotes the space of properly convex domains in P(V ).

Definition 3.30. Let Ω be a convex projective domain in P(V ). We let O(Ω)
denote the closure of the PGL(V )-orbit of Ω in C(V ).

Recall the notion of domains with exposed boundary from Definition 2.2.

Proposition 3.31. Suppose Ω1 is a properly convex domain such that every Ω ∈
O(Ω1) has exposed boundary. Let y ∈ ∂Ω1 be such that: if (y,Ω1) is forward
conically related to (x,Ω2), then x is a C1 extreme point in ∂Ω2. Then y is M -
Morse for some Morse gauge M .

Proof. Fix a point y ∈ ∂Ω1 satisfying the two assumptions above, and suppose that
y is not a Morse point in ∂Ω1. We will show that if this holds, there is a domain
Ω ∈ O(Ω1) which does not have exposed boundary.

The implication (SC) =⇒ (M) in Proposition 3.10 means that y is forward
conically related to a point y2 ∈ ∂Ω2, lying in the closure of a nontrivial segment s
in ∂Ω2. By definition Ω2 lies in O(Ω1). By our assumptions, y2 must be an extreme
point in ∂Ω2, so y2 lies in the boundary of s. Any hyperplane supporting Ω2 at a
point in the relative interior of s must also contain y2. But our assumptions also
imply that y2 is a C1 point in ∂Ω2, i.e. there is a unique supporting hyperplane H
of Ω2 at y2. Then H must contain all of s and therefore y2 cannot be an exposed
point. Thus Ω2 cannot have exposed boundary. □

When Ω is a divisible domain in P(V ), the PGL(V )-orbit of Ω in C(V ) is closed,
as a direct consequence of Theorem 2.9. So in this case every domain in O(Ω)
has exposed boundary if and only if Ω has exposed boundary, and we can combine
Proposition 3.29 and Proposition 3.31 to obtain the following:

Corollary 3.32. Let Ω be a convex divisible domain with exposed boundary, and
let y ∈ ∂Ω. Then the following are equivalent:

(1) For some (any) x ∈ Ω, the projective geodesic [x, y) is M -Morse for some
Morse gauge M .

(2) If y is forward conically related to z ∈ ∂Ω, then z is a C1 extreme point in
∂Ω.

3.13. Morse local-to-global. Using the above results, one may also prove The-
orem 1.18, showing that convex divisible domains satisfy a Morse local-to-global
property defined by Russell-Spriano-Tran.

Definition 3.33. Let X be a metric space, fix constants K ≥ 1, L,A > 0, and
let M be a Morse gauge. We say that a path c : [a, b] → X is a (L;M ;K,A)-local
Morse quasi-geodesic if for every [t1, t2] ⊂ [a, b] with |t2 − t1| ≤ L, the restriction
of c to [t1, t2] is an M -Morse (K,A)-quasi-geodesic.
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Definition 3.34. A metric space X has the Morse local-to-global property if, for
every Morse gaugeM and everyK ≥ 1, A ≥ 0, there exist constantsK ′ ≥ 1, L,A′ ≥
0 and a Morse gauge M ′ (depending only on K,A,M) so that every (L;M ;K,A)-
local Morse quasi-geodesic is an M ′-Morse (K ′, A′)-quasigeodesic.

Note that even if X is a metric space containing no Morse geodesic rays, it
is still possible for X to satisfy the Morse local-to-global property. In [RST22],
Russell-Spriano-Tran also proved that any CAT(0) space X satisfies the Morse
local-to-global property. It turns out that their proof applies essentially verbatim
to divisible Hilbert geometries, as applications of the CAT(0) condition in the proof
are limited to:

(a) the maximum principle for geodesics in X,
(b) continuity of the nearest-point projection map to geodesics in X, and
(c) uniform equivalence between Morse geodesics and contracting geodesics.

One can thus follow their proof, employing:

(1) Lemma 2.5 in place of (a),
(2) Lemma 2.6 in place of (b), and
(3) Proposition 3.4 and Corollary 3.28 in place of (c)

to prove Theorem 1.18. We refer the reader to [RST22, Section 4.2] rather than
reproducing the entire proof here. □

4. Estimating singular values using convex projective geometry

In this section, we will estimate singular values using projective geometry. Specif-
ically, if {gn} is a sequence in PGL(d,R) that “almost” preserves a properly convex
domain, then we obtain asymptotic estimates for various singular values of {gn}.
We will use these estimates in the next section to study the singular values of
sequences that track Morse geodesic rays.

4.1. Singular value gap estimates when a domain is preserved. We first
record some known estimates on singular values of automorphisms of Ω. The first
estimate relates Hilbert distances to the µ1,d singular value gap.

Proposition 4.1 ([DGK17, Proposition 10.1]). Let Ω be a properly convex domain

in P(Rd). For any basepoint x0 ∈ Ω, there exists a constant D so that for any
γ ∈ Aut(Ω), we have ∣∣∣∣µ1,d(γ)−

1

2
dΩ(x0, γx0)

∣∣∣∣ ≤ D.

Moreover, the constant D can be chosen to vary continuously as (x0,Ω) varies in
the space of pointed properly convex domains.

To obtain estimates for other singular value gaps, we can consider the faces in
the boundary of a properly convex domain Ω. Let F be a k-dimensional face of
Ω, fix a basepoint x0 ∈ Ω, and let {γn} be a sequence in Aut(Ω) so that γnx0

accumulates on F . Lemma 2.10 tells us that, if B(x0, r) is any open ball about x0

(with respect to dΩ), then γnB(x0, r) also accumulates on the k-dimensional face
F . This can be used to see that the sequence has a singular value gap at some
index j with j ≤ k. Precisely, we have the following.

Proposition 4.2 (See e.g. [IZ21, Proposition 5.6]). Suppose {γn} is a sequence in
Aut(Ω), x0 ∈ Ω, and γnx0 → x ∈ ∂Ω. If dim(FΩ(x)) = k, then µ1,k+2(γn) → ∞.



MORSE PROPERTIES IN CONVEX PROJECTIVE GEOMERTY 33

Proof. The proof of [IZ21, Proposition 5.6] immediately implies this (although the
result is stated differently in that paper). In the notation of [IZ21], suppose γn → T

in P(End(Rd)). Then T is a projective linear map with dim(Im(T )) = q where
q := max{i : lim infn→∞ µ1,i(γn) < ∞} and Im(T ) ⊂ SpanFΩ(x). Thus q ≤ k + 1
where k := dimFΩ(x). Hence µ1,k+2(γn) ≥ µ1,q+1(γn) → ∞. □

In the above proposition, {γn} does not need to track the projective geodesic
[x0, x). But if the sequence {γn} does actually track the projective geodesic ray
[x0, x), then we get a stronger statement. In this case, it is possible to show that the
balls γnB(x0, r) limit onto a relatively open subset of FΩ(x), which in turn implies
that the sequence γn does not have singular value gaps at an index less than k.
Using this idea, one proves the following:

Proposition 4.3 (See e.g. [IZ21, Proposition 5.7]). Let Ω be a properly convex
domain, let c : [0,∞) → Ω be a projective geodesic ray, and let {γn} track c. The
following are equivalent:

(1) The endpoint c(+∞) ∈ ∂Ω lies in a k-dimensional face in ∂Ω.
(2) There exists some constant D > 0 such that µk+1,k+2(γn) tends to infinity

as n → ∞, and for any 1 ≤ ℓ ≤ k, we have µℓ,ℓ+1(γn) < D.

4.2. Singular value estimates when a domain is almost preserved. The
remaining estimates in this section are somewhat more technical. This is partly
because we no longer restrict our attention to automorphisms of a fixed convex
projective domain Ω. Rather, we consider projective transformations that “almost
preserve” a domain. This idea is closely tied to the notion of conically related points
from the previous section.

It will be useful to introduce the following definitions.

Definition 4.4. Suppose V is a real vector space. Recall that C(V ) denotes the
space of properly convex domains in P(V ).

Let ℓ ⊂ V be a projective line segment with endpoints x±, and let H be a
projective subspace in P(V ) with codimension 2. We let

C(V ; ℓ,H)

denote the set of domains Ω ⊂ P(V ) such that ℓ is properly embedded in Ω, and the

projective hyperplanes P(x+⊕ H̃) and P(x−⊕ H̃) are both supporting hyperplanes
of Ω. This set is equipped with the subspace topology from C(V ).

The lemma below is one of the main technical estimates in this section.

Lemma 4.5. Fix a projective line segment ℓ = (x+, x−) and a codimension-two

projective subspace H ⊂ P(Rd). Let K1,K2 be two compact subsets of C(Rd; ℓ,H).
There exists a constant C (depending only on K1,K2) so that if g ∈ GL(d,R)
preserves the decomposition x+⊕H̃⊕x−, with ||g|x+

|| > ||g|x− ||, and gK1 ∩K2 ̸= ∅,
then:

(1)
∣∣log ∥∥g|x+

∥∥− µ1(g)
∣∣ < C,

(2)
∣∣log ∥∥g|x−

∥∥− µd(g)
∣∣ < C,

(3)
∣∣log ∥∥g|H̃∥∥− µ2(g)

∣∣ < C,

(4)
∣∣logm(g|H̃)− µd−1(g)

∣∣ < C.

Proof. Let W = H̃. Because of Lemma 2.19 and Lemma 2.15, we may assume that
the decomposition x+⊕W⊕x− is orthogonal. In this situation, whenever g satisfies
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the hypotheses of the lemma, we can find indices 1 ≤ i < j ≤ d so ||g|x+
|| = σi(g)

and ||g|x− || = σj(g). We first claim that:

Claim 4.5.1. It suffices to prove only part (1).

Proof of Claim. Suppose we have part (1). Part (2) follows immediately by apply-
ing part (1) to g−1 (and interchanging the roles of K1,K2). So we only need to see
that parts (1) and (2) together imply parts (3) and (4). Parts (1) and (2) imply that
0 ≤ µ1(g)−µi(g) < C and 0 ≤ µj(g)−µd(g) < C, giving us |µ1,d(g)− µi,j(g)| ≤ C ′

where C ′ := 2C. Then Lemma 2.17 implies that

max

{
max
1≤k≤i

µ1,k(g), max
j≤k≤d

µk,d(g)

}
≤ C ′.(4)

Let i′ and j′ be the minimum and the maximum, respectively, of the set ({1, . . . , d}−
{i, j}). Since x+ ⊕W ⊕ x− is an orthogonal decomposition,

∥g|W ∥ = σ1(g|W ) = σi′(g) and m(g|W ) = σd−2(g|W ) = σj′(g).

