
M427L: Exam 2 review

Chapter 4

1. The acceleration, initial velocity, and initial position of a particle traveling through space are
given by

~a(t) = 〈2,−6,−4〉, ~v(0) = 〈−5, 1, 3〉, ~r(0) = (6,−2, 1).

The particle’s path intersects the the yz plane at exactly two points. Find those two points.

Solution We integrate the x, y, z components separately to first find velocity as a function
of time:

~v(t) = v(0) +

∫ t

0

~a(s)ds

= 〈−5 + 2t, 1− 6t, 3− 4t〉.

Then we integrate again to find position:

~r(t) = ~r(0) +

∫ t

0

~v(s) ds

= 〈6 +

∫ t

0

(−5 + 2s)ds,−2 +

∫ t

0

(1− 6s)ds, 1 +

∫ t

0

(3− 4s)ds〉

= 〈6− 5t+ t2,−2 + t− 3t2, 1 + 3t− 2t2〉.

This path intersects the yz plane when x = 0, so we solve t2 − 5t + 6 = 0 by factoring
(t− 2)(t− 3) = 0 yielding t = 2, t = 3. Plugging in, we see that the two points we want are

(0,−12,−1), (0,−26,−8).

2. If c(t) is the helix c(t) = (cos t, sin t, 4t), find a function `(s) representing the length of the
curve c from t = 0 to t = s.

Solution The length of a curve c from t = 0 to t = s is given by∫ s

0

||c′(t)||dt.

We find
c′(t) = 〈− sin t, cos t, 4〉,

so ||c′(t)|| =
√

(− sin t)2 + (cos t)2 + 16 =
√

17. So we have

`(s) =

∫ s

0

√
17 dt = s

√
17.

3. Sketch a vector field whose curl is not the zero function and whose divergence is not the zero
function. Write down an equation for a vector field (possibly not the same one) which satisfies
the same properties.
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Solution There are a lot of ways to do this one. Here’s one nice observation: if F1, F2 are
two different vector fields, then ∇ · (F1 + F2) = ∇ · F1 +∇ · F2, and similarly for curl. So we
can pick vector fields F1, F2 such that ∇·F1 6= 0, ∇×F2 6= 0, and ∇·F2 = 0 and ∇×F1 = 0,
and then take F = F1 + F2.

One easy choice is F1 = xi+yj and F2 = yi−xj. Then take F = F1 +F2 = (x+y)i+(y−x)j.

4. Write down a formula for ∇·(f ~F ), where f : R3 → R is a function and ~F : R3 → R3 is a vector

field. (You can write this down in terms of f and its partial derivatives, and ~F = (F1, F2, F3)
and the partial derivatives of these quantities).

Solution Write ~F = (F1, F2, F3), so f ~F = (fF1, fF2, fF3). Then we have

∇ · (f ~F ) =
∂fF1

∂x
+
∂fF2

∂y
+
∂fF3

∂z

=
∂f

∂x
F1 + f

∂F1

∂x
+
∂f

∂y
F2 + f

∂F2

∂y
+
∂f

∂z
F3 + f

∂F3

∂z
.

This is a good enough answer, but we can do better. Reorganizing terms, this is the same as

∂f

∂x
F1 +

∂f

∂y
F2 +

∂f

∂z
F3 + f(

∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
) = (∇f) · F + f∇ · F.

Chapter 5

1. Evaluate the integral ∫∫
R

(xy)2 cosx3 dA,

where R is the rectangle [0, π]× [0, 1].

Solution ∫ π

0

∫ 1

0

(xy)2 cosx3 dy dx =

∫ π

0

x2 cosx3
y3

3

∣∣∣∣y=1

y=0

dx

=
1

3

∫ π

0

x2 cosx3 dx.

Using the substitution u = x3, du = 3x2dx, we rewrite this as

1

3

∫ x=π

x=0

1

3
cosu du =

1

9
sin(u)

∣∣∣∣x=π
x=0

=
1

9
sin(π3).

2. Let D be the region of R2 given by the half-disk centered at (0, 2) with radius 1, to the right
of the y-axis. Evaluate the integral ∫∫

D

(y − 2) · x dA.
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Solution We first need to set up our bounds. In this region, the y-values vary from 1 to 3.
The circle giving part of the boundary of the disk has equation x2 + (y− 2)2 = 1. Solving for
x, we get x =

√
1− (y − 2)2. So we get:

∫ 3

1

∫ √1−(y−2)2

0

(y − 2)x dx dy

=

∫ 3

1

(y − 2)
x2

2

∣∣∣∣x=
√

1−(y−2)2

x=0

dy

=
1

2

∫ 3

1

(y − 2)(1− (y − 2)2) dy.

