Dehn filling in semisimple Lie groups

Teddy Weisman University of Michigan

October 27, 2024

in preparation, work in progress with Jeff Danciger

Motivation

Goal: find new examples of interesting discrete subgroups/geometric structures by deforming known examples

Inspiration:

Theorem (Thurston)

Let M be a finite-volume hyperbolic 3-manifold with one cusp. All but finitely many Dehn fillings of M admit hyperbolic structures.

Gives a rich source of examples of lattices in $PSL(2, \mathbb{C})$.

What about discrete subgroups in other Lie groups?

Dehn filling in 3-manifolds

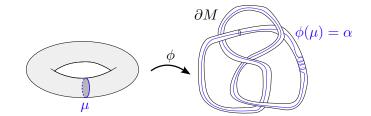
Let M be a 3-manifold, homeomorphic to interior of compact \overline{M} with $\partial \overline{M} \simeq T^2$. Assume $\pi_1 \partial \overline{M}$ injects into $\pi_1 \overline{M} \simeq \pi_1 M$.

Definition

A $Dehn\ filling\ of\ M$ is a 3-manifold

$$M_{\phi} = \overline{M} \sqcup_{\phi} S,$$

where S is a solid torus and $\phi : \partial S \to \partial \overline{M}$ is a homeomorphism.



At the group-theoretic level: $\pi_1 M_\phi \simeq \pi_1 M / \langle\!\langle [\alpha] \rangle\!\rangle$

Hyperbolic Dehn filling: proof idea

Let $\Gamma = \pi_1 M$ for M hyperbolic with one cusp. We have:

- Holonomy $\rho: \Gamma \to \mathrm{PSL}(2,\mathbb{C})$
- Character variety $X(\Gamma, \mathrm{PSL}(2, \mathbb{C}))$
- Step 1. Prove: $X(\Gamma, \text{PSL}(2, \mathbb{C}))$ is a 1-dimensional complex manifold in a neighborhood U of $[\rho]$.
- Step 2. Show: countably many representations in U descend to holonomies of hyperbolic structures on Dehn fillings of M.
 - Step 1: flexibility of holonomy Step 2: (relative) stability of holonomy

Main theorem in this talk generalizes **Step 2**. We also carry out (an analog of) **Step 1** in specific contexts.

Dehn filling in rank one

- *M* hyperbolic 3-manifold with one cusp, $\Gamma = \pi_1 M$
- \blacktriangleright G is a rank-one Lie group
- $\rho: \Gamma \to G$ faithful and geometrically finite.

Theorem (Corollary of W. (in preparation), see also McMullen 1999)

Let ρ_n be a sequence in Hom (Γ, G) . If:

I. $\rho_n \to \rho$ in Hom (Γ, G) , in compact-open topology

II. $\rho_n(\pi_1 \partial M) \to \rho(\pi_1 \partial M)$ in Chabauty topology

then for all sufficiently large n:

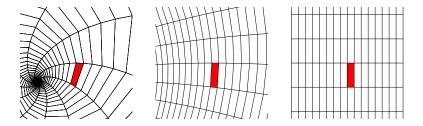
(a) ρ_n has geometrically finite (in particular, discrete) image
(b) ker(ρ_n) = ⟨⟨ker(ρ_n|_{π1∂M})⟩⟩

(c) If $\rho_n(\pi_1 \partial M)$ is convex cocompact, then so is $\rho_n(\pi_1 M)$.

Gives a way to generalize Step 2 from the previous slide.

Recovering 3-dimensional hyperbolic Dehn filling

Fix holonomy representation $\rho : \pi_1 M \to \text{PSL}(2, \mathbb{C})$. Sequences $\rho_n \to \rho$ give affine structures on ∂M :



- Check: along Dehn filling sequences, holonomy of affine structures converge in Chabauty topology.
- ▶ This proof does *not* use a triangulation or a fundamental domain for the original 3-manifold!