We consider several cases depending on the value of i′. If i′ = 2, then part (3) is
immediate. On the other hand, if i′ = 1, then the definition of i′ implies that i ≥ 2.
Then (4) implies that

|µi′(g)− µ2(g)| = µ1,2(g) ≤ C ′

which again implies part (3). So we are left with the case that i′ > 2. Note that
this occurs precisely when i = 1 and j = 2. But in that case, (4) implies that

|µi′(g)− µ2(g)| = µj,i′(g) ≤ C ′

which again implies part (3). Thus we have shown that part (1) implies part (3).
Finally, since m(g|W ) =

∥∥(g|W )−1
∥∥, we can apply part (3) to (g|W )−1 to prove

part (4). This finishes the proof of the claim that it suffices to prove only part
(1). □

We now proceed with the proof of part (1). Suppose, on the contrary, that part
(1) fails. Then there is a sequence {gn} in GL(d,R) satisfying the hypotheses of
the lemma, but with

σ1(gn)

σi(gn)
→ ∞(5)

as n → ∞. Here, i is an index such that ||gn|x+ || = σi(gn) for every n (after
passing to a subsequence, we can ensure that the same fixed index i works for each
gn). Up to passing to a further subsequence, we may also assume that there exists
j ∈ {i+ 1, . . . , d} such that

∥∥gn|x−

∥∥ = σj(gn). Note that in particular, (5) implies
that i > 1.

We can fix an orthonormal basis for W , and extend it to an orthonormal basis
for Rd by adding unit vectors spanning x+, x−. With respect to this basis, gn is
block-diagonal, of the formσi(gn)

gn|W
σj(gn)

 .

The restriction gn|W has a Cartan decomposition knanln, where an is a diagonal
matrix with respect to our chosen basis on W , and kn, ln lie in the group O(W ) of
orthogonal transformations of W .
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Observe that, if we pre-compose or post-compose gn with any orthogonal matrix
of Rd fixing ℓ = (x+, x−) pointwise and preservingW , the values of µi(gn),

∥∥gn|x±

∥∥,
∥gn|W ∥, and m(gn|W ) do not change. So, after replacing gn with the sequence1

k−1
n

1

σi(gn)
gn|W

σj(gn)

1
l−1
n

1

 ,

and replacing the sets K1,K2 with the sets1
O(W )

1

K1,

1
O(W )

1

K2,

we can assume that each gn is a diagonal matrix with respect to a fixed orthonormal
basis e1, . . . , ed, compatible with the orthogonal decomposition Rd = x+⊕W ⊕x−.
In particular, we order our basis so that x+ = [ei] and x− = [ej ] and gnek =
σk(gn)ek for each 1 ≤ k ≤ d.

Now fix a point v ∈ Rd so that [v] ∈ ℓ. We may write v = aei + bej for a, b both
nonzero. Fix any t ̸= 0. Then, using (5) (and the fact that i < j), we have

1

σ1(gn)
gn(te1 + v) = te1 + a

σi(gn)

σ1(gn)
ei + b

σj(gn)

σ1(gn)
ej → te1.

Thus gn[v + te1] → [e1] for any t ̸= 0.
Now, choose domains Ωn ∈ K1 so that gnΩn ∈ K2. By compactness of K2, we can

pass to a subsequence and assume that gnΩn converges to a domain Ω∞. Since K1

is a compact subset of C(Rd; ℓ,H), there is some ε > 0 so that for each Ω ∈ K1, the
Hilbert distance in Ω between [v+ te1] and [v] is uniformly bounded for t ∈ (−ε, ε).
Our assumption (5) means that {gn} is divergent when viewed as a sequence of
projective transformations, so Theorem 2.9 implies that [gnv] only accumulates on
∂Ω∞. Since [v] lies in the gn-invariant subspace ℓ and

∥∥gn|x+

∥∥ >
∥∥gn|x−

∥∥, the only
possibility is that [gnv] converges to x+.

Since limn→∞ gn[v + te1] = [e1] for any t ̸= 0, it follows from Lemma 2.10 that
[e1] ∈ FΩ∞(x+). Moreover, by the same lemma, for any t ∈ (−ε, ε)− {0}, we have

dFΩ∞ (x+)(x+, [e1]) ≤ lim inf
n→∞

dgnΩn
(gn[v], gn[v + te1])

= dΩn
([v], [v + te1]).

As Ωn lies in a compact set K1, the Hilbert distances dΩn([v], [v + te1]) tend to
0 uniformly in n as t → 0. This means that in fact dFΩ∞ (x+)(x+, [e1]) = 0, i.e.
x+ = [e1]. But this is a contradiction since we have also arranged x+ = [ei] for

i ̸= 1, and {e1, . . . , ed} is a basis for Rd. □

4.3. Application to automorphisms of properly convex domains. We now
apply the previous lemma to establish estimates on singular values of projective
transformations which actually (instead of “approximately”) preserve a convex do-
main. First we introduce some more notation.

Definition 4.6. Let Ω be a properly convex domain in P(Rd).

• We let G(Ω) denote the space of all projective bi-infinite geodesics in Ω,
with unit-speed (in dΩ) parameterization. Let c(±∞) ∈ ∂Ω denote the
ideal endpoints of any c ∈ G(Ω).
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• We let T(Ω) denote the set of triples (c,H+, H−), such that c ∈ G(Ω) and
H± are supporting hyperplanes of Ω at c(±∞).

• For any compact subset K ⊂ Ω, we let GK(Ω) denote the set of geodesics
c ∈ G(Ω) such that c(0) ∈ K. Similarly, we use TK(Ω) to denote the set

TK(Ω) := {(c,H+, H−) ∈ T(Ω) : c ∈ GK(Ω)}.

If Ω does not have C1 boundary, then the projection map T(Ω) → G(Ω) is not a
homeomorphism. However, this map is always proper, due to the compactness of
the set of supporting hyperplanes at any point in ∂Ω. The map G(Ω) → Ω given
by c 7→ c(0) is also proper, as the space of projective geodesics passing through a
given basepoint in Ω is also compact.

If we fix an element (c,H+, H−) ∈ T(Ω), we know that H+ cannot contain
c(−∞), since otherwise H+ would also contain c(0) and would not be a supporting
hyperplane of Ω. Similarly H− cannot contain c(+∞). So, we have a direct sum
decomposition

Rd = c(+∞)⊕ (H̃+ ∩ H̃−)⊕ c(−∞).

For triples lying in some TK(Ω), this decomposition is actually uniformly trans-
verse in the following sense:

Lemma 4.7. For any compact set K ⊂ Ω, there exists some ε0 > 0 such that for
any (c,H+, H−) ∈ TK(Ω), we have

min {∠(c(+∞), H+ ∩H−),∠(c(−∞), H+ ∩H−),∠(c(+∞), c(−∞))} ≥ ε0.

Proof. The map T(Ω) → R given by

(c,H+, H−) 7→ min {∠(c(+∞), H+ ∩H−),∠(c(−∞), H+ ∩H−),∠(c(+∞), c(−∞))}
is continuous and positive on T(Ω). The set TK(Ω) is compact since it is precisely
the preimage of K under the proper map T(Ω) → Ω. So the result is immediate. □

Using this observation, we can apply Lemma 4.5 to obtain the following estimate
on singular values for automorphisms of a convex projective domain. In this lemma,
and throughout the paper, if g is an element of GL(d,R), and W ⊆ Rd is a subspace
(not necessarily g-invariant), then the restriction g|W is interpreted as a map W →
Rd; since both W and Rd are normed spaces, both ∥g|W ∥ and m(g|W ) make sense.

Proposition 4.8. Let Ω be a properly convex domain and K ⊂ Ω be compact.
Then there exists D > 0 (depending only on K,Ω) satisfying the following: if
(c,H+, H−) ∈ TK(Ω), and γ ∈ Aut(Ω) satisfies γ−1c(t) ∩K ̸= ∅ for some t > 0,
then:

(1)
∣∣log ∥∥γ−1|c(−∞)

∥∥− µ1(γ
−1)

∣∣ < D,

(2)
∣∣log ∥∥γ−1|c(+∞)

∥∥− µd(γ
−1)

∣∣ < D,

(3)
∣∣∣log ∥∥∥γ−1|

H̃0

∥∥∥− µ2(γ
−1)

∣∣∣ < D,

(4)
∣∣∣logm(γ−1|

H̃0
)− µd−1(γ

−1)
∣∣∣ < D, where H0 = H+ ∩H−.

Remark 4.9. We have slightly abused notation in the statement of this proposition,
since elements in Aut(Ω) are projective transformations and so the quantities µi(γ),
etc. are not well-defined. So, strictly speaking, the inequalities above apply to lifts
γ̃ ∈ GL(d,R) of γ, but the validity of the inequalities is independent of the choice
of lift.
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Proof. This proof is mainly an application of Lemma 4.5. We first fix, once and for
all, a decomposition Rd = x+⊕H̃⊕x− where x± ∈ P(Rd) and H is a codimension-2

projective subspace. Let ℓ be a projective line segment in P(Rd) joining x+ and
x−, i.e. ℓ is one of the two connected components of spanP{x+, x−} − {x+, x−}.

Now we need to modify γ−1 so that it preserves the decomposition Rd = x+⊕H̃⊕
x−. Applying Lemma 2.19 and Lemma 4.7 above, we see that there exists a compact
set Q ⊂ GL(d,R) (depending only on K) so that for any (c,H+, H−) ∈ TK(Ω), with
H0 = H+ ∩H−, we can find some k = k(c,H+, H−) ∈ Q taking the decomposition

Rd = c(+∞) ⊕ H̃0 ⊕ c(−∞) to x− ⊕ H̃ ⊕ x+. Moreover, we can also assume that
this k takes the image of c to the projective line segment ℓ. Indeed, ℓ is one of
the two connected components of spanP{x+, x−} − {x+, x−}. Thus, if necessary,
we can compose all of the elements in Q with a fixed involution interchanging the
connected components of spanP{x+, x−} − {x+, x−} and ensure that k takes c(R)
to ℓ.

Possibly after replacing Q with the closure of the set

Q′ := {k(c,H+, H−) : (c,H+, H−) ∈ TK(Ω)},

we may assume that for every q ∈ Q, the projective segment q−1ℓ is properly
embedded in Ω, and q−1H is disjoint from Ω. This means that the set qK ∩ ℓ has
bounded diameter with respect to the Hilbert metric dℓ on ℓ, and that the set

K := {qΩ : q ∈ Q}

is a compact subset of C(Rd; ℓ,H). Further, since Q is compact, the diameter (with

respect to the Hilbert metric dℓ) of the set
(⋃

q∈Q(ℓ ∩ qK)
)
is also bounded. Let

L be an upper bound for the diameter of this set.
Now fix some (c,H+, H−) ∈ TK(Ω), and assume that γ−1c(t) ∈ K for γ ∈ Aut(Ω)

and t > 0. As Aut(Ω) acts properly on Ω, if t ≤ L then γ−1 belongs to a fixed
compact subset of Aut(Ω) depending only on L, and we may choose D sufficiently
large so that each of the inequalities in the statement of the proposition holds for
every γ in this set. So, we may assume from now on that t > L. Fix a lift of γ in
GL(d,R); abusing notation we also denote this lift by γ (see Remark 4.9).

We let c′ be the translated and reparameterized geodesic s 7→ γ−1c(s + t), so
that c′ ∈ GK(Ω), and

(c′, γ−1H+, γ
−1H−) ∈ TK(Ω).

