
M427L: final review

Note: this review sheet only has problems from the last part of the semester (so it does not have
any material covered on the previous review sheets). You are still responsible for all of the material
from this class on the final, so you may want to go back and look at earlier review sheets!

Chapter 7

1. Determine if the vector field

~F (x, y, z) = 2ye2xy~i+ (2xe2xy + 6yz)~j + 3y2~k

is the gradient of some function f : R3 → R. If it is, find an f so that ~F = ∇f .

Solution We can evaluate the curl of this vector field:

∇× ~F = det


~i ~j ~k
∂

∂x

∂

∂y

∂

∂z
2ye2xy 2xe2xy + 6yz 3y2


This evaluates to ~i(6y − 6y) + ~j(0) + ~k(2e2xy + 4xye2xy − 2e2xy − 4xye2xy) = 0. Since the
vector field is defined on all of R3, it must be a gradient field.

To find a function f so ~F = ∇f , we first integrate in a straight line from (0, 0, 0) to (x, 0, 0),
then from (x, 0, 0) to (x, y, 0), then from (x, y, 0) to (x, y, z).

The first integral is ∫ x

0

2ye2tydt,

but as y = 0 this evaluates to zero. The second integral is∫ y

0

(2xe2xt + 6yz)dt.

As z = 0 we can ignore the second term. We treat x as a constant, so the antiderivative is
e2xt and the integral evaluates to e2xy − 1. The third integral is∫ z

0

3y2dt,

which evaluates to 3y2z. So altogether we get f(x, y, z) = e2xy + 3y2z − 1. (We can discard
the constant term if we want.)

2. Let C be the curve given by the graph of the function y = 2x2, where x ranges from 0 to 1,
and let ~F be the vector field

~F (x, y) = (x2 − y2)~i+ (x2 + y2)~j.

Evaluate the line integral ∫
C

~F · dr.
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Solution The curve C is the graph of a function, so we can parameterize it as

r(x) = (x, 2x2),

as x varies from 0 to 1. Then r′(x) = (1, 4x). The line integral is given by∫ 1

0

~F (x) · r′(x)dx =

∫ 1

0

(x2 − 4x4) + (x2 + 4x4)4xdx

=

∫ 1

0

x2 − 4x4 + 4x3 + 16x5dx

= x3/3− 4x5/5 + x4 + 16x6/6

∣∣∣∣1
0

= 1/3− 4/5 + 1 + 8/3 = 16/5.

3. Find the area of the surface S given by the intersection of the unit sphere with the cone
z ≥

√
3(x2 + y2).

Solution We can parameterize this region using spherical coordinates. The angle between
the boundary of the cone z ≥

√
3(x2 + y2) and the z-axis is given by tan−1(1/

√
3) = π/6. In

spherical coordinates (φ, θ), the area element of a unit sphere is given by sinφ dφ dθ, so we
want to integrate∫ 2π

0

∫ π/6

0

sinφ dφ dθ =

∫ 2π

0

− cosφ
∣∣π/6
0

dθ = 2π · (1−
√

3/2).

4. Let S be the closed surface given by a cone of height 4, whose axis lies along the z axis and
whose base lies in the xy plane and has radius 3. Write down (but do not evaluate) iterated
integrals you could use to find the surface integral∫∫

S

(3x+ 2y) dA.

Solution To parameterize this cone, we can use cylindrical coordinates. Since the cone
has radius 3 and height 4, the “top” part is the graph of the function z = 4 − 4r/3, as r
varies from 0 to 3 and θ varies from 0 to 2π. Then taking x = r cos θ and y = r sin θ gives a
parameterization Φ(r, θ).

We have
∂Φ

∂r
= (cos θ, sin θ,−4/3) and

∂Φ

∂θ
= (−r sin θ, r cos θ, 0), so the area element for the

top part of the cone is given by the norm of

det

 ~i ~j ~k
cos θ sin θ −4/3
−r sin θ r cos θ 0

 = 4/3r cos θ~i+ 4/3r sin θ~j + r~k.

