Boundaries of groups and spaces: day 3 exercises

June 3, 2020

- 1. Use the Milnor-Schwarz theorem to show: if G is a finitely generated group, and H is a finite-index subgroup, then H is quasi-isometric to G.
- 2. (a) Find an example of a hyperbolic metric space where geodesics are not unique.
 - (b) Find an example of a hyperbolic group Γ such that: for some $z \in \partial \Gamma$, there are geodesic rays $c_1, c_2 : [0, \infty) \to \Gamma$ with $c_i(\infty) = z$, $c_1(0) = c_2(0)$, and c_1 and c_2 only intersect at their basepoint.
- 3. Prove that the Morse lemma is true on a tree.
- 4. Prove that \mathbb{H}^2 is δ -hyperbolic, and find the optimal δ .
- 5. Prove that if the boundary of a hyperbolic group Γ has exactly two points in it, then Γ is quasi-isometric to \mathbb{Z} .

(In fact, it's true that in this case Γ is virtually isomorphic to \mathbb{Z} , although this is harder to prove.)

6. Prove that if X is CAT(0) and hyperbolic, it is a visibility space.

Remark: if in addition X is cocompact (e.g. if Γ is a hyperbolic group acting geometrically on X) then the converse is also true (although it is somewhat more difficult to prove). Ultimately one can conclude that a CAT(0) group is hyperbolic if and only if it does not contain a quasiisometrically embedded copy of \mathbb{E}^2 .