By our construction of Q, we can choose k, k′ ∈ Q so that k takes the decomposition

c(∞)⊕ H̃0⊕ c(−∞) to x−⊕ H̃⊕x+, and similarly for k′, c′ and γ−1H±. Then, the
group element g ∈ GL(d,R) defined by g = k′γ−1k−1 preserves the decomposition

x+ ⊕ H̃ ⊕ x− and the projective line ℓ, which verifies one of the hypotheses of
Lemma 4.5. Moreover, recalling that K = {kΩ : k ∈ Q} is a compact subset of

C(Rd; ℓ,H), we see that gK contains k′γ−1k−1kΩ) = k′Ω ∈ K, hence gK∩K ≠ ∅.
This verifies another hypothesis of Lemma 4.5, when we take K1 = K2 = K.

Finally, we need to verify that ||gx+
|| ≥ ||gx− ||, by considering the action of

g on the projective line segment ℓ. Let x0 = kc(0). Observe that the 4-tuple
[c(−∞), c(0), c(t), c(+∞)] is arranged on the image of c in this order. Applying
k′γ−1 to c, we then observe that the points

[k′c(−∞), k′γ−1c(0), k′γ−1c(t), k′c(+∞)] = [x+, gx0, k
′γ−1c(t), x−]



38 MORSE PROPERTIES IN CONVEX PROJECTIVE GEOMERTY

lie on the projective segment ℓ in this order. Moreover, since γ−1c(t) ∈ K, and
c(0) ∈ K, we know from the definition of L that dℓ(k

′γ−1c(t), x0) ≤ L (with respect
to the Hilbert metric dℓ on ℓ). Since dℓ(k

′γ−1c(0), k′γ−1c(t)) = t > L, it follows
that the 4-tuple of points

[x+, k
′γ−1c(0), kc(0), x−] = [x+, gx0, x0, x−]

are also arranged in this order on ℓ. Since g fixes the endpoints of ℓ, the eigenvalue
of g on x+ must be larger than the eigenvalue of g on x−, or equivalently,

∥∥g|x+

∥∥ >∥∥g|x−

∥∥.
We have now verified that we can apply Lemma 4.5 to g. Then log(

∥∥g|x+

∥∥) is
within bounded additive error C of µ1(g), where the constant C depends only on
K and Ω. However, since gk = k′γ−1 for k, k′ in the fixed compact set Q, and
kc(−∞) = x+, we can apply Lemma 2.15 to get the first desired estimate for γ−1.
The other estimates follow similarly. □

4.4. A “straightness” lemma. The estimate given by Proposition 4.1 implies
that, if γn is a sequence tracking a projective geodesic in a convex projective domain
Ω, then the gap µ1,d(γn) increases roughly linearly in n. The same linear estimate
need not hold for other singular value gaps. In fact, [BPS19] proves that uniform
linear growth in n imposes a strong restriction. Suppose Γ divides Ω and there is an
index j such that µj,j+1(γn) grows uniformly linearly in n for all tracking sequences
{γn}. Then Γ must be a hyperbolic group [BPS19]. Thus, in the non-hyperbolic
setting, there is no way to obtain such a sharp estimate. However, for a sequence
{γn} tracking a Morse geodesic, we can prove a “coarse monotonicity” property for
µ1,2(γn) and µd−1,d(γn). Our main tool is the following “straightness” lemma.

Lemma 4.10. Suppose Ω is a properly convex domain and K ⊂ Ω is a compact
set. Then there exists a constant D > 0 satisfying the following: if c ∈ GK(Ω) and
{γn} is a sequence in Aut(Ω) such that γ−1

n c(n) ∈ K for all n ∈ N, then for any
n,m ∈ N, we have

µi,i+1 (γn) + µi,i+1

(
γ−1
n γn+m

)
≤ µi,i+1 (γn+m) +D,

where i ∈ {1, d− 1}.

Remark 4.11. Results of a similar flavor were also obtained by Canary-Zhang-
Zimmer [CZZ22] in their work on transverse subgroups; see Section 6 in [CZZ22],
especially Lemma 6.4. A crucial difference in our context is that we impose no
assumption on the regularity properties of the sequence {γn} in Aut(Ω). In partic-
ular, the sequence {γn} does not need to lie in a uniformly 1-regular subgroup of
Aut(Ω), which is a condition required by the results in [CZZ22].

Proof. Throughout the proof, we implicitly identify each γn in the sequence with
a chosen lift in GL(d,R). As in the proof of Proposition 4.8, we start by fixing a

direct sum decomposition Rd = x+ ⊕W ⊕ x−, a projective line ℓ joining x±, and
a compact subset Q ⊂ GL(d,R) so that for any (c,H+, H−) ∈ TK(Ω), we can find

some k ∈ Q taking c(+∞)⊕ (H̃+ ∩ H̃−)⊕ c(−∞) to x− ⊕W ⊕ x+ and the image
of c to ℓ. We also fix a constant L > 0 as in the proof of the same proposition, so
that the diameter (in the Hilbert metric dℓ on ℓ) of the set⋃

q∈Q

(ℓ ∩ qK)
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is bounded by L.
Next, observe that, if D > 0 is chosen large enough (depending on L), then the

desired inequality holds whenever n < L. This follows from Lemma 2.15 and the
fact that Aut(Ω) acts properly on Ω: if n ≤ L, then since dΩ(c(n),K) ≤ n and
γ−1
n c(n) ∈ K, the automorphism γn lies in compact subset of Aut(Ω) depending

only on L, and both quantities µi,i+1(γn) and |µi,i+1(γ
−1
n γn+m)−µi,i+1(γn+m)| are

uniformly bounded by Lemma 2.15.
Similarly, since dΩ(γ

−1
n c(n+m),K) ≤ m and γ−1

n+mγn ·γ−1
n c(n+m) ∈ K for any

m, we may also choose D so that the desired inequality holds whenever m ≤ L. So,
for the rest of the proof, we may assume that both n > L and m > L.

For each j ∈ N, since γ−1
j c passes through K, we can choose kj ∈ Q taking the

decomposition

γ−1
j c(+∞)⊕ γ−1

j (H̃+ ∩ H̃−)⊕ γ−1
j c(−∞)

to x−⊕W ⊕x+. Here, we assume that γ0 = id. Then, defining gj := kjγ
−1
j k−1

0 , we
observe that gj preserves the decomposition x− ⊕W ⊕ x+. Moreover, by Proposi-
tion 4.8 and Lemma 2.15, there is a uniform constant C so that for given n ≥ 1,
we have ∣∣µd−1,d(γ

−1
n )−

(
logm(gn|W )− log

∥∥gn|c(+∞)

∥∥)∣∣ ≤ 2C, and(6) ∣∣µ1,2(γ
−1
n )−

(∥∥gn|c(−∞)

∥∥− log ∥gn|W ∥
)∣∣ ≤ 2C.(7)

Next, for given n,m ∈ N, we consider the group element

Tn,m := gn+mg−1
n .

By (6) we know

µ1,2(γn)− µ1,2(γn+m) = µd−1,d(γ
−1
n )− µd−1,d(γ

−1
n+m)

≤ log
m(gn|W )

m(gn+m|W )
+ log

∥∥gn+m|x−

∥∥∥∥gn|x−

∥∥ + 4C.

Since gn+m = Tn,mgn, the inequalitym(gh) ≥ m(g)m(h) implies that the first term
above is at most log 1

m(Tn,m|W ) . And, since x− is a one-dimensional eigenspace of

both gn and gn+m, the second term is equal to log
∥∥Tn,m|x−

∥∥. Thus
µ1,2(γn)− µ1,2(γn+m) ≤ log

∥∥Tn,m|x−

∥∥
m(Tn,m|W )

+ 4C.(8)

We wish to apply Lemma 4.5 to the element Tn,m, so we let K = {kΩ : k ∈ Q}.
Then, since

Tn,m = gn+mg−1
n = kn+mγ−1

n+mγnk
−1
n ,(9)

we have

Tn,mknΩ = kn+mΩ ∈ K
and therefore Tn,m K∩K ≠ ∅. We also need to verify the other hypothesis of
Lemma 4.5, and show that

∥∥Tn,m|x+

∥∥ ≥
∥∥Tn,m|x−

∥∥. For this, we again argue as in
the proof of Proposition 4.8, and consider the 4-tuple of points

[c(−∞), c(n), c(n+m), c(+∞)]

arranged in this order on the image of c. Then the 4-tuple

knγ
−1
n · [c(−∞), c(n), c(n+m), c(+∞)](10)
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is arranged in the corresponding order on the projective segment ℓ. We let y0 :=
knγ

−1
n c(n) and ym := knγ

−1
n c(n+m). Then the 4-tuple in (10) is the same as

[x+, y0, ym, x−].

Since Tn,m fixes the endpoints x± of ℓ and preserves ℓ, the points

[x+, Tn,my0, Tn,mym, x−]

are also arranged in this order on ℓ. Further, since y0 ∈ QK ∩ ℓ, and Tn,mym =

kn+mγ−1
n+mc(n+m) ∈ QK ∩ ℓ, we have dℓ(Tn,mym, y0) ≤ L. But

dℓ(y0, ym) = dc(c(n), c(n+m)) = m > L.

So, Tn,mym must lie in the open projective segment (x+, ym) ⊂ ℓ. Thus it follows
that the points

[x+, Tn,my0, y0, x−]

are arranged on ℓ in that order which implies that
∥∥Tn,m|x+

∥∥ >
∥∥Tn,m|x−

∥∥.
We may therefore apply estimate (2) and estimate (4) from Lemma 4.5 to Tn,m.

This tells us that there is a uniform constant C ′ > 0 so that

log

∥∥Tn,m|x−

∥∥
m(Tn,m|W )

≤ µd(Tn,m)− µd−1(Tn,m) + 2C ′ = −µ1,2(T
−1
n,m) + 2C ′.

Putting this together with (8) and (9), we obtain

µ1,2(γn)− µ1,2(γn+m) ≤ −µ1,2(knγ
−1
n γn+mk−1

n+m) + 4C + 2C ′.

Then an application of Lemma 2.15 proves that the desired inequality holds when
i = 1.

The case where i = d− 1 is similar; we apply (7) in place of (6) to see that

µd−1,d(γn)− µd−1,d(γn+m) ≤ log

∥∥Tn,m|x+

∥∥
∥Tn,m|W ∥

+ 4C.

Then we use the other estimates from Lemma 4.5 to see that

log

∥∥Tn,m|x+

∥∥
∥Tn,m|W ∥

≤ −µd−1,d(T
−1
n,m) + 2C ′,

and apply Lemma 2.15 again to complete the proof. □

5. Singular values of Morse geodesics in convex projective geometry

In this section, we combine results from Sections 3 and 4 to study the behavior
of singular value gaps of sequences that track Morse projective geodesic rays. The
main aim of the section is to prove Theorem 1.6 and Theorem 1.8.

5.1. Morse geodesics are strongly uniformly regular. We first address The-
orem 1.6. We start with the following lemma, which we will strengthen later.