To make our life a little easier we use the substitution u = (y − 2) and get

1

2

∫ 1

−1
u(1− u2) dy =

1

2

∫ 1

−1
u− u3 du

=
1

2

(
u2

2
− u4

4

) ∣∣∣∣1
−1

= 0.

3. Let R be the region in R3 bounded by the coordinate planes (the xy, yz, and xz planes) and
the plane 2x+ 2y + z = 5. Evaluate the integral∫∫∫

R

x2z − 2yz2 dV.

Solution First we need to set up our bounds of integration. We’ll integrate dxdydz, so z
bounds come first; our region of integration lies in the strip 0 ≤ z ≤ 5. For a fixed z value,
our region of integration lies in the strip 0 ≤ y ≤ 5−z

2 , and for fixed y and z, we integrate

over the interval 0 ≤ x ≤ 5−z−2y
2 .

So we want to integrate∫ 5

0

∫ 5−z
2

0

∫ 5−z−2y
2

0

x2z − 2yz2 dxdydz =

∫ 5

0

∫ 5−z
2

0

(
x3

3
z − 2xyz2

) ∣∣∣∣x=
5−z−2y

2

x=0

dydz

=
1

3

∫ 5

0

∫ 5−z
2

0

(
5− z − 2y

2

)3

− 2yz2
5− z − 2y

2
dydz.

We’ll split this up into two integrals. For the first integral, we make the substitution u =
5− z − 2y, du = 2dy:

1

3

∫ 5

0

∫ y= 5−z
2

y=0

1

16
u3 dudz =

1

192

∫ 5

0

u4
∣∣∣∣u=0

u=5−z
dz

=
−1

192

∫ 5

0

(5− z)4 dz.
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Then we make the substitution u = 5− z, dz = −du to write this as

−1

192

∫ 0

5

−u4 du =
−1

192 · 5
u5
∣∣∣∣5
0

=
−54

192
.

For the second integral, we multiply through to get

−1

3

∫ 5

0

∫ 5−z
2

0

z2y(5− z)− 2y2 dy dz =
−1

3

∫ 5

0

(
z2(5− z)y

2

2
− 2

3
y3
) ∣∣∣∣y= 5−z

2

y=0

dz

= −1

3

∫ 5

0

z2(5− z) (5− z)2

8
− 2

3

(5− z)3

8
dz

= − 1

24

∫ 5

0

z2(125− 75z + 15z2 − z3)− 2

3
(5− z)3 dz

= − 1

24

(
125

3
z3 − 75

4
z4 + 3z5 +

5

2
z6 − 1

7
z7 +

1

4
(5− z)4

) ∣∣∣∣5
0

.

This can be simplified to get a fraction, which I will leave for you to do.

4. Evaluate the integral ∫ 4

0

∫ 2

y/2

ex
2

dx dy

by changing the order of integration.

Solution After inspection we see that the region of integration is a triangle with vertices
(0, 0), (2, 4), and (2, 0). So our x-bounds are 0, 2, and for a fixed x-value, y ranges from 0 to
2x: ∫ 2

0

∫ 2x

0

ex
2

dy dx =

∫ 2

0

ex
2

2x dx.

We make the substitution u = x2 to write this as∫ x=2

x=0

eu du = eu
∣∣∣∣x=2

x=0

= eu
∣∣∣∣4
0

= e4 − 1.

Chapter 6

1. Let T (u, v) = (u2− v2, 2uv), and let D′ be the region of R2 given by {(u, v) : u2 + v2 ≤ 1, u ≥
0, v ≥ 0}. Describe the region D = T (D′), and evaluate∫∫

D

dx dy.
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Solution The region D′ is bounded by three curves: the line segment L1 from (0, 0) to (1, 0),
the line segment L2 from (0, 0) to (0, 1), and the quarter-circle A given by the intersection of
the unit circle with the first quadrant. Our region D should also be bounded by three curves,
which we can find by applying the map T to these three curves.

