427L: Rules for vector operations

In this class we will use four basic operations on vectors in \mathbb{R}^n . Some of them also involve *scalars* (another name for real numbers).

- 1. Vector addition: we can take two vectors \vec{u} , \vec{v} and add them together to get a third vector $\vec{u} + \vec{v}$.
- 2. Scalar multiplication: we can take one vector \vec{u} and one scalar $a \in \mathbb{R}$ and multiply them to get another vector $a\vec{u}$.
- 3. Dot product, also called *inner product* or sometimes *scalar product*: we can take two vectors \vec{u}, \vec{v} and combine them to get a *scalar* $\vec{u} \cdot \vec{v}$.
- 4. Cross product: we can take two vectors \vec{u} , \vec{v} in \mathbb{R}^3 and combine them to get a vector $\vec{u} \times \vec{v}$.

These operations all obey certain rules. You should use the definitions of the four operations given above to check that these rules are satisfied! It will give you a better feel both for the definitions and for how to manipulate vectors. In particular, do not try to learn this sheet by memorizing the rules. It will be *much* more effective to just practice working with vectors until you get a feel for how they behave. (For this reason I am not listing all of the different properties of dot products and cross products on this sheet either).

Basic rules (scalar multiplication and vector addition)

- 1. Vector addition commutes: if \vec{u} and \vec{v} are vectors, then $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.
- 2. Vector addition is associative: if $\vec{u}, \vec{v}, \vec{w}$ are vectors, then $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.
- 3. Scalar multiplication distributes, I: if $a \in \mathbb{R}$ and \vec{u}, \vec{v} are vectors, then $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$.
- 4. Scalar multiplication distributes, II: if $a, b \in \mathbb{R}$ and \vec{u} is a vector, then $(a+b)\vec{u} = a\vec{u} + b\vec{u}$.
- 5. Scalar multiplication is associative: if a, b are scalars, and \vec{v} is a vector, then $a(b\vec{v}) = (ab)\vec{v}$.

Rules for the dot product

- 1. Dot product is commutative: if \vec{u} and \vec{v} are vectors, then $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.
- 2. Dot products distribute over sums: if $\vec{u}, \vec{v}, \vec{w}$ are all vectors, then $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.
- 3. Dot products and scalar multiplication: if a is a scalar and \vec{u} , \vec{v} are scalars, then $(a\vec{u}) \cdot \vec{v} = a(\vec{u} \cdot \vec{v})$.

Rules for the cross product

- 1. Cross product is **anti**commutative: if \vec{u} and \vec{v} are vectors, then $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$.
- 2. Cross products and sums: if \vec{u} , \vec{v} , and \vec{w} are vectors, then $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$.
- 3. Cross products and scalars: if a is a scalar and \vec{u} , \vec{v} are vectors, then $(a\vec{u}) \times \vec{v} = a(\vec{u} \times \vec{v})$.

Warning: the cross product is *not* associative. This means that it is *not* true that $(\vec{u} \times \vec{v}) \times \vec{w} = \vec{u} \times (\vec{v} \times \vec{w})$.