Lemma 5.1. Let M be a Morse gauge, let C > 0, and let x0 ∈ Ω. There exists
k = k(M,C, x0) > 0 such that, for any γ ∈ Aut(Ω), if dΩ(x0, γx0) > k and [x0, γx0]
is M -Morse, then µ1,2(γ) > C.
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Proof. Fix M,C, x0. Suppose for a contradiction that there exists a sequence {γn}
in Aut(Ω) such that dΩ(x0, γnx0) > n and [x0, γnx0] M -Morse, but µ1,2(γn) ≤ C.
After passing to a subsequence, we can assume that γnx0 converges to x ∈ ∂Ω.
Then [x0, γnx0] → [x0, x) uniformly on compact subsets of Ω. As each [x0, γnx0] is
M -Morse, so is [x0, x).

By Corollary 3.24, x is a C1 extreme point in ∂Ω, so dimFΩ(x) = 0. Then
Proposition 4.2 implies that µ1,2(γn) → ∞. This contradicts the assumption that
µ1,2(γn) ≤ C. □

For the next result, we slightly refine the notion of tracking sequences from
Definition 1.2. If c : [0, L] → Ω is a projective geodesic segment of length L > 0,
then we will say that a finite sequence {γn} in Aut(Ω) R-tracks c if dΩ(γnx0, c(n)) <
R for all n ∈ N∩[0, L].

Remark 5.2. If {γn} R-tracks c (a geodesic ray or segment), then there exists a
constant D′ depending on x0 such that

µ1,d(γ
−1
i γi+k) ≤ 2R+D′ +

k

2
.

This is immediate from Proposition 4.1 and the definition of a tracking sequence.

Proposition 5.3. Fix a Morse gauge M , a positive real number R, and x0 ∈ Ω.
There exist constants A,B > 0 (depending on M , x0, and R), such that: if γ ∈
Aut(Ω) for which [x0, γx0] is M -Morse, dΩ(x0, γx0) > B, and there is a finite
sequence {ηn} in Aut(Ω) that R-tracks [x0, γx0], then

µ1,2(γ)

µ1,d(γ)
> A and

µd−1,d(γ)

µ1,d(γ)
> A.

Proof. It suffices to only prove the first inequality. The second inequality follows
from the first after replacing γ with γ−1, since µ1,2(γ) = µd−1,d(γ

−1) and [x0, γx0]
is M -Morse if and only if [x0, γ

−1x0] is M -Morse.
Fix γ ∈ Aut(Ω) such that [x0, γx0] is M -Morse, and let L := ⌈dΩ(x0, γx0)⌉. We

also suppose that there is a sequence {ηn}Ln=1 that R-tracks [x0, γx0]. Observe that
for any n,m, the geodesic segment [ηnx0, ηmx0] is M

′-Morse for a Morse gauge M ′

depending only on M and R.
Now we apply Lemma 4.10, taking the compact setK in the lemma to be BR(x0).

Let D be the constant in Lemma 4.10. Then for all n, n+m ∈ {1, . . . , L},

µ1,2(ηn) + µ1,2(η
−1
n ηn+m) ≤ µ1,2(ηn+m) +D.(11)

By Lemma 5.1, there exists a constant k > 0 so that for every n = 1, . . . , L,

µ1,2(η
−1
n ηn+k) > 3D.

Fix any n ∈ {k, k+1, . . . , L}. Let j ∈ {1, . . . , ⌊L/k⌋} be such that kj ≤ n < kj+k.
Then,

µ1,2(ηn) ≥ µ1,2(η
−1
kj ηn) + µ1,2(ηkj)−D ≥ µ1,2(ηkj)−D.

But the inequality (11) further implies that

µ1,2(ηkj) ≥ −D + µ1,2(ηkj−k) + µ1,2(η
−1
kj−kηkj).
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We can then conclude (by inducting on j, and assuming η0 = id) that for all j, we
have

µ1,2(ηkj) ≥ −jD +

j−1∑
i=0

µ1,2(η
−1
ki ηki+k).

By our choice of k this implies

µ1,2(ηkj) ≥ −jD + j(3D) > 2Dj.

Thus

µ1,2(ηn) ≥ µ1,2(ηkj)−D > 2jD −D ≥ jD.

On the other hand, Remark 5.2 implies that µ1,d(ηn) ≤ D′ + n
2 . Set A :=

D
2k(1+2D′) . Then

µ1,2

µ1,d
(ηn) ≥

jD

n+ 2D′ ≥
D

k(1 + 2D′)

kj

n
≥ 2A · kj

kj + k
≥ A.

The result then follows with A := D
2k(1+2D′) and B := k. □

Now we can prove the proposition below, which is a restatement of Theorem 1.6
from the introduction.

Proposition 5.4. Let c be a projective geodesic in a properly convex domain Ω,
and let {γn} be a sequence which R-tracks c with respect to a basepoint x0 ∈ Ω. If
c is M -Morse, then there are constants C,N > 0 (depending only on M,x0, R) so
that, for all n ≥ 1 and m > N , we have

µ1,2(γ
−1
n γn+m)

µ1,d(γ
−1
n γn+m)

> C and
µd−1,d(γ

−1
n γn+m)

µ1,d(γ
−1
n γn+m)

> C.

Proof. Fix anM -Morse geodesic c and a tracking sequence {γn} as in the statement.
Since {γn} R-tracks c, there is some Morse gauge M ′ (depending only on M and R)
so that for any n,m, the projective geodesic segment [γnx0, γn+mx0] is M

′-Morse,
hence so is the projective geodesic [x0, γ

−1
n γn+mx0]. So then Proposition 5.3 implies

that there are positive constants C,N depending only on M ′ so that if m > N ,
then µ1,2(γ

−1
n γn+m)/µ1,d(γ

−1
n γn+m) > C, as required. □

5.2. The partial converse. The examples below show that the full converse to
Theorem 1.6 does not always hold.

Example 5.5. Identify the hyperbolic plane H2 with its projective model in P(R3),
so that PO(2, 1) ⊂ PSL(3,R) acts by isometries. Let ℓ be a geodesic in H2. The
two tangent lines to H2 at the endpoints of ℓ meet in unique dual point ℓ∗ to ℓ; this
point is the orthogonal complement to ℓ, with respect to the Minkowski bilinear
form defining this model of H2.

Let Ω be the convex hull of H2 and ℓ∗, let x0 ∈ ℓ, and let h be a loxodromic
element in PO(2, 1) preserving ℓ, with translation length 1. Then the sequence
{hnx0} lies along ℓ, i.e. {hn} tracks a projective geodesic sub-ray of ℓ. As a subset
of H2, the projective geodesic ℓ is Morse, since H2 is hyperbolic; in particular by
Theorem 1.6 this means that the sequence {hn} is strongly uniformly k-regular for
k = 1, 2. However, while ℓ is still a geodesic in the larger domain Ω, it cannot
be a Morse geodesic in this domain, as both of its endpoints lie in the closure of
nontrivial segments in ∂Ω (see Corollary 3.25).
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There are two important points to observe in the previous example: first, Ω does
not have exposed boundary, and second, {hn : n ∈ Z} does not divide Ω. In the
next example, we observe that problems can still occur even if we assume that the
domain Ω is divisible.

Example 5.6. Consider the projective 2-simplex ∆ := {[x : y : z] | x, y, z > 0}
in P(R3) and fix x0 := [1 : 1 : 1]. Let Γ ⊂ PSL(3,R) be the projectivization of
the group of diagonal matrices whose entries are integer powers of 2. Then Γ is an
abelian subgroup dividing ∆. So if h ∈ Γ is the diagonal matrix h = diag(2, 1, 1/2),
then the mapping n 7→ hnx0 is a quasi-isometric embedding. The sequence {hn}
is also strongly uniformly k-regular for k = 1, 2. However, the set of points {hnx0}
cannot be in a uniform neighborhood of a Morse geodesic, since ∆ is quasi-isometric
to the 2-dimensional Euclidean space, which contains no Morse geodesics.

Note that, although the example above fails to be irreducible, one can find irre-
ducible divisible domains (indeed, irreducible rank-one domains) which contain an
embedded copy of this example; we work closely with such an example in Section 7
of this paper. So the precise converse to Theorem 1.6 can still fail even in the case
where the ambient domain Ω is divisible and rank one.

Despite the existence of the examples above, it is still possible to prove Theo-
rem 1.8 – a partial converse to Theorem 1.6. We recall the statement of this partial
converse.

Theorem 1.8 (Section 5). Let Ω be a convex divisible domain with exposed bound-
ary and let c be a projective geodesic ray in Ω. Suppose {γn} R-tracks c with respect
to x0 ∈ Ω. If {γn} is strongly uniformly k-regular for k = 1 and k = d− 1, then c
is M -Morse for some Morse gauge M .

Moreover, M can be chosen to depend only on x0, R, and the constants in the
definition of strong uniform k-regularity.

Remark 5.7.

(1) The sequence given in Example 5.5 tracks a projective geodesic, but the
domain Ω in this example both fails to have exposed boundary and also fails
to be divisible. We do not know if the “exposed boundary” assumption is
necessary in Theorem 1.8; there are no known examples of divisible domains
without exposed boundary.

(2) Theorem 1.8 tells us that the quasi-geodesic considered in Example 5.6
cannot track any projective geodesic, which can also be verified directly.

The main idea in the proof of Theorem 1.6 is to use the characterization of Morse
geodesics in divisible domains with exposed boundary given at the end of Section 3.
This allows us to prove a weaker version of the theorem, which does not provide
uniform control over the Morse gauge; then we use a compactness argument to
prove the full (uniform) result.

The non-uniform version of Theorem 1.8 is given by the proposition below.

Proposition 5.8. Let Ω be a convex divisible domain with exposed boundary, let c
be a projective geodesic ray in Ω, and let {γn} be a sequence which tracks c. If {γn}
is both strongly uniformly 1-regular and strongly uniformly (d − 1)-regular, then c
is M -Morse.
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Proof. We will prove the contrapositive. We let c : [0,∞) → Ω be a projective
geodesic which is not Morse, and let {γn} be a sequence tracking c. Extend c
(uniquely) to a bi-infinite projective geodesic c : (−∞,∞) → Ω and let y = c(−∞).

By Corollary 3.32, we know that z = c(+∞) is either forward conically related to
a non-extreme point in ∂Ω, or else c(+∞) is forward conically related to a non-C1

point in ∂Ω. Since γn tracks c, the properness part of the Bénzecri cocompactness
theorem tells us that we can use γn to realize the conical relation: there is a
subsequence of γn so that γ−1

n (z, y) converges to a properly embedded projective
segment (z∞, y∞) ⊂ Ω, so that z∞ is either in the interior of a segment or a non-C1

point. In this proof, we will consider the case where z∞ lies in the interior of a
nontrivial segment; the case where z∞ is a non-C1 point is nearly identical.

Now we begin the proof. Let L be a projective line spanned by a nontrivial
segment in ∂Ω containing z∞, and let P be the projective 2-plane spanned by

(y∞, z∞) and L. Fix a basis {v1, v2, v3} for P̃ , so that spanP{v1, v2} = L and

[v3] = y∞. Then, for each m ∈ N, let h̃m be linear map on P̃ defined (with respect
to the chosen basis) by

hm :=

e−2m

e−2m

1

 ,

and let hm be the corresponding projective transformation on P .