On L1, v is identically zero, and u ranges from 0 to 1. So, the y-coordinate of T (L1) is
0 · u = 0, and the x-coordinate u2 − v2 ranges from 0 to 1. So T (L1) is the line segment from
(0, 0) to (1, 0).

Similarly, T (L2) is the line segment from (0, 0) to (−1, 0).

T (A) must be some curve from (−1, 0) to (1, 0). In fact, T (A) lies on the unit circle! To see
this, note that if u2 + v2 = 1, then

x2 + y2 = (u2 − v2)2 + (2uv)2 = u4 − 2u2v2 + v4 + 4u2v2

= u4 + 2u2v2 + v4 = (u2 + v2)2

= 1.

So T (A) lies on the curve x2 + y2 = 1, and since u, v ≥ 0, y = 2uv ≥ 0.

So, the region D is the half of the unit circle lying in the half-plane y ≥ 0.

The integral ∫∫
D

dxdy

is just the area of D, so it evaluates to π/2.

Alternatively, we can evaluate this integral using the change-of-coordinates theorem: we know
that ∫∫

D

dx dy =

∫∫
D′

∣∣∣∣ ∂T

∂(u, v)

∣∣∣∣ du dv.
Here

∂T

∂(u, v)
is the Jacobian (matrix of partials)

∂x∂u ∂x

∂v
∂y

∂u

∂y

∂v

 =

(
2u −2v
2v 2u

)
,

so

∣∣∣∣ ∂T

∂(u, v)

∣∣∣∣ = 4(u2 + v2).

To evaluate ∫∫
D′

4(u2 + v2) du dv,

we can switch to polar coordinates, and rewrite this as∫∫
D′

4r2 r dr dθ.
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Since we are integrating over one quarter of the unit disk, we let θ vary from 0 to π/2, let r
range from 0 to 1, and get ∫ π/2

0

∫ 1

0

4r3 dr dθ =

∫ π/2

0

r4
∣∣1
0
dθ

=

∫ π/2

0

dθ = π/2.

2. Let A be the annulus {(x, y) : 1 ≤ (x2 + y2) ≤ 4}. Find the integral∫∫
A

xy + y2 dx dy.

Solution We switch to polar coordinates (x = r cos θ, y = r sin θ) and use the change-of-
coordinates rule dx dy = r dr dθ, to write the integral as∫ 2π

0

∫ 2

1

(r2 cos θ sin θ + r2 sin2 θ)r drdθ

=

∫ 2π

0

r3

3

∣∣∣∣2
1

· (cos θ sin θ + sin2 θ)dθ

=
7

3

∫ 2π

0

(cos θ sin θ + sin2 θ)dθ.

Using the identities sin(2θ) = 2 cos θ sin θ and cos(2θ) = 1− 2 sin2 θ, we rewrite this as

7

3

∫ 2π

0

sin(2θ)

2
+

1− cos 2θ

2
dθ.

The sin 2θ and cos 2θ terms disappear when we integrate (since we are integrating from 0 to
2π), so we are left with

7

3

∫ 2π

0

1

2
dθ =

7π

3
.

3. Find the volume of the solid in R3 bounded below by the paraboloid z = x2 + y2 and above
by the cone z =

√
x2 + y2.

Solution We switch to cylindrical coordinates, where the paraboloid is given by z = r2 and
the cone is given by z = r. These two surfaces intersect at the circle given by the equations
r = z = 1, so the solid lies above the unit disk D in R2. So, the volume of the solid is given
by ∫∫

D

r − r2 dA =

∫∫
D

(r − r2) r dr dθ.

To parameterize the unit disk we let r vary from 0 to 1 and θ vary from 0 to 2π, giving∫ 2π

0

∫ 1

0

r2 − r3 dr dθ =

∫ 2π

0

(
r3

3
− r4

4

) ∣∣∣∣1
0

dθ

=
1

12

∫ 2π

0

dθ =
π

6
.
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4. Let E be the ellipsoid
x2

2
+
y2

3
+ z2 ≤ 1.

Evaluate the integral ∫∫∫
E

xy + z

3
dV.

Solution We apply two changes of coordinates: first we transform this into an integral over
the unit ball, and then use spherical coordinates to evaluate that integral.

We pick coordinates u, v, w so that x2/2 = u2, y2/3 = v2, and z2 = w2. Then, in (u, v, w)
coordinates, the ellipsoid E is just the set {(u, v, w) : u2 + v2 + w2 ≤ 1}, or the unit ball B.
Explicitly, we have

x =
√

2 · u, y =
√

3 · v, z = w.

