427L: Operations on vector fields

Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a function and let $F, G : \mathbb{R}^3 \to \mathbb{R}^3$ be vector fields. Which of the following operations actually make sense?

1. $\nabla\cdot f$

2. $\nabla\cdot F$

- 3. The curl of the divergence of f
- 4. The dot product of the divergence of G with F
- 5. $\nabla \times (\nabla f)$
- 6. The cross product of the curl of F with the gradient of f
- 7. $\nabla(\nabla f)$
- 8. $\nabla \times (F \cdot G)$
- 9. The curl of the curl of f
- 10. $\nabla \cdot (\nabla f)$
- 11. The divergence of the cross product of F and G
- 12. ∇F
- 13. The directional derivative of f along F

For the operations above which do make sense, write down a formula in terms of f, $F = (F_x, F_y, F_z)$, and $G = (G_x, G_y, G_z)$ (and their partial derivatives).