We evaluate the norm of this vector to get√
(4/3)2r2 + r2 = r

√
16/9 + 1 = 5r/3.
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So the integral of this function over the top of the cone is given by∫ r=3

r=0

∫ 2π

0

[3(r cos θ) + 2(r sin θ)]5r/3dθdr.

We also need to integrate the function over the base of the cone. In this case we can just use
polar coordinates in the xy-plane; the area element is r dr dθ, so we get∫ r=3

r=0

[3(r cos θ) + 2(r sin θ)]r dr dθ.

5. Let S be the portion of graph of the function z = 3x2− 2xy above the rectangle [0, 1]× [0, 2],
oriented with upward-pointing normal. Find the flux of the vector field

~F (x, y, z) = (x− y)~i+ xz~j − 2yz~k

through the surface S.

Solution Since S is the graph of a function, we can parameterize it by taking

Φ(x, y) = (x, y, 3x2 − 2xy)

as x, y ranges over the rectangle [0, 1]× [0, 2]. We evaluate the cross product
∂Φ

∂x
× ∂Φ

∂y
:

det

~i ~j ~k
1 0 6x− 2y
0 1 −2x

 = (2y − 6x)~i− (8x+ 2y)~j + ~k.

We also know that ~F (x, y, f(x, y)) = (x−y)~i+x(3x2−2xy)~j−2y(3x2−2xy)~k. So, to compute
flux, we evaluate the integral∫ 2

0

∫ 1

0

~F (x, y, f(x)) · (∂Φ

∂x
× ∂Φ

∂y
) dx dy

=

∫ 2

0

∫ 1

0

(x− y)(2y − 6x)− x(3x2 − 2xy)(8x+ 2y)− 2y(3x2 − 2xy) dx dy.

We expand and combine terms:∫ 2

0

∫ 1

0

−2y2 − 6x2 − 4xy + 24x4 − 10x3y − 4x2y2 + 6x2y − 4xy2 dx dy

=

∫ 2

0

−2y2 − 2− 2y + 24/5− 5y/2− 4y2/3 + 2y − 2y2 dy

=

∫ 2

0

y2(−4− 4/3) +−5y/2 + 4/5 dy =
8

3
(−4− 4/3)− 5 + 8/5.

This can be simplified, but there are likely errors in the above computations anyway...
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Chapter 8

1. Let C be the curve bounding a wedge-shaped region, pictured in red below:

π/4π/4

1

C

Use Green’s theorem to find the integral ∫
C

~F · dr,

where ~F is the vector field ~F (x, y) = x2y~i− (2x+ y)~j.

Solution Green’s theorem says that the integral in question is equal to∫∫
R

(∇× ~F ) dA,

where ∇× ~F is the scalar curl, given by

∂(2x+ y)

∂x
− ∂(x2y)

∂y
= 2− x2,

and R is a region with boundary C. We can parameterize R using polar coordinates: it is the
region given by {(r, θ) : 0 ≤ r ≤ 1, π/4 ≤ θ ≤ 3π/4}. The area element dA is r dr dθ, so we
integrate ∫ 3π/4

π/4

∫ 1

0

(2− r2 cos2 θ)r dr dθ.

Using the substitution cos2 θ = cos 2θ+1
2 , this is∫ 3π/4

π/4

1− 1

3
(cos 2θ + 1)/2 dθ

= 5θ/6− 1

12
sin θ

∣∣3π/4
π/4

= 5π/12.