Claim 5.8.1. For infinitely many m ∈ N, there exists gm ∈ PGL(d,R) and n =
n(m) ∈ N so that each pair (gmΩ, gmγ−1

n(m)c(n(m) + m)) lies in a fixed compact

subset of the space of pointed domains and gm|P = hm.

Proof of Claim. Observe that as m → ∞, the sequence of domains hm(Ω ∩ P )
converges (after extraction) to some fixed properly convex domain in P . So, by
[Ben03, Lemma 2.8], we may extend each hm to a linear map gm ∈ GL(d,R)
agreeing with hm on P̃ , so that, as m → ∞, a subsequence of gmΩ converges to a
properly convex domain Ω∞ in P(Rd), containing limm→∞ hm(Ω∩P ) as a 2-sector
(see Definition 3.17).

Now, as n → ∞, we know that (after extracting a subsequence) the sequence
γ−1
n c(n) converges to some point in the geodesic (y∞, z∞). We may fix a unit-speed

parameterization c∞ : (−∞,∞) → Ω of this geodesic so that c∞(∞) = z∞ and
γ−1
n c(n) → c∞(0). Then, for any fixed m, γ−1

n c(n+m) → c∞(m) as n → ∞.

Fix an auxiliary metric dP on P(Rd). Since GL(d,R) acts by homeomorphisms

on P(Rd), for each fixed m we may choose some δ so that if dP(u, v) < δ, then
dP(gmu, gmv) < 1/m. In particular, for each m we can find n(m) so that

dP(gmγ−1
n(m)c(n(m) +m), gmc∞(m)) < 1/m.(12)

However, by construction, we know that gmc∞(m) = hmc∞(m) = c∞(0), as hm

acts by a translation of Hilbert distance m along (y∞, z∞) in the direction of y∞.
Moreover, c∞(0) lies in the limit of the 2-sectors hm(P ∩Ω). Thus c∞(0) lies in the
limiting domain Ω∞. Then (12) implies that for m large enough, gmγ−1

n(m)c(n(m)+

m) lies in a fixed compact subset of the domain Ω∞ = limm→∞ gmΩ. □

The last part of the previous claim tells us that the projective transformations
gm “approximate” the automorphisms γ−1

n(m)γn(m)+m. To be precise, we have:
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Claim 5.8.2. There is a fixed compact subset Q of PGL(d,R) so that, if gm and
n(m) are as in the previous claim, then gmγ−1

n(m)γn(m)+m ∈ Q.

Proof of Claim. Since {γn} tracks c, xm := γ−1
n(m)+mc(n(m) + m) lies in a fixed

compact subset of Ω for all m. By the previous claim, gmγ−1
n(m)γn(m)+m(Ω, xm) =

gm(Ω, γ−1
n(m)c(n(m)+m)) lies in a compact subset of the space of pointed domains.

The claim is then immediate from the properness part of the Benzécri compactness
Theorem 2.9. □

Finally, we can show:

Claim 5.8.3. The sequence {γn} is not strongly uniformly (d− 1)-regular.

Proof of Claim. Since {γn} tracks c, Proposition 4.1 implies that the quantity
µ1,d(γ

−1
n(m)γn(m)+m) tends to infinity asm → ∞. We will show that µd−1,d(γ

−1
n(m)γn(m)+m)

is bounded, independent of m. Owing to the previous claim and Lemma 2.15, it
suffices to show that µd−1,d(gm) is bounded.

To prove this, fix supporting hyperplanes H+, H− of Ω at c(±∞), and let H0 =
H+ ∩H−. Using Lemma 4.7 and Lemma 2.19 (as in the proof of Proposition 4.8),
we can find a fixed compact set Q ⊂ PGL(d,R) and elements qn, q

′
n ∈ Q so that

any lift of qngmq′n preserves the decomposition

c(+∞)⊕ H̃0 ⊕ c(−∞).

Let g̃m be a lift of gn agreeing with h̃m on P̃ , and let q̃n, q̃
′
n be lifts of qn, q

′
n lying

in a fixed compact subset of GL(d,R). Then, Lemma 4.5 and Lemma 2.15 imply
that µd(g̃m) is within uniformly bounded additive error of −2m. In addition, since
the e−2m-eigenspace of g̃m is at least 2-dimensional, it follows from the “minimax”
formula (1) for singular values that σd−1(g̃m) ≤ e−2m and therefore µd−1,d(g̃m) =
µd−1,d(gm) is uniformly bounded. □

This finishes the proof of Proposition 5.8 in the first case, where z∞ is not an
extreme point. In the other case (where z∞ is not a C1 point) we argue similarly,
but we instead pick our projective 2-plane P so that z∞ is not a C1 point in

Ω ∩ P . Then we pick a basis {v1, v2, v3} so that v1 spans z∞, and take h̃m to be

the sequence of matrices h̃m = diag(1, e2m, e2m). Arguing as in the other case, we
see that for a sequence of indices n(m), the gap µ1,2(γ

−1
n(m)γn(m)+m) is uniformly

bounded, which implies that {γn} is not strongly uniformly 1-regular. □

5.2.1. Proof of Theorem 1.8. We proceed by contradiction and suppose that there
is a sequence of projective geodesics {cm} and tracking sequences {γn,m}n∈N, so
that

dΩ(γn,mx0, cm(n)) ≤ R,

and each {γn,m}n∈N is both strongly uniformly 1-regular and strongly uniformly
(d−1)-regular (with uniform constants), but cm eventually fails to be M -Morse for
any given Morse gauge M . Applying Proposition 3.4 and Proposition 3.6, it then
follows that cm eventually fails to be projectively δ-slim, for any given δ > 0. After
extracting a subsequence, we can then assume that each cm fails to be projectively
m-slim.

We now argue as in the proof of Lemma 3.26: for each m, let xm, ym, zm ∈ Ω
be points such that xm, ym lie on the image of cm, but [xm, ym] is not contained in
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the m-neighborhood Nm([xm, zm] ∪ [ym, zm]). Then let wm be a point in [xm, ym]
such that dΩ(wm, [xm, zm]∪ [ym, zm]) ≥ m. Choose some nm so that γnm,m satisfies
dΩ(γ

−1
nm,mwm, x0) ≤ R. After extracting a further subsequence, the geodesic rays

γ−1
nm,mcm converge to a bi-infinite projective geodesic c∞ whose endpoints lie in the

boundary of a half-triangle. Then by Lemma 3.13, no sub-ray of c∞ is Morse.
For each m ∈ N, define the geodesic sub-ray c′m : [0,∞) → Ω of cm by c′m(t) :=

γ−1
nm,mcm(nm+ t). Note that the nm-tail of the sequence {γ−1

nm,mγn,m}n∈N R-tracks
c′m with respect to x0. Moreover, as m → ∞, c′m converges to c∞ uniformly
on compact subsets of Ω. Then, we can run a diagonalization argument along
the sequences {γ−1

nm,mγn,m}n∈N to produce a sequence {fn} in Γ that tracks c∞.
Moreover, {fn} is also strongly uniformly 1-regular since the sequences {γn,m}n∈N
are all strongly uniformly 1-regular with uniform regularity constants. Thus, by
Proposition 5.8, the corresponding sub-ray of c∞ is Morse, giving a contradiction.

□

6. Regularity at boundary points and singular value gaps

Our goal in this section is to prove Theorem 1.12, which connects the linear
algebraic behavior of a tracking sequence in a properly convex domain Ω with the
regularity of the endpoint of this geodesic in ∂Ω.

6.1. Pointwise regularity in convex hypersurfaces. As we have alluded to
previously, the boundary of a properly convex domain is often nowhere C1, but
differentiable in a dense set. We therefore wish to have a notion of “Cα-regularity”
which makes sense at a single point in a convex hypersurface. Morally, x is a Cα

point if the convex hypersurface ∂Ω is majorized by the graph of y 7→ ∥y∥α near x.

Definition 6.1. Let Ω be a properly convex domain, x ∈ ∂Ω, and α > 1. Fix an
Euclidean distance d on an affine chart that contains Ω. We say that x is a Cα

point if there is a neighborhood U of x and a constant C > 0 so that: for any
supporting hyperplane H of Ω at x and any y ∈ U ∩ ∂Ω,

(13) d(y,H) ≤ Cd(y, x)α.

Remark 6.2. This notion of a Cα point is independent of the choice of the distance
d. Indeed, changing the affine chart or the distance is a bi-Lipschitz map in a
neighborhood of x and does not impact the definition. We observe further that if
the inequality (13) holds for some α > 1, ∂Ω has a unique supporting hyperplane
at x, i.e. x is a C1 point.

One can alternatively define Cα points in ∂Ω in the following equivalent way.
Suppose that in some affine chart, the hypersurface ∂Ω is the graph of a convex

function f : Rdim(∂Ω) → R such that x = (0, f(0)) and there exists a linear map

Df (0) : Rdim(∂Ω) → R such that kerDf (0) is a supporting hyperplane at x. We say
that x is a Cα point if and only if the following limit exists:

lim
y→0

f(y)− f(0)−Df (0)(y)

||y||α
.

Dual to the notion of a Cα point is a β-convex point. Just as the Cα property
strengthens the condition that there is a unique supporting hyperplane of Ω at
x, β-convexity strengthens the condition that x ∈ ∂Ω is an extreme point of Ω.
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Morally, x is a β-convex point if the convex hypersurface ∂Ω majorizes the graph

of y 7→ ∥y∥β near x.

Definition 6.3. Let Ω be a properly convex domain, let x ∈ ∂Ω, and let β < ∞.
We say that x is a β-convex point if there is a neighborhood U of x and a constant
C > 0 so that for any y ∈ U ∩ ∂Ω, we have

d(y,H) ≥ Cd(y, x)β .

As for Cα regularity, we have an alternative characterization of β-convex points.
If U is a neighborhood of 0 Rn, and f : U → R is a convex function, we say that f is
β-convex at 0 ∈ U if there is a linear map Af : Rn → R so that f(y)−f(0) > Af (y)
for all y ∈ U , and the limit

lim
y→0

||y||β

f(y)− f(0)−Af (y)

exists. Then a point x in the boundary of a properly convex domain Ω is β-convex
if, in coordinates on some (any) affine chart containing x, ∂Ω is locally the graph

of a function f : Rdim(∂Ω) → R such that x = (0, f(0)) and f is β-convex at 0.
Note that the linear map Af defining β-convexity of the function f may not

be uniquely determined—so in particular a non-C1 point in ∂Ω can be a β-convex
point. However, a β-convex point in ∂Ω is always an extreme point in Ω.

Example 6.4. Consider the graph of the function f : R → R such that f(x) = x2

for x ≥ 0 and f(x) = −x otherwise. Set Af to be the constant function 0. Then
f(x) is β-convex at 0 with β = 2 + ε for any ε > 0.

Now consider a properly convex domain Ω ⊂ P(R3), whose boundary in a neigh-
borhood of a point x ∈ ∂Ω is projectively equivalent to the graph of f . Then x is
a β-convex point of Ω that is not C1.

We recall Definition 1.11 from the introduction.

