Boundaries of groups and spaces: day 1 exercises

June 1, 2020

1. Prove X is CAT(0) if and only if: for every triangle $\Delta(p,q,r)$ and every point $x \in [p,q]$

$$d(x,r) \le d(\bar{x},\bar{r}).$$

- 2. Prove that if X, Y are CAT(0), and $Z \subset X$, $Z' \subset Y$ are convex subspaces with Z isometric to Z', then the space obtained by gluing X and Y along an isometric identification Z, Z' is CAT(0).
- 3. Prove that if X is CAT(0) and $Y \subseteq X$ is convex, then ∂Y embeds into ∂X .
- 4. Prove that in a CAT(0) space, the distance function satisfies a *strict convexity* property: for any geodesic $c : [0, 1] \to X$, and any point $x \in X$, the function

$$f(t) = d(x, c(t))^2$$

satisfies

$$f(t) < (1-t)f(0) + tf(1)$$

for all $t \in (0, 1)$.

(Note the 2 in the definition of f, and the strict inequality!)

Use this to prove that: for any closed convex set $Y \subseteq X$, and any $z \in X$, there is a unique point $y \in Y$ such that

$$d(z, y) = d(z, Y).$$

- 5. Find an example of a CAT(0) space whose boundary has exactly n connected components.
- 6. Building an explicit basis for the topology on \overline{X} : Fix a basepoint $x_0 \in X$, so that each point in \overline{X} is identified with a geodesic ray or segment starting at x_0 .

For an infinite geodesic ray c, and $r, \varepsilon > 0$, define the set $U(c, r, \varepsilon)$ by

$$U(c,r,\varepsilon) := \{ x \in X : d(x,x_0) > r, d_{\text{Haus}}(x \cap B(x_0,r), c \cap B(x_0,r)) < \varepsilon \}.$$

(if x is an infinite geodesic ray, then $d(x, x_0) = \infty$).

Show that the set of open balls in X together with the sets $U(c, r, \varepsilon)$, ranging over all $[c] \in \partial X$, $r, \varepsilon > 0$, give a basis for \overline{X} .