Then, the change-of-coordinates theorem says that∫∫∫
E

xy + z

3
dV =

∫∫∫
B

√
6uv + z

3

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw.
The Jacobian matrix is given byxu xv xw

yu yv yw
zu zv zw

 =

√2 0 0

0
√

3 0
0 0 1

 ,

so the Jacobian determinant is
√

6, meaning we want to evaluate the integral

√
6

∫∫∫
B

√
6uv + w

3
du dv dw.

To do this integral we switch to spherical coordinates. This is most convenient if we take
u = ρ sinφ cos θ, w = ρ sinφ sin θ, v = ρ cosφ. In these coordinates, we have du dv dw =
ρ2 sinφdρ dφ dθ, meaning we are integrating

√
6

3

∫∫∫
B

(√
6ρ2 sinφ cosφ cos θ + ρ2 sinφ sin θ

)
ρ2 sinφ dρ dθ dφ.

We can save ourselves some trouble by integrating with respect to θ first, since we want to
take:

√
6

3

∫ 1

0

∫ π

0

∫ 2π

0

(√
6ρ2 sinφ cosφ cos θ + ρ2 sinφ sin θ

)
ρ2 sinφ dθ dφ dρ

Since the integral of sin θ and cos θ from zero to 2π is zero, the whole integral vanishes and
we just get 0.

Actually, we could have seen this without doing any work at all! The ellipsoid E is symmetric
about the reflections z 7→ −z, x 7→ −x, and y 7→ −y. We let Ez≥0 be the half-ellipsoid we get
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by intersecting E with the half-space z ≥ 0. Similarly, we define Ez≤0 and Ex≥0 and Ex≤0.
Then our original integral splits into four pieces:∫∫∫

E

xy + z

3
dV =

∫∫∫
Ex≥0

xy

3
dV +

∫∫∫
Ex≤0

xy

3
dV +

∫∫∫
Ez≥0

z

3
dV +

∫∫∫
Ez≤0

z

3
dV.

Using the change-of-variables theorem, you can arrange the first two integrals to cancel with
each other (and the last two as well).

Chapter 7

1. Evaluate the path integral ∫
c

f(x, y, z) ds

where c : [0, π]→ R3 is the curve t 7→ (sin t, cos t, t) and f(x, y, z) = x+ y + z.

Solution The path integral is given by∫ π

0

f(c(t))||c′(t)|| dt,

so we compute

||c′(t)|| = ||〈cos t,− sin t, 1〉||

=
√

cos2 t+ sin2 t+ 1

=
√

2.

So we want:

√
2

∫ π

0

(sin t+ cos t+ t) dt

=
√

2
(
− cos t+ sin t+ t2/2

) ∣∣π
0

=
√

2
(
2 + π2/2

)
.

2. Let C be the boundary of the unit square [0, 1]× [0, 1], oriented counterclockwise, and let F
be the vector field y2i− xyj. Evaluate the line integral∫

C

F · dr.

Solution We need to parameterize the curve C, which is cut into four pieces C1, C2, C3, C4

corresponding to the edges of the square. We’ll start at the origin, which means that if we
parameterize each of our curves on the unit interval [0, 1], we have:

C1(t) = (t, 0)

C2(t) = (1, t)

C3(t) = (1− t, 1)

C4(t) = (0, 1− t).
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Then C ′1(t) = (1, 0), C ′2(t) = (0, 1), C ′3(t) = (−1, 0), and C ′4(t) = (0,−1). We have four
integrals to evaluate.∫ 1

0

F (C1(t)) · C ′1(t) dt =

∫ 1

0

(0, 0) · (1, 0) dt = 0∫ 1

0

F (C2(t)) · C ′2(t) dt =

∫ 1

0

(t2, t) · (0, 1) dt =

∫ 1

0

t dt =
1

2∫ 1

0

F (C3(t)) · C ′3(t) dt =

∫ 1

0

(1, 1− t) · (−1, 0) dt =

∫ 1

0

−1 dt = −1∫ 1

0

F (C4(t)) · C ′4(t) dt =

∫ 1

0

((1− t)2, 0) · (0,−1) dt = 0.

The line integral is given by the sum of these four line integrals, meaning that
∫
C
F ·dr = −1/2.
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