Definition 1.11. Let Ω be a properly convex domain and x ∈ ∂Ω be a C1 point.
Set

α(x,Ω) := sup{α > 1 : ∂Ω is Cα at x}
and

β(x,Ω) := inf{β < ∞ : ∂Ω is β-convex at x}.
If ∂Ω is not Cα at x for any α > 1, we define α(x,Ω) = 1. Similarly if ∂Ω is not
β-convex at x for any β < ∞, we define β(x,Ω) = ∞.

6.2. Boundary regularity and uniform regularity. We will devote the rest of
this section to the proof of Theorem 1.12 whose statement we recall below.

Theorem 1.12 (Section 6). Let Ω be a properly convex domain, let {γn} track a
projective geodesic ray c : [0,∞) → Ω, and suppose that c(∞) = x is an exposed C1

extreme point in ∂Ω. Define

α0 := lim inf
n→∞

µ1,d(γn)

µ1,d−1(γn)
and β0 := lim sup

n→∞

µ1,d(γn)

µ1,2(γn)
.

Then α0 = α(x,Ω) and β0 = β(x,Ω).
In particular, c(∞) is a Cα point for some α > 1 if and only if {γn} is uniformly

(d − 1)-regular, and c(∞) is β-convex for β < ∞ if and only {γn} is uniformly 1-
regular.
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The proof is largely an application of the estimates we proved in Section 4,
together with a computation in appropriate coordinates (Lemma 6.10).

6.2.1. Choosing coordinates. For the rest of this section, we will fix the following
general setup. Let Ω be a properly convex domain, let c : [0,∞) → Ω be a projective
geodesic ray, and let {γn} be a sequence in Aut(Ω) tracking c. We will also denote
by c : (−∞,∞) → Ω the unique bi-infinite projective geodesic that extends the
geodesic ray c([0,∞)). Fix supporting hyperplanes H± of Ω at c(±∞) and set
H0 := H+ ∩H−.

We fix a coordinate system on the d-dimensional affine chart A := P(Rd) \H−,
chosen so that c(∞) is the origin,H+ is the codimension one “horizontal” coordinate
plane, and (c(∞), c(−∞)) is the “vertical” ray based at the origin.

More formally, let W0,W+,W− ⊂ Rd be the linear subspaces such that P(W∗) =

H∗ for ∗ ∈ {±, 0}. Fix representatives v± ∈ Rd for c(±∞) in P(Rd), chosen so
that the image of c is the projectivization of {tv+ + sv− : s, t > 0}. Consider the
identification Ψ : W− → A defined by

Ψ(v) = [v + v+].

Note that Ψ is a diffeomorphism such that Ψ(0) = c(∞), Ψ(R>0 v−) = c(R),
Ψ(W0) = H+ ∩ A. So the decomposition of W− = W0 ⊕ [v−] into “horizon-
tal” W0 and “vertical” [v−] corresponds to making A ∩H+ “horizontal” and A ∩
spanP{c(∞), c(−∞)} “vertical”. Note that the map Ψ−1 identifies open neighbor-
hoods U of c(+∞) in H+ with open subsets of W0 containing the origin.

The set Ψ−1(∂Ω∩A) is a convex hypersurface in W− passing through the origin
in W−, with tangent hyperplane W0. So, we can make the following definition.

Definition 6.5. Let f : W0 → R be the function such that the image of the
mapping x 7→ Ψ(x, f(x)) is ∂Ω∩A.

Remark 6.6. As ∂Ω ∩ A is a convex hypersurface, f is a convex function. The
assumption that c(∞) is a C1 point ensures that f is differentiable at 0. The
assumption that c(∞) is an exposed extreme point ensures that f is uniquely min-
imized at 0.

Next, we define a function h whose level sets determine annular neighborhoods
of c(+∞) in the hyperplane H+.

Definition 6.7 (see Fig. 5). For each point z ∈ H+ − {c(∞)} which is sufficiently
close to c(∞), let yz be the unique point in ∂Ω such that

spanP{yz, c(−∞)} = spanP{z, c(−∞)}.
Let Hyz be the projective hyperplane spanned by yz and H0 = H+ ∩ H−. Then
Hyz ∩ c(R) is a singleton set {c(tz)} for some tz ∈ R.

Let U be a neighborhood of the origin in W0. We define a function h : U−{0} →
R as follows: for any x ∈ U − {0}, define

h(x) = tΨ−1(x).

Remark 6.8.

(1) The intersection Hyz
∩ c(R) is always a singleton set for z ∈ H+ −{c(∞)}.

Indeed, since yz ∈ ∂Ω−{c(−∞)}, this can only possibly fail if Hyz
is a

supporting hyperplane of Ω at yx. But if this is the case, then the projective
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c(+∞)

yz c(tz)

c(−∞)

Hyz

H+

H−

z

Figure 5. Illustration of the function h(x) = tΨ−1(x) in Defini-
tion 6.7. In this affine chart, the intersection H0 = H+∩H− is the
point at infinity corresponding to the “horizontal direction.”

segment [yz, c(+∞)] lies in ∂Ω. Since c(+∞) is extreme and exposed, this
implies that yz = c(+∞) = z.

(2) We always have h(U−{0}) = (a,∞) for some a ∈ R. So, by reparameteriz-
ing c, we can assume that the image of h is (0,∞). Further, as x ∈ U −{0}
tends towards 0, the function h tends to ∞.

(3) The definition of the function h does not require c(∞) to be a C1 point –
it makes sense whenever c(∞) is an extreme and exposed point in ∂Ω.

Now we define annular neighborhoods of c(∞) using h.

Definition 6.9. Suppose U is a sufficiently small neighborhood of 0 in W0 and
h is as in Definition 6.7 above. We define a family {Sn}n∈N of subsets of U by
Sn := h−1([n− 1, n]). Note that ∪n∈NSn = U − {0}.

6.2.2. The key lemma. The lemma below gives the key estimates we need for the
proof of Theorem 1.12.

Lemma 6.10. Suppose U is a sufficiently small neighborhood of 0. Then, there is
a constant B > 0 satisfying the following: for any n ∈ N and any x ∈ Sn, we have

−µ1,d(γn)−B ≤ log f(x) ≤ −µ1,d(γn) +B,(14)

−µ1,d−1(γn)−B ≤ log ||x|| ≤ −µ1,2(γn) +B.(15)

In addition, for any n ∈ N, there are points x2(n), xd−1(n) in Sn satisfying

log ||xd−1(n)|| ≤ −µ1,d−1(γn) +B,(16)

log ||x2(n)|| ≥ −µ1,2(γn)−B.(17)

Proof. Note that there are two disjoint properly convex cones in Rd that project
to Ω ⊂ P(Rd), each of which is the negative of the other. We fix one of them,

denoted by Ω̃, and call it the cone above Ω. For each γn ∈ Aut(Ω), we fix a lift γ̃n
in GL(d,R) that preserves Ω̃. By definition µi,j(γn) = µi,j(γ̃n), so our estimates
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will not be affected by switching between γn and its lifts. So, by slight abuse of
notation, we will henceforth denote the lifts by γn.

We can use Lemma 4.7 and Lemma 2.19 to find a fixed compact subset Q ⊂
GL(d,R) and a sequence {kn} in Q so that for every n, the group element gn :=

knγ
−1
n preserves the decomposition c(∞) ⊕ H̃0 ⊕ c(−∞). Then, we can apply

Proposition 4.8 and Lemma 2.15 to see that there is a positive real number D > 0
so that for every n, we have

| log(||knγ−1
n |c(∞)||)− µd(γ

−1
n )| < D,(18)

| log(||knγ−1
n |c(−∞)||)− µ1(γ

−1
n )| < D,(19)

| log(||knγ−1
n |

H̃0
||)− µ2(γ

−1
n )| < D,(20)

| log(m(knγ
−1
n |

H̃0
))− µd−1(γ

−1
n )| < D.(21)

Let λ±(gn) be the eigenvalues of gn on c(±∞). Since each group element gn pre-

serves H−, gn acts by an affine map in our chosen affine chart A = P(Rd)−H−. Via
the identification Ψ : W− → A, the action of gn on A (i.e. the map Ψ−1 ◦ gn ◦ Ψ)
is identified with the linear map ϕ(gn) : W− → W− given by

(22) ϕ(gn)v =
gnv

λ+(gn)
.

Now we analyze the linear map ϕ(gn). With respect to the decomposition W− =
W0 ⊕ [v−], we can write ϕ(gn) as

(23) ϕ(gn)(x, y) =

(
gnx

λ+(gn)
,
λ−(gn)

λ+(gn)
y

)
where x ∈ W0 and y ∈ [v−].

Now, for each n, consider the intersection gnΩ ∩ A = knΩ ∩ A. In coordinates
given by Ψ, Ω ∩ A is the graph of the function f : W0 → R. Then, in the Ψ-
coordinates, gnΩ ∩A is the graph of the convex function fn : W0 → R given by

fn(v) =
λ−(gn)

λ+(gn)
f

(
g−1
n v

λ+(g
−1
n )

)
.

This holds because ϕ(gn)(x, f(x)) =
(

gnx
λ+(gn)

, λ−(gn)
λ+(gn)

f(x)
)
and λ+(gn) =

1
λ+(g−1

n )
.

Further, as the action of gn preserves H+, the graph of fn is a convex hypersurface
through the origin with a supporting hyperplane {(w, 0) : w ∈ W0} at the origin.

Claim 6.10.1. There exists a constant 0 < C < ∞ such that: for any n ∈ N and
any x ∈ Sn,

1/C ≤ λ−(gn)

λ+(gn)
f(x) < C.

Proof of Claim. To prove this claim, fix x ∈ Sn for some n ∈ N. Letting h by
the function from Definition 6.7, the point c(h(x)) has coordinates (0, f(x)) in the
coordinates given by Ψ. Thus, applying the coordinate formula (23) for ϕ(gn), we
see that gnc(h(x)) has coordinates(

0,
λ−(gn)

λ+(gn)
f(x)

)
.
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Since {γn} tracks c, there is compact set K ⊂ Ω such that γ−1
n c(n) ∈ K for any

n ∈ N. Letting K ′ ⊂ Ω be the closed 1-neighborhood of K in the Hilbert metric
dΩ, we see that γ−1

n c(h(x)) ∈ K ′ since c(h(x)) ∈ [n− 1, n].
Then, as gn = knγ

−1
n for kn in a compact subset Q ⊂ GL(d,R), we must have

gnc(h(x)) ∈
⋃
q∈Q

qK ′.

