1 Compact topological spaces

Recall the definition of an open cover:

Definition 1.1. (Open covers; open subcovers.) Let (X, \mathcal{T}) be a topological space. A collection $\{U_i\}_{i\in I}$ of open subsets of X is an *open cover* of X if $X = \bigcup_{i\in I} U_i$. In other words, every point in X lies in the set U_i for some $i \in I$.

A sub-collection $\{U_i\}_{i\in I_0}$ (where $I_0 \subseteq I$) is an open subcover (or simply subcover) if $X = \bigcup_{i\in I_0} U_i$. In other words, every point in X lies in some set U_i in the subcover.

Definition 1.2. (Compact spaces; compact subspaces.) We say that a topological space (X, \mathcal{T}) is *compact* if **every** open cover of X has a finite subcover.

A subset $A \subseteq X$ is called *compact* if it is compact with respect to the subspace topology. This means . . .

Example 1.3. Let (X, \mathcal{T}) be a finite topological space. Then X is compact.

Example 1.4. Let X be a topological space with the indiscrete topology. Then X is compact.

Example 1.5. Let X be an infinite topological space with the discrete topology. Then X is not compact.

In-class Exercises

- 1. (a) Let X be a set with the cofinite topology. Prove that X is compact.
	- (b) Let $X = (0, 1)$ with the topology induced by the Euclidean metric. Show that X is not compact.
- 2. Suppose that (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces, and $f : X \to Y$ is a continuous map. Show that, if X is compact, then $f(X)$ is a compact subspace of Y. In other words, the continuous image of a compact set is compact.
- 3. Prove that a closed subset of a compact space is compact.
- 4. (a) Let X be a topological space with topology induced by a metric d . Prove that any compact subset A of X is bounded.
	- (b) Suppose that (X, \mathcal{T}) is a **Hausdorff** topological space. Prove that any compact subset A of X is closed in X .
	- (c) Consider $\mathbb Q$ with the Euclidean metric. Show that the subset $(-\pi, \pi) \cap \mathbb Q$ of $\mathbb Q$ is closed and bounded, but not compact.
- 5. (Optional). Determine which of the following topologies on $\mathbb R$ are compact.
	- Any topology $\mathcal T$ consisting of only finitely many sets. • $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}\$ • $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, 0 \in A\} \cup \{\emptyset\}$
	- the discrete topology
- $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, 0 \notin A\} \cup \{\mathbb{R}\}\$
- 6. (Optional). Consider R with the topology $\mathcal{T} = \{A \mid A \subseteq \mathbb{R}, 0 \notin A\} \cup \{\mathbb{R}\}.$ Give necessary and sufficient conditions for a subset $C \subseteq \mathbb{R}$ to be compact.
- 7. (Optional). Let X be a nonempty set, and let x_0 be a distinguished element of X. Let

$$
\mathcal{T} = \{ A \subseteq X \mid x_0 \notin A \text{ or } X \setminus A \text{ is finite } \}.
$$

- (a) Show that $\mathcal T$ defines a topology on X.
- (b) Verify that (X, \mathcal{T}) is Hausdorff.
- (c) Verify that (X, \mathcal{T}) is compact.

This exercise shows that **any** nonempty set X admits a topology making it a compact Hausdorff topological space.

- 8. (Optional). Let $K_1 \supseteq K_2 \supseteq \cdots$ be a descending chain of nonempty, closed, compact sets. Then $\bigcap_{n\in\mathbb{N}} K_n \neq \emptyset$.
- 9. (Optional). Let X be a topological space, and let $A, B \subseteq X$ be compact subsets.
	- (a) Suppose that X is Hausdorff. Show that $A \cap B$ is compact.
	- (b) Show by example that, if X is not Hausdorff, $A \cap B$ need not be compact. *Hint:* Consider R with the topology $\{U \mid U \subseteq \mathbb{R}, 0, 1 \notin U\} \cup \{\mathbb{R}\}.$
- 10. (Optional). Suppose that (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces, and $f : X \to Y$ is a closed map (this means that $f(C)$ is closed for every closed subset $C \subseteq X$). Suppose that Y is compact, and moreover that $f^{-1}(y)$ is compact for every $y \in Y$. Prove that X is compact.