Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. (a) Give an example of a metric space and a subset that is both open and closed. Give an example of a subset that is neither open nor closed.
 - (b) Recite the Topologist Scout Oath:

"On my honour, I will do my best to never claim to prove a set is closed by showing that it is not open, and to never claim to prove a set is open by showing that it is not closed."

- 2. Let X and Y be sets, and $f: X \to Y$ any function. Show that $f^{-1}(Y) = X$, and $f^{-1}(\emptyset) = \emptyset$.
- 3. Rigorously prove that the following functions $f: \mathbb{R} \to \mathbb{R}$ are continuous. (Here, \mathbb{R} implicitly has the Euclidean metric.)
 - (a) f(x) = 5 (b) f(x) = 2x + 3 (c) $f(x) = x^2$
 - (d) f(x) = g(x) + h(x), for continuous functions g and h.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^2 + 2$. Find the inverse images of the following sets, and verify that they are open.
 - (a) \mathbb{R} (b) (-1,1) (c) (2,3) (d) $(6,\infty)$
- 5. Let (X, d) be a metric spaces. Show that the identity function

$$g: X \longrightarrow X$$

 $g(x) = x$ for all $x \in X$

is always continuous.

6. Let (X, d_X) and (Y, d_Y) be metric spaces, and let $y_0 \in Y$. Show that the constant function

$$f: X \longrightarrow Y$$

 $f(x) = y_0$ for all $x \in X$

is always continuous.

- 7. See the definition of accumulation points and isolated points in Problem (4) below. Let $X = \mathbb{R}$. Find the set of accumulation points and the set of isolated points for each of the following subsets of X.
 - (a) $S = \{0\}$ (b) S = (0,1) (c) $S = \mathbb{Q}$ (d) $S = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$

Worksheet problems

(Hand these questions in!)

- Worksheet # 2 Problem 1(b), 1(d), and Problem 4
- Worksheet # 3 Problem 1

Assignment questions

(Hand these questions in!)

1. Let $f: X \to Y$ be a function of sets X and Y. Let $A \subseteq X$ and $C \subseteq Y$. For each of the following, determine whether you can replace the symbol \square with $\subseteq, \supseteq, =$, or none of the above. Justify your answer by giving a proof of any set-containment or set-equality you claim. If set-equality does not hold in general, give a counterexample.

(a)
$$A \Box f^{-1}(f(A))$$

(b)
$$C \square f(f^{-1}(C))$$

2. Let $f: X \to Y$ be a function between metric spaces. We proved that a subset $S \subseteq X$ inherits a metric space structure from the metric on X. Recall that the *restriction* of f to S, often written $f|_{S}$, is the function

$$f|_S: S \longrightarrow Y$$

 $f|_S(s) = f(s).$

Prove that, if f is a continuous function, then its restriction $f|_S$ to S is also a continuous function.

3. Prove the following theorem.

Theorem (Equivalent definition of continuity.) Let (X, d_X) and (Y, d_Y) be metric spaces, and let $f: X \to Y$ be a function. Then f is continuous if and only if it satisfies the following property: for every closed set $C \subseteq Y$, the preimage $f^{-1}(C)$ is closed.

4. Consider the following definition.

Definition (Accumulation points of a set.) Let (X,d) be a metric space, and let $S \subseteq X$ be a set. A point $x \in X$ is called an *accumulation point* of S if for every r > 0 the ball $B_r(x)$ around x contains at least one point of S distinct from x. Note that x may or may not itself be an element of S.

- (a) An element $s \in S$ that is not an accumulation point of S is called an *isolated point* of S. Negate the definition of an accumulation point to give a precise statement of what it means to be an isolated point.
- (b) Prove that the following definition of accumulation point is equivalent to the one above. In other words, show that a point $x \in X$ is an accumulation point of a set $S \subseteq X$ if and only if it satisfies the following property.

Alternative Definition (Accumulation points of a set.) Let (X, d) be a metric space, and let $S \subseteq X$ be a set. A point $x \in X$ is called an *accumulation point* of S if every open subset U of X containing x also contains a point in S distinct from x.

- (c) Let (X, d) be a metric space and let $S \subseteq X$ be a **closed** subset. Let x be an accumulation point of S. Show that x is contained in S.
- (d) Let (X, d) be a metric space and let $S \subseteq X$ be any subset. Let x be an accumulation point of S, and let $B_r(x)$ be a ball centered around x of some radius r > 0. Show that $B_r(x)$ contains infinitely many points of S.