2. Let C be the closed, piecewise smooth curve formed by traveling in straight lines between the
points (0, 0, 0), (2, 1, 5), (1, 1, 3) in that order. Use Stokes’ theorem to evaluate the integral∫

C

(xyz) dx+ (xy) dy + (x) dz.
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Solution Stokes’ theorem says that the integral of a vector field about C is the integral∫∫
S

(∇× ~F ) · dS,

where S is any surface whose boundary is C. There’s an easy choice for S: we should just
use the triangle whose vertices are the three given points. To parameterize this surface, let
~a = (2, 1, 5) and ~b = (1, 1, 3), and let ~u = ~b− ~a. Then, S is just the set of points

{s~a+ t~u : 0 ≤ t ≤ s ≤ 1}.

The vector area element is then just given by (~a× ~u) ds dt, which we can compute:

(det

 ~i ~j ~k
2 1 5
−1 0 −2

) ds dt = (−2~i−~j + ~k) ds dt.

Now we compute the curl of our vector field ~F :

det


~i ~j ~k
∂

∂x

∂

∂y

∂

∂z
xyz xy x

 = (xy − x)~j + (y − xz)~k.

In coordinates our parameterization s~a+ t~u gives

x(s, t) = 2s− t, y(s, t) = s, z(s, t) = 5s− 2t,

so at the point (s, t) the curl is

[(2s− t)s− (2s− t)]~j + [s− (2s− t)(5s− 2t)]~k.

So we have∫∫
S

(∇× ~F ) · dS =

∫ 1

0

∫ s

0

−[(2s− t)s− (2s− t)] + [s− (2s− t)(5s− 2t)] dt ds

=

∫ 1

0

∫ s

0

−[2s2 − st− 2s+ t] + [s− (10s2 − 9st+ 2t2)] dt ds

=

∫ 1

0

∫ s

0

−12s2 + 10st+ 3s− t− 2t2 ds dt

=

∫ 1

0

−12s3 + 5s3/2 + 3s2 − s2/2− 2s3/3 ds

= −3s4 + 5s4/8 + s3 − s3/6− s4/6
∣∣∣∣1
0

= −3 + 5/8 + 1− 1/6− 1/6.

3. Use the Divergence Theorem to find the flux of the vector field

~F (x, y, z) = (x− y2)~i+ y~j + x3~k

out of the rectangular solid [0, 1]× [1, 2]× [1, 4].
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Solution The Divergence Theorem says that the flux of the vector field out of the boundary
of a region B is given by ∫∫∫

B

∇ · ~F dV.

So we just need to compute the divergence of this vector field, which is given by

∂(x− y2)

∂x
+
∂y

∂y
+
∂x3

∂z
= 2.

Since the divergence is constant, the integral above is just 2 times the volume of the box, or
2× 1× 1× 3 = 6.

4. (bonus) Let ~F (x, y, z) be the vector field ~i+~j − ~k. Find the flux of ~F through the surface S

given by the part of the graph of e2x−y
√

1− x2 − y2 over the unit disk x2 + y2 ≤ 1, oriented

with upward-pointing normal. (Hint: is ~F the curl of a vector field? Why would this help?)

Solution It turns out that ~F is the curl of a vector field: any vector field whose divergence
is zero, and which is defined everywhere on R3, is a curl. This vector field is a constant, so it
does have zero divergence.

Alternatively, you can check that ~F is the curl of the vector field

~G = z~i− x~j + y~k.

Stokes’ theorem then says that the integral of ~F over the region in question is the same as
the line integral of ~G over the boundary of S. This line integral is not too bad to compute,
but there’s an even easier way.

Since ~F is the curl of a vector field, it follows (again by Stokes’ theorem) that the flux of ~F

through any surface whose boundary is ∂S is the same as the flux of ~F through S. So we can
pick a surface where this integral is particularly easy: say the unit disk x2 + y2 ≤ 1 in the
xy-plane.

We can find this flux by integrating the dot product of ~F with the unit normal vector ~n over
the surface. In this case this is just the standard basis vector ~k. So we want to integrate the
constant function ~F · ~k = −1 over the unit disk. Since the unit disk has area π, we just get
−π.
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