Each kn takes Ω to some domain in a compact family of domains that are all
supported by the hyperplanes H−, H+. So, we may assume that Q is chosen such

that the union
⋃

q∈Q qK ′ lies in the set P(Rd) − (H− ∪ H−). This means that

gnc(h(x)) lies in a fixed compact subset of A − H+ = P(Rd) − (H+ ∪ H−) which
does not depend on n. As H+ is identified with the horizontal coordinate plane in
our chosen coordinates on the affine chart A, this means that the vertical coordinate
of gnc(h(x)) is bounded above and below, establishing the claim. □

Now we explain how the above Claim 6.10.1 immediately implies the inequality
(14). Note that −µ1,d(γn) = µ1,d(γ

−1
n ). Then, applying inequalities (18) and (19)

above, we see that there is a constant B (independent of n) so that

−µ1,d(γn)−B ≤ log f(x) ≤ −µ1,d(γn) +B,

which is the inequality (14) we wanted to show.
The argument for the proof of the second inequality (15) is similar. We first

claim the following:

Claim 6.10.2. There exists a constant 0 < C ′ < ∞ such that: for any n ∈ N and
any x ∈ Sn,

(24) 1/C ′ < ||ϕ(gn)x|| < C ′.

Proof of Claim. Since each Sn is a compact subset of W0 not containing the origin,
we can prove this claim by showing that, for any sequence xn ∈ Sn, no subsequence
of ϕ(gn)xn tends towards zero or infinity.

Consider any such sequence xn ∈ Sn. Let Ωn := gnΩ. We know that the point
with coordinates (xn, f(xn)) lies on the hypersurface ∂Ω∩A, so the points

(ϕ(gn)xn, fn(xn)) = ϕ(gn)(xn, f(xn))

lies on the convex hypersurface ∂Ωn ∩ A. Here, we are using the notation of (23)
so that ϕ(gn)xn = gnxn

λ+(gn)
(as xn ∈ W0).

As each domain Ωn lies in a fixed compact subset of the space of properly convex
domains, we may extract a subsequence so that the domains Ωn converge to a
properly convex domain Ω∞, which is supported by the hyperplanes H± at c(±∞).
Thus, the hypersurfaces ∂Ωn ∩ A converge to the convex hypersurface ∂Ω∞ ∩ A.
The convex functions fn : W0 → R then converge pointwise to a convex function
f∞ : W0 → R, whose graph (in Ψ-coordinates on A) is the hypersurface ∂Ω∞ ∩A.

After extracting a further subsequence, we can assume that the points

(ϕ(gn)xn, fn(xn))

converge to a point in ∂Ω∞ (a priori, this limit may not lie in the affine chart A).
However, the previous claim gives us 1

C ≤ fn(xn) ≤ C, i.e. there exist uniform
upper and lower bounds on the vertical coordinates fn(xn) of these points. In
particular, this implies that the limit of the sequence {(ϕ(gn)xn, fn(xn))} lies on
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the graph of f∞, and that the limit of the sequence {ϕ(gn)xn} lies in the subset
f−1
∞ ([1/C,C]). Since f∞ is convex, {ϕ(gn)xn} lies in a uniformly bounded subset
of W0 \ {0}. This proves the claim. □

We can now use the claim to show inequality (15). For any x ∈ W0 and any
g ∈ GL(W0), by definition we have ||x|| ·m(g) ≤ ||gx|| ≤ ||x|| · ||g||. Since ϕ(gn) is
a linear map preserving W0, this yields

(25) ||x|| ·m(ϕ(gn)|W0
) ≤ ||ϕ(gn)x|| ≤ ||x|| · ||ϕ(gn)|W0

||,
for every n. Then by applying our formula (22) for ϕ(gn) we obtain

(26) ||x||m(gn|W0
)

λ+(gn)
≤ ||ϕ(gn)x|| ≤ ||x|| ||gn|W0

||
λ+(gn)

.

Now, the inequalities (20) and (21) tell us that log ||gn|W0
|| and logm(gn|W0

) are
within uniformly bounded additive error of −µd−1(γn) and −µ2(γn) respectively,
and (18) tells us that λ+(gn) is within uniformly bounded additive error of −µ1(γn).
Putting this together with (24) and (26), we see that there is another uniform
constant B > 0 so that

−µ1,d−1(γn)−B ≤ log ||x|| ≤ −µ1,2(γn) +B.

This establishes inequality (15).
Now we prove the last two inequalities of Lemma 6.10. Observe that each Sn

contains h−1(n), which is a level set of the convex function f . Since f is uniquely
minimized at the origin (see Remark 6.6), this means that each Sn contains the
boundary of a convex open ball in W0, containing the origin. Then restrict the
continuous function ϕ(gn) to each Sn, consider (25), and recall the definition of
m(·) and ∥·∥. It is clear that for each n, we can find a pair of points x2 = x2(n)
and xd−1 = xd−1(n) in Sn so that when x = x2 (resp. x = xd−1), the left-hand
(resp. right-hand) inequality in (25) is actually an equality. In particular, this
implies that the corresponding inequalities in (26) are equalities when x = x2 or
xd−1. Then, we again use the fact that log ||gn|W0

|| and logm(gn|W0
) are within

bounded error of −µd−1(γn) and −µ2(γn) to establish (16) and (17). □

We will now use Lemma 6.10 to finish the proof of Theorem 1.12.

6.3. Proof of Theorem 1.12. Let β = β0 and α = α0 where α0, β0 are as in the
statement of Theorem 1.12. We will first prove that β < ∞ =⇒ β(x,Ω) ≤ β and
then show that β(x,Ω) < ∞ =⇒ β ≤ β(x,Ω). This proves that β = β(x,Ω) when
either side is finite or infinite.

Assume first that β < ∞. For each u ∈ U , choose some n so that u ∈ Sn. We let

βn :=
µ1,d(γn)
µ1,2(γn)

. We apply Lemma 6.10: putting the left-hand side of (14) together

with the right-hand side of (15), we have

log f(u) ≥ −µ1,d(γn)−B = −µ1,2(γn)βn −B ≥ βn(log ||u|| −B)−B.

Hence there is a uniform constant D > 0 such that f(u) ≥ D−βn ||u||βn . Now, fix

some β < β′ < ∞. Since lim supn→∞ βn = β < β′, we have ||u||βn ≥ ||u||β′
for

u sufficiently close to zero. Thus for some C > 0 we have f(u) ≥ C||u||β′
in a

small neighborhood of the origin. Hence ∂Ω is β′-convex at x. Since β′ > β was
arbitrary, β(x,Ω) ≤ β by definition of β(x,Ω).

Conversely, suppose that β(x,Ω) < ∞, and fix β′ > β(x,Ω). Now, for each
n ∈ N, choose un ∈ Sn so that the inequality (17) holds. We know that ∂Ω is
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β′-convex at x, so there is some C > 0 so that f(un) ≥ C||un||β
′
. Then we combine

the right-hand inequality in (14) with (17) to obtain

−µ1,d(γn) +B ≥ −β′(µ1,2(γn) +B) + logC.

Replacing µ1,d(γn) by βn · µ1,2(γn) and rearranging, we obtain

β′ ≥ βn

(
µ1,2(γn)

µ1,2(γn) +B

)
+

B + logC

µ1,2(γn) +B
.

Since x is an extreme point in Ω, Proposition 4.3 implies that µ1,2(γn) → ∞. So
the above implies that β′ ≥ lim supn→∞ βn = β. Since β′ > β(x,Ω) was arbitrary,
the definition of β(x,Ω) implies that β(x,Ω) ≥ β. This concludes the proof that
β = β(x,Ω).

The proof of α = α(x,Ω) is completely symmetric, using the opposite inequalities
in (14), (15), and (16), and applying the fact that x is a C1 point to see that
µd−1,d(γn) tends to infinity. □

7. Boundary regularity does not imply Morse

In this section, we construct a specific example realizing Theorem 1.9: we will
find a projective geodesic ray c in a divisible domain Ω so that c is tracked by a
sequence {γn} that is uniformly regular, but not strongly uniformly regular. Thus c
is not Morse in either the group-theoretic sense or the sense of Kapovich-Leeb-Porti.
But, by Theorem 1.12, its endpoint c(∞) in ∂Ω is still Cα-regular and β-convex.

7.1. Convex divisible domains in dimension 3. The starting point for our
construction is a convex divisible domain Ω in P(R4) which is irreducible (meaning
it is not projectively equivalent to the cone over a 2-dimensional domain in P(R3)),
but not strictly convex. Domains of this type were studied and classified by Benoist
[Ben06a]. Benoist proved that when Γ is a torsion-free discrete group dividing such
a domain, the quotient manifold M = Ω/Γ can be cut along a nonempty collec-
tion of incompressible tori so that each connected component is homeomorphic to
a (non-compact) finite-volume hyperbolic 3-manifold. This means that Γ ≃ π1M
is a relatively hyperbolic group, relative to the collection P of fundamental groups
of cutting tori. Moreover, it turns out that the cutting tori in Ω/Γ lift to properly
embedded 2-simplices in Ω whose stabilizers act by a group of simultaneously diago-
nalizable matrices in PGL(4,R). Thus, each connected component of the geometric
decomposition of Ω/Γ has the structure of a convex projective manifold.

Benoist also provided explicit constructions for examples of these domains, using
the theory of projective actions of Coxeter groups. Additional examples were later
constructed by Ballas-Danciger-Lee [BDL18] and Blayac-Viaggi [BV23].

7.2. Construction. For the rest of the section, we let Ω be one of the convex
divisible domains in P(R4) as above, and let Γ ⊆ Aut(Ω) divide Ω. Note that Ω is
a rank one domain [Isl], so the dividing group Γ contains infinitely many rank one
automorphisms (see Section 1.4.2); these are precisely the automorphisms which
do not preserve any projective geodesic lying in a properly embedded triangle in
Ω. Fix such a rank one automorphism γ ∈ Γ, and let α be the closed projective
geodesic in Ω/Γ representing γ. In addition, fix a cutting torus T in the geometric
decomposition of M .

Let us first give an informal sketch of the idea behind Theorem 1.9. The cyclic
subgroup ⟨γ⟩ ⊂ Γ gives a Morse geodesic in the group Γ tracking a lift of α, along
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which both µ1,2 and µ1,4 tend (uniformly) to infinity. On the other hand, we can
find a geodesic β in T (not necessarily closed), corresponding to a sequence of group
elements an ∈ π1T ⊂ Γ along which µ1,2 stays bounded but µ1,4 goes to infinity.
We will produce a projective geodesic ray c in M that successively follows α and β
for increasingly longer times. As c spends arbitrarily long times close to the torus
T , it fails to be Morse. However, c picks up enough singular value gaps by looping
around α to ensure that the ratio µ1,2/µ1,4 stays bounded away from zero in the
limit.

We now turn to the details. First, we note the following.

Lemma 7.1. The group element γ ∈ Γ representing the geodesic α satisfies the
following (equivalent) conditions:

(i) The mapping Z → Γ given by j 7→ γj is a Morse quasi-geodesic.
(ii) γ is biproximal, i.e. it has unique eigenvalues with maximum and minimum

modulus.
(iii) There is a positive constant B0 such that µ1,2(γ

j) ≥ B0 · |j| and µ3,4(γ
j) ≥

B0 · |j| for any j ∈ Z.