Higher rank version

- Γ is relatively hyperbolic, relative to subgroups $H < \Gamma$
- $\blacktriangleright~G$ a semisimple Lie group, P < G (symmetric) parabolic
- $\rho: \Gamma \to G$ is extended geometrically finite.

Theorem (W., in preparation)

If a sequence ρ_n satisfies:

- I. $\rho_n \to \rho$ in compact-open topology on $\operatorname{Hom}(\Gamma, G)$
- II. For each peripheral subgroup $H < \Gamma$, restriction $\rho_n|_H$ satisfies "uniform convergence of orbit maps in G/P"

then for all sufficiently large n:

- (a) $\rho_n : \Gamma / \ker(\rho_n) \to G$ is extended geometrically finite (in particular, has discrete image).
- (b) $\ker(\rho_n) = \langle\!\langle \bigcup_H \ker(\rho_n|_H) \rangle\!\rangle$
- (c) If $\rho_n(H)$ is *P***-Anosov** for all *H*, then so is $\rho_n(\Gamma)$.

Exotic Dehn fillings in $\mathbb{H}^3_{\mathbb{C}}$ and $\mathbb{R}P^3$

 $M = \pi_1 M$ for M cusped hyperbolic 3-manifold.

 $\rho: \pi_1 M \to \mathrm{PO}(3,1) \to \mathrm{PU}(3,1)$ gives geometrically finite action of $\pi_1 M$ on $\mathbb{H}^3_{\mathbb{C}}$, preserving isometrically embedded $\mathbb{H}^3_{\mathbb{R}} \subset \mathbb{H}^3_{\mathbb{C}}$.

Theorem (Danciger-W., in progress)

For infinitely many Dehn fillings $M_{p,q}$ of M, there is a deformation of ρ in Hom $(\pi_1 M, \text{PU}(3, 1))$ which induces a convex cocompact representation of $\pi_1 M_{p,q}$. This representation does not factor through a copy of PO $(3, 1) \hookrightarrow \text{PU}(3, 1)$.

Corollary (Danciger-W., in progress)

For infinitely many closed hyperbolic 3-manifolds M, the space of convex cocompact representations $\pi_1 M \to PU(3,1)$ is not connected.

Similar results for convex projective 3-manifolds (Ballas-Danciger-Lee-Marquis); higher-rank version of theorem describes these deformations.

Very exotic Dehn fillings in $\mathbb{H}^3_{\mathbb{C}}$

Let *M* be figure-8 knot complement. We have $\pi_1 \partial M \simeq \mathbb{Z} \oplus \mathbb{Z}$.

Consider $\rho: \pi_1 M \to \mathrm{PO}(3,1) \to \mathrm{PU}(3,1).$

► Paupert-Thistlethwaite: explicit 1-dimensional family of deformations of $[\rho]$ in $X(\pi_1 M, \text{PU}(3, 1))$ coming from deformations of Bi(3) > $\pi_1 M$.

Theorem (Danciger-W., in progress)

There exists a sequence of representations ρ_n converging to ρ in $\operatorname{Hom}(\pi_1 M, \operatorname{PU}(3, 1))$ so that, for sufficiently large n:

$$\blacktriangleright \ker(\rho_n) = \langle\!\langle n\mathbb{Z} \oplus n\mathbb{Z} \rangle\!\rangle$$

1

• $\rho_n(\pi_1 M)$ is a convex cocompact subgroup of PU(3,1).

Note: $\Gamma / \ker(\rho_n)$ is *not* isomorphic to the fundamental group of a 3-manifold!

 $\Gamma/\ker(\rho_n)$ is fundamental group of a locally CAT(-1) space X: Universal cover \tilde{X} : 0 Q 0 Ş

 $\text{Limit sets converge to } \partial \mathbb{H}^3_{\mathbb{R}} \simeq S^2 \text{ embedded in } \partial \mathbb{H}^3_{\mathbb{C}} \simeq S^5.$

For visualization, project to a 3d slice of $\partial \mathbb{H}^3_{\mathbb{C}}$ containing $\partial \mathbb{H}^3_{\mathbb{R}}$:

