Hyperbolic groups: day 1 exercises

1. Let Γ be a finitely generated group with generating sets S_1 , S_2 , and let $\operatorname{Cay}(\Gamma, S_i)$ be the Cayley graph of Γ with respect to the generating set S_i . Show that there is a *bilipschitz* equivalence $\operatorname{Cay}(\Gamma, S_1) \to \operatorname{Cay}(\Gamma, S_2)$.

That is, there exists $K \geq 1$ such that for all $\gamma_1, \gamma_2 \in \Gamma$,

$$\frac{1}{K} \cdot d_1(\gamma_1, \gamma_2) \le d_2(\gamma_1, \gamma_2) \le K \cdot d_1(\gamma_1, \gamma_2),$$

where d_i is the metric on $Cay(\Gamma, S_i)$.

- 2. Show that quasiisometry is an equivalence relation.
- 3. Find an example of two finitely generated groups which are quasiisometric but *not* commensurable.
- 4. Show that all regular trees of valence ≥ 3 are quasiisometric. Conclude that all finitely generated nonabelian free groups are quasiisometric.
- 5. "Uniqueness" of geodesics in hyperbolic metric spaces: show that in a Gromov-hyperbolic metric space (X, d), there is a constant D satisfying the following:

If $c_1 : [0, L] \to X$ and $c_2 : [0, L] \to X$ are arclength-parameterized geodesics such that $c_1(0) = c_2(0) = x, c_1(L) = c_2(L) = y$, then for all $t \in [0, L]$,

$$d(c_1(t), c_2(t)) < D.$$

6. Find an example of a metric space which is not Gromov hyperbolic and does not contain a quasi-isometrically embedded copy of the Euclidean plane.