Proof. Proposition 1.21 implies that both (i) and (ii) are equivalent to the fact
that γ is a rank one automorphism. The equivalence of (ii) and (iii) follows from

the relationship between the Jordan projection ℓ : GL(d,R) → Rd
≥0 and Cartan

projection µ : GL(d,R) → Rd
≥0: if ℓ1(g) ≥ ℓ2(g) ≥ . . . ≥ ℓd(g) are the logarithms of

the moduli of the eigenvalues of g ∈ GL(d,R), then ℓi(g) = limn→∞ µi(g
n)/n (see

e.g. [GGKW17, Section 2.4]). □

Next, let A0 ≃ Z2 be the subgroup of Γ identified with π1T ⊂ π1M ≃ Γ.

Lemma 7.2. There is a finite-index subgroup A ⊆ A0 so that the subgroup Γ′ ⊂ Γ
generated by {γ} ∪A is naturally isomorphic to the abstract free product ⟨γ⟩ ∗A.

Moreover, this subgroup is strongly quasi-convex in the sense of [Tra19]: there
exists a function M : R2

≥0 → R≥0 so that any (K1,K2)-quasi-geodesic in Γ with
endpoints in Γ′ lies in the M(K1,K2)-neighborhood of Γ′.

Proof. The first part of the lemma follows from a combination theorem for relatively
quasi-convex subgroups of relatively hyperbolic groups ([MP09, Theorem 1.1]). To
apply the combination theorem, we need to check that the group ⟨γ⟩ is relatively
quasi-convex in Γ, which follows from Lemma 7.1 (i). This combination theorem
also implies that every parabolic subgroup in Γ′ is a finite-index subgroup of some
conjugate of A0. Consequently, the second part of the lemma follows from the
characterization of strongly quasi-convex subgroups in relatively hyperbolic groups
given by [Tra19, Theorem 1.9]. □

The next step is to construct the geodesic β in the torus T we alluded to pre-
viously. We know that the finite-index subgroup A ⊆ π1T is generated by a pair
of commuting diagonalizable matrices. So, we can choose a basis for R4 and find
linearly independent vectors (xi) ∈ R4, (yi) ∈ R4 so that (with respect to this basis)
A can be written as the group

(27)
{
diag(eux1+vy1 , eux2+vy2 , eux3+vy3 , eux4+vy4) ∈ PGL(4,R) : u, v ∈ Z

}
.

Now fix a finite generating set SA for A, and let | · |SA
denote the word metric

on A induced by a choice of finite generating set for A.
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Lemma 7.3. There exists a constant C > 0 and a sequence {an} in A so that
|an|SA

= n but µ1,2(an) < C.

Proof. We can view A as a lattice in a subgroup Â ⊂ PGL(4,R) isomorphic to

R2; the group Â is defined exactly as in (27), except that the parameters u, v are

allowed to vary in R instead of Z. We can additionally lift Â to an (isomorphic)

subgroup of SL(4,R), so that every element of Â has positive eigenvalues. After
choosing an appropriate inner product on R4, we may assume that the eigenspaces
of A (hence of Â) are mutually orthogonal. Then, since the eigenvalues of any

a ∈ Â are positive, the eigenvalues of a are precisely the singular values of a.
Let e1, . . . , e4 be the eigenvectors of Â, and let λi(a) denote the eigenvalue of a

on ei for i = 1, 2, 3, 4. For each i, the mapping wi given by

wi(a) = log λi(a)

is an element of the dual Â∗ ≃ (R2)∗. Since A is discrete with rank 2, these four

dual vectors must span Â∗, so their convex hull is a polygon P whose interior
contains the origin. Pick an edge of this polygon, with endpoints wi, wj . We can

pick a vector v ∈ Â∗∗ = Â which is positive on the chosen edge, but vanishes on
the line through the origin in Â∗ parallel to the edge. It follows that v achieves its
maximum on P on both wi and wj , hence µ1(v) = µ2(v) = wi(v) = wj(v) and thus
µ1,2(v) = 0. The same is true for any positive real multiple of v. Then, since A is

a lattice in Â, we can find length-n points an ∈ A which are uniformly close to the
line {rv : r ∈ R>0}, giving us the desired sequence. □

The sequence {an} corresponds to our geodesic β in the torus T . Next, we
define a sequence in Γ that we will use to determine the projective geodesic in
Theorem 1.9:

Definition 7.4. Define a sequence of words {wk}k∈N as follows:

wk :=


id, if k = 0

a1γ . . . amγm, if k = 2m

a1γ . . . amγmam+1, if k = 2m+ 1

(28)

7.3. Proof of Theorem 1.9. Fix a finite generating set SA for A, and extend
SA ∪ {γ} to a finite generating set S for Γ. Fix a basepoint x0 ∈ Ω and let
F : Γ → Ω be the orbit map defined by F (g) = gx0, so that F is a quasi-isometry
with respect to the word metric dS on Γ induced by S. We first prove that if {wk}
is the sequence in Definition 7.4, then we can extend {wk} to a sequence that tracks
a projective geodesic ray; this ray will be the ray appearing in Theorem 1.9.

Lemma 7.5. There exists R > 0 and a projective geodesic ray [x0, ξ) such that for
any k ≥ 0, dΩ(wkx0, [x0, ξ)) ≤ R.

Proof. Fix any 1 ≤ k < l. We first claim that there exists R > 0, independent of k, l,
such that dΩ(wkx0, [x0, wlx0]) < R. Before proving this claim, let us explain how
this claim immediately implies the lemma. Choose a subsequence of {wlx0} such
that it converges to a point ξ ∈ ∂Ω. As [x0, wlx0] → [x0, ξ) uniformly on compact
subsets of Ω, dΩ(wkx0, [x0, ξ)) ≤ lim supl→∞ dΩ(wkx0, [x0, wlx0]). Supposing that
the claim holds, it is immediate that dΩ(wkx0, [x0, ξ)) ≤ R for all k.
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Now we prove the claim. Fix a quasi-inverse F−1 for the quasi-isometry F , and
consider the quasi-geodesic F−1([x0, wl]) ⊂ Γ; we will show that for some uniform
R we have

dS(wk, F
−1([x0, wlx0])) < R.

We may assume that the quasi-geodesic F−1([x0, wlx0]) joins id to wl. So, by strong
quasi-convexity of Γ′, this quasi-geodesic is within uniformly bounded Hausdorff
distance of some quasi-geodesic q in the Cayley graph Cay(Γ′, SA ∪ {γ}). We
may assume that q is continuous (see e.g. [BH99, Lemma III.H.1.11]). However,
observe that if k < l then wk separates Cay(Γ′, SA ∪ {γ}) into two components,
one containing id and the other containing wl. In particular, q passes through wk,
which completes the proof of the claim. □

Fix a sequence {γn} tracking the ray [x0, ξ) from the previous lemma; we may
assume that the sequence {wk} is a subsequence of {γn}. From now on, we make
this assumption about {γn}. We will show that {γn} is both uniformly 1-regular
and uniformly 3-regular. The first step is the following:

Lemma 7.6. There exist constants Ĉ, D̂ > 0 such that, for i ∈ {1, 3}, we have

lim inf
n→∞

µi,i+1(wk)

k2
> Ĉ and lim sup

k→∞

µ1,4(wk)

k2
< D̂.

Proof. For concreteness, take i = 1; the proof when i = 3 is essentially the same.
We first claim that:

Claim 7.6.1. There is a positive constant C0 such that: for any k ∈ {2m, 2m+1},
µ1,2(wk)− µ1,2(wk−2) ≥ µ1,2(γ

m)− 2C0.(29)

Proof of Claim. Since {wk} is a subsequence of a tracking sequence, we may prove
the claim by applying Lemma 4.10. First, suppose that k = 2m. Then, by
Lemma 4.10, there exists a constant C0—independent of k—such that:

µ1,2(wk) ≥ µ1,2(wk−1) + µ1,2(γ
m)− C0

≥ µ1,2(wk−2) + µ1,2(am) + µ1,2(γ
m)− 2C0.

Since µ1,2(am) ≥ 0, µ1,2(wk)−µ1,2(wk−2) ≥ µ1,2(γ
m)−2C0. This proves the claim

for k = 2m. The case k = 2m+ 1 is similar. □

Using (29) above, we have

µ1,2(wk) ≥
m∑
j=1

(µ1,2(γ
j)− 2C0),

for any k ∈ {2m, 2m+1}. By Lemma 7.1, there is a positive constant B0 such that
µ1,2(γ

j) ≥ B0 · j for any j ≥ 1. Then for any k ∈ {2m, 2m+ 1},

µ1,2(wk) ≥
m∑
j=1

(B0 · j − 2C0) =
B0

2
m(m+ 1)− 2C0m.

Since 2m ≤ k ≤ 2m + 1, m2

k2 → 1
4 while m

k2 → 0 as k → ∞. Thus, there exists a

constant Ĉ > 0 such that

lim inf
k→∞

µ1,2(wk)

k2
> Ĉ.

This finishes the proof of the first part.
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To prove the estimate for µ1,4, observe that the triangle inequality implies that,
if k = 2m, then

dΩ(x0, wkx0) ≤
m∑
j=1

(dΩ(x0, ajx0) + dΩ(x0, γ
jx0)).

Since both groups ⟨γ⟩ and A are quasi-isometrically embedded in Γ, and the orbit
map for Γ is a quasi-isometry, both terms appearing in the sum above are uniformly
linear in j. So there is a uniform constant D > 0 so that the sum is at most Dk2.
Then the desired bound follows from Proposition 4.1. □

Using the above lemma, we can show:

Lemma 7.7. Any sequence {γn} which tracks the geodesic ray [x0, ξ) is both uni-
formly 1-regular and uniformly 3-regular.

Proof. We know that each point {wkx0} lies within uniformly bounded distance of
[x0, ξ), and that dΩ(wkx0, wk+1x0) = O(k). So, as {wk} is an unbounded subse-
quence of {γn}, it follows that for each n there is some k = k(n) ∈ N so that

dΩ(γnx0, wkx0) = O(k).

Then by Proposition 4.1 we also have µ1,4(γ
−1
n wk) = O(k). So, by Lemma 2.15,

|µ1,2(γn)− µ1,2(wk)| = O(k), and |µ1,4(γn)− µ1,4(wk)| = O(k).

So, it follows from the previous lemma that, lim infn→∞
µ1,2(γn)
µ1,4(γn)

≥ Ĉ
D̂

> 0, i.e. {γn}
is uniformly 1-regular. The proof for 3-regularity is similar. □

Corollary 7.8. Let [x0, ξ) be the geodesic ray in Lemma 7.5 that wkx0 embeds
along. Then ξ is Cα-regular and β-convex for some α > 1 and β < ∞.

Proof. Since Ω has exposed boundary (see [Ben06a]), Theorem 1.12 applies and the
previous lemma implies the result. □

Lemma 7.9. The sequence {γn} is not strongly uniformly 1-regular.

Proof. Observe that {wk} is a subsequence of {γn} and since strong uniform reg-
ularity passes to subsequences, it suffices to prove the claim for {wk}. Suppose
k = 2m+ 1. Then w−1

k−1wk = am+1. Recall that µ1,2(am+1) is uniformly bounded

while µ1,4(am+1) → ∞ linearly in m. Then
µ1,2(w

−1
k−1wk)

µ1,d(w
−1
k−1wk)

→ 0. So {wk} is not

strongly uniformly 1-regular. □
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