Hyperbolic groups summer mini-course: day 4 exercises Algorithmic properties of hyperbolic groups

August 15, 2019

- 1. Show that in a δ -hyperbolic metric space, geodesic *n*-gons are $\delta(n-2)$ -thin. That is, every side of the *n*-gon is within a $\delta(n-2)$ neighborhood of the union of the remaining sides.
- 2. Show that \mathbb{Z}^2 has quadratic Dehn function. Find an algorithm to solve the word problem for \mathbb{Z}^2 in (asymptotically) less than quadratic time.
- 3. Find a (possibly very vague) description of an algorithm to find a Dehn presentation for a δ -hyperbolic group, given an arbitrary finite presentation. (You may assume that δ is known.) Conclude that there is a semi-decidable¹ algorithm that determines if a given finite group presentation presents a hyperbolic group. (Here you cannot assume you know δ ahead of time!)
- 4. For a finitely generated group Γ , and an element $\gamma \in \Gamma$, let the *negative cone type* of γ be the set

$$C^{-}(\gamma) = \{\eta \in \Gamma : |\eta\gamma| = |\gamma| + |\eta|\}.$$

Show that there is a bijection between the cone types of Γ and the negative cone types of Γ . In particular, the set of negative cone types of a hyperbolic group Γ is finite.

- 5. Draw the cone type graph for F_2 .
- 6. Find all of the cone types for \mathbb{Z}^2 with its standard presentation $\langle a, b \mid aba^{-1}b^{-1} \rangle$, and draw the geodesic automaton.

 $^{^{1}}$ a *semi-decidable* algorithm is an algorithm to solve a decision problem that halts if the answer is yes, but runs forever if the answer is no.