Boundaries of groups and spaces: day 2 exercises

June 2, 2020

- 1. Give an example of a CAT(0) space where the boundary with the topology induced by the *angle metric* is connected, but not a sphere.
- 2. Give an example of a complete and proper CAT(0) space which is not a visibility space, but nevertheless does not contain an isometric copy of \mathbb{E}^2 . (Which hypothesis of the theorem are we leaving out?)
- 3. (Exercise II.2.10 in Bridson and Haefliger) Let $\Delta(p, q, r)$ be a triangle in a CAT(0) space, and let $\Delta(\bar{p}, \bar{q}, \bar{r})$ be a Euclidean comparison triangle. Use the flat triangle lemma to show that if there is some \bar{x} in the interor of $[\bar{p}, \bar{q}]$ and \bar{y} in $[\bar{p}, \bar{r}]$ such that $d(\bar{x}, \bar{y}) = d(x, y)$, then $\Delta(p, q, r)$ is flat.
- 4. Prove that if X is a complete, proper, and cocompact metric space containing isometric copies of arbitrarily large flat disks, then X contains an isometric copy of \mathbb{E}^2 . (Hint: pick a countable dense subset of \mathbb{E}^2 and argue that there is an isometric embedding of this subset into X).
- 5. Prove that if Γ_1 , Γ_2 are CAT(0) groups, then the free product $\Gamma_1 * \Gamma_2$ is also CAT(0).
- 6. Prove that if M is a manifold, and Γ is a group acting freely and properly discontinuously on M, then $M \to M/\Gamma$ is a covering map (and so M/Γ is a manifold).