Hyperbolic groups: day 3 exercises Boundaries of hyperbolic groups

August 14, 2019

1. Find a quasi-isometry of a non-hyperbolic metric space which does not take geodesics to curves lying finite Hausdorff distance from geodesics.

Note: the logarithmic spiral gives an example of a quasi-isometric *embedding* which does not take geodesics to neighborhoods of geodesics; here we are looking for a *quasi-isometry*.

2. For a hyperbolic metric space X, show that there is a bijection (commuting with isometries) between the sets

{infinite geodesic rays based at x_0 }/ \sim , {infinite geodesic rays based at x_1 }/ \sim

for any x_0, x_1 in X (here ~ is the usual equivalence relation: $c_1 \sim c_2$ when c_1 and c_2 lie within bounded Hausdorff distance of each other).

To make this question interesting, do *not* assume that there is an isometry of X taking x_0 to x_1 .

3. Visibility of hyperbolic spaces: given any two points η_1, η_2 in the boundary of a hyperbolic space X, show that there exists a bi-infinite geodesic $c : \mathbb{R} \to X$ with "endpoints" η_1, η_2 . That is, the equivalence classes of the two infinite rays $c|_{[0,\infty)}$ and $c|_{(-\infty,0)}$ are η_1 and η_2 .

(Hint: use Arzelà-Ascoli.)

- 4. Show that the boundary of a hyperbolic group cannot contain exactly one point.
- 5. Show that if the boundary of a hyperbolic group contains exactly two points, then it is quasiisometric to Z.

Harder: show that if the boundary of a hyperbolic group contains exactly two points, then it is virtually isomorphic to \mathbb{Z} .

6. Use the convergence group property to show that if the boundary of a hyperbolic group Γ contains at least 3 points, then it is *perfect* (i.e. every point is an accumulation point).